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Amalgamation is a well-known concept for graph transformations that is used to model

synchronised parallelism of rules with shared subrules and corresponding transformations.

This concept is especially important for an adequate formalisation of the operational

semantics of statecharts and other visual modelling languages, where typed attributed

graphs are used for multiple rules with nested application conditions. However, the theory of

amalgamation for the double-pushout approach has so far only been developed on a

set-theoretical basis for pairs of standard graph rules without any application conditions.

For this reason, in the current paper we present the theory of amalgamation for

M-adhesive categories, which form a slightly more general framework than (weak) adhesive

HLR categories, for a bundle of rules with (nested) application conditions. The two main

results are the Complement Rule Theorem, which shows how to construct a minimal

complement rule for each subrule, and the Multi-Amalgamation Theorem, which generalises

the well-known Parallelism and Amalgamation Theorems to the case of multiple

synchronised parallelism. In order to apply the largest amalgamated rule, we use maximal

matchings, which are computed according to the actual instance graph. The constructions

are illustrated by a small but meaningful running example, while a more complex case study

concerning the firing semantics of Petri nets is presented as an introductory example and to

provide motivation.

1. Introduction and related work

1.1. Historical background for amalgamation

The concepts of adhesive (Lack and Sobociński 2005) and weak adhesive high-level

replacement (HLR) (Ehrig et al. 2006) categories were a breakthrough for the double-

pushout approach of algebraic graph transformations (Rozenberg 1997). Almost all the

main results for graph transformation systems could be formulated and proved in these

categorical frameworks and instantiated to a large variety of HLR systems, including

various kinds of graph and Petri net transformation systems (Ehrig et al. 2006). These
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results included the Local Church–Rosser, Parallelism and Concurrency Theorems, the

Embedding and Extension Theorem, the completeness of critical pairs, and the Local

Confluence Theorem (Ehrig et al. 2014). Ehrig et al. (2010) showed that M-adhesive

categories, which are a slightly weaker version, are also sufficient for formulating graph

transformations in such a general categorical setting.

While most graph transformation models for distributed systems concentrate on

the topological aspects of the system (Castellani and Montanari 1983; Degano and

Montanari 1987), the application of the main theorems for the analysis of such systems is

also of interest. One example is the Parallelism Theorem (Ehrig and Kreowski 1976), which

states that two parallel independent transformations can be combined and are equivalent

to a single transformation using the corresponding parallel rule. However, a weaker form

of parallel independence is often required for distributed systems: two transformations

do not have to be completely parallel independent, but may overlap dependently on

certain well-defined elements. This generalisation of the Parallelism Theorem is called

the Amalgamation Theorem, where the assumption of parallel independence is dropped

and some synchronisation takes place. It was developed in Böhm et al. (1987) on a

set-theoretical basis for a pair of standard graph rules without application conditions.

The synchronisation of two rules p1 and p2 is expressed by a common subrule p0,

which we call the kernel rule in the current paper. The subrule concept is formalised by

a so-called kernel morphism, which is a rule morphism from p0 to pi. Given two such

kernel morphisms, the rules p1 and p2 can be glued along p0 to give an amalgamated

rule p̃ representing the synchronised effects of p1 and p2. Now, two transformations via p1

and p2 are amalgamable if they are parallel independent except for the elements matched

by the kernel rule. In this case, and in a similar way to the Parallelism Theorem, the

two transformations can be combined and are equivalent to a single transformation

using the amalgamated rule. This is the main statement of the Amalgamation Theorem:

each amalgamable pair of transformations G ⇒ Gi (i = 1, 2) via p1 and p2 leads to an

amalgamated transformation G⇒ H via p̃.

Moreover, the Complement Rule Theorem in Böhm et al. (1987) allows us to construct

a complement rule p out of a kernel morphism from p0 to p. Using the kernel rule p0

and the complement rule p, we can construct a concurrent rule p0 ∗E p equal to p. The

Concurrency Theorem then allows us to decompose each transformation G ⇒ H via p

into sequences G⇒ Gi ⇒ H via p0 and p. Moreover, an amalgamated transformation can

also be sequentialised in this way.

