38 research outputs found

    A Category Theoretical Approach to the Concurrent Semantics of Rewriting: Adhesive Categories and Related Concepts

    Get PDF
    This thesis studies formal semantics for a family of rewriting formalisms that have arisen as category theoretical abstractions of the so-called algebraic approaches to graph rewriting. The latter in turn generalize and combine features of term rewriting and Petri nets. Two salient features of (the abstract versions of) graph rewriting are a suitable class of categories which captures the structure of the objects of rewriting, and a notion of independence or concurrency of rewriting steps – as in the theory of Petri nets. Category theoretical abstractions of graph rewriting such as double pushout rewriting encapsulate the complex details of the structures that are to be rewritten by considering them as objects of a suitable abstract category, for example an adhesive one. The main difficulty of the development of appropriate categorical frameworks is the identification of the essential properties of the category of graphs which allow to develop the theory of graph rewriting in an abstract framework. The motivations for such an endeavor are twofold: to arrive at a succint description of the fundamental principles of rewriting systems in general, and to apply well-established verification and analysis techniques of the theory of Petri nets (and also term rewriting systems) to a wide range of distributed and concurrent systems in which states have a "graph-like" structure. The contributions of this thesis thus can be considered as two sides of the same coin: on the one side, concepts and results for Petri nets (and graph grammars) are generalized to an abstract category theoretical setting; on the other side, suitable classes of "graph-like" categories which capture the essential properties of the category of graphs are identified. Two central results are the following: first, (concatenable) processes are faithful partial order representations of equivalence classes of system runs which only differ w.r.t. the rescheduling of causally independent events; second, the unfolding of a system is established as the canonical partial order representation of all possible events (following the work of Winskel). Weakly ω-adhesive categories are introduced as the theoretical foundation for the corresponding formal theorems about processes and unfoldings. The main result states that an unfolding procedure for systems which are given as single pushout grammars in weakly ω-adhesive categories exists and can be characetrised as a right adjoint functor from a category of grammars to the subcategory of occurrence grammars. This result specializes to and improves upon existing results concerning the coreflective semantics of the unfolding of graph grammars and Petri nets (under an individual token interpretation). Moreover, the unfolding procedure is in principle usable as the starting point for static analysis techniques such as McMillan’s finite complete prefix method. Finally, the adequacy of weakly ω-adhesive categories as a categorical framework is argued for by providing a comparison with the notion of topos, which is a standard abstraction of the categories of sets (and graphs)

    Multi-amalgamation of rules with application conditions in M-adhesive categories

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Amalgamation is a well-known concept for graph transformations that is used to model synchronised parallelism of rules with shared subrules and corresponding transformations. This concept is especially important for an adequate formalisation of the operational semantics of statecharts and other visual modelling languages, where typed attributed graphs are used for multiple rules with nested application conditions. However, the theory of amalgamation for the double-pushout approach has so far only been developed on a set-theoretical basis for pairs of standard graph rules without any application conditions. For this reason, in the current paper we present the theory of amalgamation for M-adhesive categories, which form a slightly more general framework than (weak) adhesive HLR categories, for a bundle of rules with (nested) application conditions. The two main results are the Complement Rule Theorem, which shows how to construct a minimal complement rule for each subrule, and the Multi-Amalgamation Theorem, which generalises the well-known Parallelism and Amalgamation Theorems to the case of multiple synchronised parallelism. In order to apply the largest amalgamated rule, we use maximal matchings, which are computed according to the actual instance graph. The constructions are illustrated by a small but meaningful running example, while a more complex case study concerning the firing semantics of Petri nets is presented as an introductory example and to provide motivation

    Full abstraction for fair testing in CCS (expanded version)

    Get PDF
    In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent form of presheaf semantics and as a concurrent form of game semantics. We define in this setting an analogue of fair testing equivalence, which we prove fully abstract w.r.t. standard fair testing equivalence. The proof relies on a new algebraic notion called playground, which represents the `rule of the game'. From any playground, we derive two languages equipped with labelled transition systems, as well as a strong, functional bisimulation between them.Comment: 80 page

    Multi-amalgamation of rules with application conditions in M-adhesive categories

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Amalgamation is a well-known concept for graph transformations that is used to model synchronised parallelism of rules with shared subrules and corresponding transformations. This concept is especially important for an adequate formalisation of the operational semantics of statecharts and other visual modelling languages, where typed attributed graphs are used for multiple rules with nested application conditions. However, the theory of amalgamation for the double-pushout approach has so far only been developed on a set-theoretical basis for pairs of standard graph rules without any application conditions. For this reason, in the current paper we present the theory of amalgamation for M-adhesive categories, which form a slightly more general framework than (weak) adhesive HLR categories, for a bundle of rules with (nested) application conditions. The two main results are the Complement Rule Theorem, which shows how to construct a minimal complement rule for each subrule, and the Multi-Amalgamation Theorem, which generalises the well-known Parallelism and Amalgamation Theorems to the case of multiple synchronised parallelism. In order to apply the largest amalgamated rule, we use maximal matchings, which are computed according to the actual instance graph. The constructions are illustrated by a small but meaningful running example, while a more complex case study concerning the firing semantics of Petri nets is presented as an introductory example and to provide motivation