1.2. Other parallel models of computation in graph transformation

Parallel rewriting was first studied at the level of strings. Motivated by examples from

biology, ‘Lindenmayer Systems’, or L-systems for short, were developed as a mathematical

theory of parallel languages in the 1970s. The main idea of L-systems is to simultaneously

replace all letters of a string according to a given set of rules. This idea was generalised

to graphs, which led to various kinds of parallel graph grammars and graph-L-systems

(Rozenberg and Lindenmayer 1976).
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There are several other graph transformation based approaches and tools that realise

the transformation of multi-object structures. PROGRES (Schürr et al. 1999) and Fujaba

(Fischer et al. 2000) feature so-called set-valued nodes, which can be duplicated as often as

necessary. Both approaches handle multi-objects pragmatically. Object nodes are identified

to be, optionally, matched once, arbitrarily often or at least once, and adjacent arcs are

treated accordingly. This concept focuses on multiple instances of single nodes instead of

graph parts.

Other approaches that realise amalgamated graph transformation are AToM3, GReAT

and GROOVE. Of these, AToM3 supports the explicit definition of interaction schemes in

different rule editors (de Lara et al. 2004), while GROOVE implements rule amalgamation

based on nested graph predicates (Rensink and Kuperus 2009). Although nesting extends

the expressiveness of these transformations, writing and understanding these predicates

is a fairly complicated task, and it seems to be difficult to relate them to or integrate

them in the theoretical results for graph transformation. By contrast, the GReAT tool can

use a group operator to apply delete, move or copy operations to each match of a rule

(Balasubramanian et al. 2007).

Grønmo et al. (2009) adopted a related conceptual approach, which aimed at the

transformation of collections of similar subgraphs. In that work, all the collection

operators (multi-objects) in a rule are replaced by the mapped number of collection

match copies. Similarly, Hoffmann et al. (2006) defined a cloning operator, where cloned

nodes roughly correspond to multi-objects.

However, none of these approaches investigated the formal analysis of amalgamated

graph transformation.

1.3. Applications of amalgamation

The concepts of amalgamation were applied to communication based systems in Taentzer

and Beyer (1994), Taentzer (1996) and Ermel (2006), and transferred to the single-

pushout approach of graph transformation in Löwe (1993). Amalgamation was used in

Biermann et al. (2010a) to define a model transformation that translates simple business

process models written in the Business Process Modelling Notation (BPMN) to executable

processes formulated in the Business Process Execution Language for Web Services

(BPEL). Amalgamation also plays a key role in the modelling of the operational semantics

for visual languages (Ermel 2006). Golas et al. (2011) and Golas (2011) presented a

complex case study for the operational semantics of statecharts based on typed attributed

graphs and multi-amalgamation. An advantage of amalgamation is that we do not need

helper structures or a complex external control structure to cover complex semantical

steps in our approach. The result is a model-independent definition that is not only visual

and intuitive, but also allows us to show termination and forms a solid basis for applying

further graph transformation based analysis techniques.

The theory of amalgamation presented in the current paper has been implemented

in AGG (Taentzer 2004) and in our EMF transformation tool EMF Henshin (Biermann

et al. 2010b), which has been extended by visual editors for amalgamated rules and

application conditions (Biermann et al. 2010c).
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1.4. The aim of the current paper

In most applications, we need amalgamation for n rules (called multi-amalgamation),

which are based not only on standard graph rules, but on various kinds of typed and

attributed graph rules, including (nested) application conditions. While some of the tools

provide an ad hoc implementation of multi-amalgamation, the underlying theory is not

elaborated. The main idea of the current paper is to fill this gap between theory and

applications. To this end, we have developed the theory of multi-amalgamation for M-

adhesive systems based on rules with nested application conditions. Ehrig et al. (2014)

gives a brief description of the amalgamation of exactly two rules in this framework.

Our work in the current paper allows us to instantiate the theory to a large variety of

graphs and corresponding graph transformation systems, and, using weak adhesive HLR

categories, to typed attributed graph transformation systems (Ehrig et al. 2006) as well.

The work in the current paper extends Golas et al. (2010) in several ways. First,

we consider amalgamated transformations in any M-adhesive category, while Golas

et al. (2010) only used adhesive categories. Second, we present the firing semantics of

Petri nets as a new case study. This semantics is much smaller and easier to survey than

the semantics of statecharts in Golas et al. (2011), but still shows the importance of

multi-amalgamation, including the use of application conditions. Moreover, we give the

full proofs for the results and extend the theory by maximal matchings, which allows us

to compute the maximal amalgamated rule applicable at a specific kernel match.