    Multi-Amalgamation in M-Adhesive Categories : Long Version

    Get PDF
    Amalgamation is a well-known concept for graph transformations in order to model synchronized parallelism of rules with shared subrules and corresponding transformations. This concept is especially important for an adequate formalization of the operational semantics of statecharts and other visual modeling languages, where typed attributed graphs are used for multiple rules with general application conditions. However, the theory of amalgamation for the double pushout approach has been developed up to now only on a set-theoretical basis for pairs of standard graph rules without any application conditions. For this reason, we present the theory of amalgamation in this paper in the framework of M-adhesive categories, short for weak adhesive HLR categories, for a bundle of rules with (nested) application conditions. The main result is the Multi-Amalgamation Theorem, which generalizes the well-known Parallelism and Amalgamation Theorems to the case of multiple synchronized parallelism. The constructions are illustrated by a small running example. A more complex case study for the operational semantics of statecharts based on multi-amalgamation is presented in a separate paper

    Coupled Transformations of Graph Structures applied to Model Migration

    Get PDF
    Model-Driven Engineering (MDE) is a relatively new paradigm in software engineering that pursues the goal to master the increased complexity of modern software products. While software applications have been developed for a specific platform in the past, today they are targeting various platforms and devices from classical desktop PCs to smart phones. In addition, they interact with other applications. To easier cope with these new requirements, software applications are specified in MDE at a high abstraction level in so called models prior to their implementation. Afterward, model transformations are used to automate recurring development tasks as well as to generate software artifacts for different runtime environments. Thereby, software artifacts are not necessarily files containing program code, they can also cover configuration files as well as machine readable input for model checking tools. However, MDE does not only address software engineering problems, it also raises new challenges. One of these new challenges is connected to the specification of modeling languages, which are used to create models. The creation of a modeling language is a creative process that requires several iterations similar to the creation of models. New requirements as well as a better understanding of the application domain result in an evolution of modeling languages over time. Models developed in an earlier version of a modeling language often needs to be co-adopted (migrated) to language changes. This migration should be automated, as migrating models manually is time consuming and error-prone. While application modelers use ad-hoc solutions to migrate their models, there is still a lack of theory to ensure well-defined migration results. This work contributes to a formalization of modeling language evolution with corresponding model migration on the basis of algebraic graph transformations that have successfully been used earlier as theoretical foundations of model transformation. The goal of this research is to develop a theory that considers the problem of modeling language evolution with corresponding model migration on a conceptual level, independent of a specific modeling framework

    Formal Foundations for Information-Preserving Model Synchronization Processes Based on Triple Graph Grammars

    Get PDF
    Zwischen verschiedenen Artefakten, die Informationen teilen, wieder Konsistenz herzustellen, nachdem eines von ihnen geändert wurde, ist ein wichtiges Problem, das in verschiedenen Bereichen der Informatik auftaucht. Mit dieser Dissertation legen wir eine Lösung für das grundlegende Modellsynchronisationsproblem vor. Bei diesem Problem ist ein Paar solcher Artefakte (Modelle) gegeben, von denen eines geändert wurde; Aufgabe ist die Wiederherstellung der Konsistenz. Tripelgraphgrammatiken (TGGs) sind ein etablierter und geeigneter Formalismus, um dieses und verwandte Probleme anzugehen. Da sie auf der algebraischen Theorie der Graphtransformation und dem (Double-)Pushout Zugang zu Ersetzungssystemen basieren, sind sie besonders geeignet, um Lösungen zu entwickeln, deren Eigenschaften formal bewiesen werden können. Doch obwohl TGG-basierte Ansätze etabliert sind, leiden viele von ihnen unter dem Problem des Informationsverlustes. Wenn ein Modell geändert wurde, können während eines Synchronisationsprozesses Informationen verloren gehen, die nur im zweiten Modell vorliegen. Das liegt daran, dass solche Synchronisationsprozesse darauf zurückfallen Konsistenz dadurch wiederherzustellen, dass sie das geänderte Modell (bzw. große Teile von ihm) neu übersetzen. Wir schlagen einen TGG-basierten Ansatz vor, der fortgeschrittene Features von TGGs unterstützt (Attribute und negative Constraints), durchgängig formalisiert ist, implementiert und inkrementell in dem Sinne ist, dass er den Informationsverlust im Vergleich mit vorherigen Ansätzen drastisch reduziert. Bisher gibt es keinen TGG-basierten Ansatz mit vergleichbaren Eigenschaften. Zentraler Beitrag dieser Dissertation ist es, diesen Ansatz formal auszuarbeiten und seine wesentlichen Eigenschaften, nämlich Korrektheit, Vollständigkeit und Termination, zu beweisen. Die entscheidende neue Idee unseres Ansatzes ist es, Reparaturregeln anzuwenden. Dies sind spezielle Regeln, die es erlauben, Änderungen an einem Modell direkt zu propagieren anstatt auf Neuübersetzung zurückzugreifen. Um diese Reparaturregeln erstellen und anwenden zu können, entwickeln wir grundlegende Beiträge zur Theorie der algebraischen Graphtransformation. Zunächst entwickeln wir eine neue Art der sequentiellen Komposition von Regeln. Im Gegensatz zur gewöhnlichen Komposition, die zu Regeln führt, die Elemente löschen und dann wieder neu erzeugen, können wir Regeln herleiten, die solche Elemente stattdessen bewahren. Technisch gesehen findet der Synchronisationsprozess, den wir entwickeln, außerdem in der Kategorie der partiellen Tripelgraphen statt und nicht in der der normalen Tripelgraphen. Daher müssen wir sicherstellen, dass die für Double-Pushout-Ersetzungssysteme ausgearbeitete Theorie immer noch gültig ist. Dazu entwickeln wir eine (kategorientheoretische) Konstruktion neuer Kategorien aus gegebenen und zeigen, dass (i) diese Konstruktion die Axiome erhält, die nötig sind, um die Theorie für Double-Pushout-Ersetzungssysteme zu entwickeln, und (ii) partielle Tripelgraphen als eine solche Kategorie konstruiert werden können. Zusammen ermöglichen diese beiden grundsätzlichen Beiträge es uns, unsere Lösung für das grundlegende Modellsynchronisationsproblem vollständig formal auszuarbeiten und ihre zentralen Eigenschaften zu beweisen.Restoring consistency between different information-sharing artifacts after one of them has been changed is an important problem that arises in several areas of computer science. In this thesis, we provide a solution to the basic model synchronization problem. There, a pair of such artifacts (models), one of which has been changed, is given and consistency shall be restored. Triple graph grammars (TGGs) are an established and suitable formalism to address this and related problems. Being based on the algebraic theory of graph transformation and (double-)pushout rewriting, they are especially suited to develop solutions whose properties can be formally proven. Despite being established, many TGG-based solutions do not satisfactorily deal with the problem of information loss. When one model is changed, in the process of restoring consistency such solutions may lose information that is only present in the second model because the synchronization process resorts to restoring consistency by re-translating (large parts of) the updated model. We introduce a TGG-based approach that supports advanced features of TGGs (attributes and negative constraints), is comprehensively formalized, implemented, and is incremental in the sense that it drastically reduces the amount of information loss compared to former approaches. Up to now, a TGG-based approach with these characteristics is not available. The central contribution of this thesis is to formally develop that approach and to prove its essential properties, namely correctness, completeness, and termination. The crucial new idea in our approach is the use of repair rules, which are special rules that allow one to directly propagate changes from one model to the other instead of resorting to re-translation. To be able to construct and apply these repair rules, we contribute more fundamentally to the theory of algebraic graph transformation. First, we develop a new kind of sequential rule composition. Whereas the conventional composition of rules leads to rules that delete and re-create elements, we can compute rules that preserve such elements instead. Furthermore, technically the setting in which the synchronization process we develop takes place is the category of partial triple graphs and not the one of ordinary triple graphs. Hence, we have to ensure that the elaborate theory of double-pushout rewriting still applies. Therefore, we develop a (category-theoretic) construction of new categories from given ones and show that (i) this construction preserves the axioms that are necessary to develop the theory of double-pushout rewriting and (ii) partial triple graphs can be constructed as such a category. Together, those two more fundamental contributions enable us to develop our solution to the basic model synchronization problem in a fully formal manner and to prove its central properties

    Matrix Graph Grammars

    Full text link
    This book objective is to develop an algebraization of graph grammars. Equivalently, we study graph dynamics. From the point of view of a computer scientist, graph grammars are a natural generalization of Chomsky grammars for which a purely algebraic approach does not exist up to now. A Chomsky (or string) grammar is, roughly speaking, a precise description of a formal language (which in essence is a set of strings). On a more discrete mathematical style, it can be said that graph grammars -- Matrix Graph Grammars in particular -- study dynamics of graphs. Ideally, this algebraization would enforce our understanding of grammars in general, providing new analysis techniques and generalizations of concepts, problems and results known so far.Comment: 321 pages, 75 figures. This book has is publisehd by VDM verlag, ISBN 978-363921255
    corecore