1.5. Organisation of the paper

In Section 2, we discuss how to define the semantics of Petri nets using graph trans-

formation and show that amalgamation makes it easier to define rules without the need

for any additional control structure. In Section 3, we review basic notions related to

M-adhesive categories, transformations and application conditions. In Section 4, we

introduce kernel rules, multi-rules and kernel morphisms, which lead to the Complement

Rule Theorem as our first main result. In Section 5, we construct multi-amalgamated rules

and transformations, and then show the Multi-Amalgamation Theorem as our second

main result. Maximal matchings, which are used to compute the maximal amalgamated

rule, are constructed in Section 6. Finally, we present a summary of our results and

discuss future work in Section 7. All the more complex proofs are collected together

in Appendix A, while some technical lemmas underlying these proofs are relegated to

Appendix B.

2. Firing semantics of Petri nets using amalgamation

A Petri net, or place/transition net (Reisig and Rozenberg 1998), consists of places

(circles) and transitions (rectangles) with arcs between them. A place with a connecting

arc to or from a transition is called its pre-place or post-place, respectively. Note that

for simplicity we do not allow a place to be both a pre-arc and a post-arc of the same

transition. A number of tokens is put on each place, and there is no limit on the number
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Fig. 1. (Colour online) The firing of the transition t

firea1,...,am,b1,...,bn :

x1 . . .
m-times

xm

. . .
n-times

a1 am

b1 bn

y1 yn

. . .
m-times

. . .
n-times

a1 am

b1 bn

y1+b1 yn+bn

x1−a1 xm−am

=⇒

1 m

1 n

1 m

1 n

+ application conditions:

no other pre- and post-places

ai ≤ xi for i = 1, . . . , m

Fig. 2. (Colour online) The rule scheme for firing an arbitrary transition in place/transition nets

of tokens allowed. Natural numbers at the arcs mark how many tokens are moved when

the transition fires. Note that the absence of a number at an arc is an abbreviation for 1.

A transition is enabled if all its pre-places hold at least as many tokens as required by

the arc inscription. Firing this transition leads to the deletion of this number of tokens on

the pre-places and the respective number of tokens is then added to each post-place (see

Figure 1). For the modelling of the nets, we use typed attributed graphs (Ehrig et al. 2006),

which we will not describe in detail here. For each place, there is an attribute token of

type integer representing the number of tokens at this place. In the figures, we simply

show this number inside the place.

Generally speaking, there are two main approaches in the literature for defining a

rule-based semantics for models:

— In the first approach, the rules can be dependent on the actual instance of the model

(Kuske et al. 2002), so there are some rule schemes or instructions that have to

be applied to describe how to obtain the semantical rule for a concrete semantical

step dependent on what the model instance looks like. In a place/transition net, for

a transition with m pre-places and n post-places, we have variables x1, . . . , xm and

y1, . . . , yn denoting the number of tokens for the rule.

Given the arc weights a1, . . . , am and b1, . . . , bn for the pre-arcs and post-arcs, this leads

to a rule firea1 ,...,am,b1 ,...,bn (see Figure 2) describing the token handling. We then need

application conditions to ensure all the pre-places and post-places are matched. In
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place
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y

b

y+b

b

=⇒
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Fig. 3. (Colour online) The general rules for firing a transition in place/transition nets

addition, we have to check that the number of tokens at a pre-place is no smaller than

the corresponding arc weight. This rule scheme can be interpreted for each transition

that occurs, thus defining the semantics of a concrete place/transition net. Note that

to obtain all the firing rules of the place/transition nets, we have to consider all

combinations of values for m, n, ai and bj . This approach is easy to use once the rules

are constructed, but when a model is changed, the semantical rules also have to be

adapted. For arbitrary instances not known in advance, infinitely many rules appear,

which are then difficult to analyse.

— For the second approach, general rules are applied according to some complex control

structure (Varró 2002). For place/transition nets, we first have to mark an active

transition to declare its firing (the top rule in Figure 3). Since we do not know in

advance how many pre-places and post-places will need to be handled, we require

one rule to delete a token from one pre-place and one rule to add a token in one

post-place of a transition (the middle rules in Figure 3). Since we have to know which

places have already been processed, we also have to mark these places. In the end,

when all of the relevant places have been handled, first the transition and then the

places can be unmarked (the bottom rules in Figure 3). Applying the first rule m-times

and the second one n-times with the corresponding matches leads to a firing step

in the Petri net. In this way, all model instances are handled using the same rules.

However, even for this simple example, a lot of marking is needed to ensure the correct

matches. Although the single rules are relatively easy to understand, the additional

helper structures, often combined with complex control structures for more difficult

examples, makes it hard to understand the complete semantics.

Even for Petri nets, whose semantics can be described relatively easily on a set-

theoretical basis (Reisig and Rozenberg 1998), both graph transformation approaches
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s1,L s1,K s1,R
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l2 r2

s2,L s2,K s2,R

Fig. 4. (Colour online) The amalgamation semantics for firing place/transition nets

discussed above have their drawbacks. When we analyse the second approach, it is

obvious that the marking of the transition represents a kind of synchronisation: instead

of arbitrary matches for the transition, the handling of the pre-places and post-places

has to happen at the marked transition. The marking of the pre-places and post-places

is required to avoid multiple processing of the same place. Neither of these markings

are required for the first approach, since in that case all places are handled at the same

time. Our goal is to combine both approaches to give a universal rule application for all

model instances with less additional structure so that analysis becomes easier. To do this,

we use amalgamation to define an interaction scheme that provides the necessary rules.

The semantical step for each model instance can be computed using maximal matchings.

As shown below, for place/transition nets, we only need one kernel rule and two multi-

rules to describe the complete firing semantics for all well-defined nets. When we use

amalgamation, there is no need for infinitely many rules, which are difficult to analyse,

or any control or helper structure. This makes the modelling of the semantics easier and

prevents errors.

The semantics for place/transition nets using amalgamation is shown in Figure 4. The

kernel rule p0 appears twice in the top row. Note that we use rules in the double-pushout

approach with a left-hand side L describing what must be found to apply the rule, an

interface K describing what is preserved and a right-hand side R showing the resulting

graph part. This means that the elements L\K are deleted and the elements R\K are

created by the rule. The kernel rule selects an activated transition (but does not change

or mark it), and controls the synchronisation. Note that we use an application condition

ac0, shown in the middle of Figure 4, saying that for all morphisms a0, the attribute value

of the arc a has to be smaller than that of the node x. We have two multi-rules, which

define the handling of the tokens:

— p1 on the left for the pre-places selecting a place and decreasing the number of tokens;

and

— p2 on the right for the post-places selecting a place and increasing the number of

tokens.
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p̃s: cã s = a1 ≤ x1 ∧ a2 ≤ x2 ∧ a3 ≤ x3 ∧ ∀a0 : a ≤ x

x1 x2 x3

y1 y2
L̃s K̃s

x1−a1
x2−a2

x3−a3

y1
+b1

y2
+b2R̃s

L̃s

x

x1 x2 x3

y1 y2

l̃s r̃s

a0

a1 a2 a3

b1 b2

a1 a2 a3

b1 b2

a1 a2 a3

b1 b2

a1 a3

b1 b2

a

Fig. 5. (Colour online) The amalgamated rule for firing the transition t

We define morphisms s1 and s2 from the kernel rule to the multi-rules, which form an

interaction scheme. Whenever a firing step is performed, we compute a maximal weakly

disjoint matching, meaning that we look for matches for the multi-rules that overlap on

the kernel rule, but are disjoint outside. Such a matching is relatively easy and inexpensive

to compute, and ensures that all pre-places and post-places of a chosen transition are

mapped.

For example, the maximal weakly disjoint matching for the firing of the transition t in

Figure 1 with kernel match t includes three matches for the multi-rule p1 and two matches

for the multi-rule p2: one for each pre-place and post-place, respectively. Amalgamation

of this maximal weakly disjoint matching leads to the amalgamated rule p̃s shown in

Figure 5, which describes the complete firing of t. Note that this rule looks similar to an

instantiation of the rule scheme in Figure 2, but is obtained by a very different construction

mechanism, viz. amalgamation.

3. Review of basic notions

The basic idea of adhesive categories (Lack and Sobociński 2005) is to have a cat-

egory with pushouts and pullbacks along monomorphisms satisfying the van Kampen

property. Intuitively, this means that pushouts along monomorphisms and pullbacks are

compatible with each other. This holds for sets and various kinds of graphs (Lack and

Sobociński 2005; Ehrig et al. 2006), including the standard category of graphs, which we

will use as a running example. M-adhesive categories include a distinguished morphism

class M of monomorphisms and extend adhesive categories with suitable properties: a

major difference is that they only require pushouts along M-morphisms to be vertical

weak van Kampen squares.

Definition 3.1 (van Kampen square). A pushout, as at the bottom of the cube

A′

B′C ′

D′
A

B
C

D

m
f

g
n

a

b
c

d

m′f ′

g′
n′
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with m ∈M, is a vertical weak van Kampen square, or M-van Kampen square for short,

if it satisfies the vertical weak van Kampen property, that is, for any commutative cube

where the back faces are pullbacks and the vertical morphisms b, c, d ∈M, the top face

is a pushout if and only if the front faces are pullbacks.

By contrast, the horizontal weak van Kampen property assumes that f ∈M instead of

b, c, d ∈M, while the (standard) van Kampen property does not require any additional

M-morphisms.

Definition 3.2 (M-adhesive category). An M-adhesive category (C,M) consists of a

category C and a class M of monomorphisms in C that is closed under isomorphisms,

composition and decomposition (g ◦ f ∈M and g ∈M implies f ∈M) such that C has

pushouts and pullbacks along M-morphisms, M-morphisms are closed under pushouts

and pullbacks, and pushouts along M-morphisms are M-van Kampen squares.

Well-known examples of M-adhesive categories are the categories (Sets,M) of sets,

(Graphs,M) of graphs, (GraphsTG,M) of typed graphs, (ElemNets,M) of elementary Petri

nets and (PTNets,M) of place/transition nets, where M is the class of all monomorphisms

for all these examples, and (AGraphsATG,M) of typed attributed graphs, where M is

the class of all injective typed attributed graph morphisms with isomorphic data type

component (Ehrig et al. 2006).

In the double-pushout approach to transformations, rules give a general description of

how to transform objects. The application of a rule to an object is called a transformation

and is based on two gluing constructions, which are pushouts in the corresponding

category.

Definition 3.3 (rule and transformation). A rule is given by a span

p =
(
L

l← K
r→ R

)

with objects L, K and R, called the left-hand side, interface and right-hand side,

respectively, and M-morphisms l and r. An application of such a rule to an object

G via a match m : L → G is constructed as two pushouts (1) and (2) leading to a direct

transformation G =
p,m
=⇒ H:

L K R

G D H

p : l r

f g

m k n(1) (2)

Example 3.4. An example for a rule can be found in the top row of Figure 10. The

application of the rule to the graph G leads to the transformation G =
p̃s,m̃
==⇒ H shown,

where both squares are pushouts.

An important extension is the use of rules with suitable application conditions. These

include positive application conditions of the form ∃a for a morphism a : L → C , which

demand a certain structure in addition to L, and negative application conditions ¬∃a,
forbidding such a structure. A match m : L→ G satisfies ∃a (respectively, ¬∃a) if there is
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a (respectively, no) M-morphism q : C → G satisfying q ◦ a = m. More precisely, we use

nested application conditions (Habel and Pennemann 2009), or just application conditions

for short.

Definition 3.5 (application condition and satisfaction). An application condition ac over an

object L is of the form

ac = true

or

ac = ∃(a, ac′),

where a : L → C is a morphism and ac′ is an application condition over C . Given a

condition ac over L, a morphism m : L → G satisfies ac, written m |= ac, if ac = true or

ac = ∃(a, ac′) and there exists a morphism q ∈M with q ◦ a = m and q |= ac′:

L C

G

ac′ac a

m q

Moreover, application conditions are closed under Boolean formulas (with finite

or infinite index set) and satisfaction is extended in the usual way. To simplify the

presentation, we will write false to abbreviate ¬true, ∃a to abbreviate ∃(a, true) and

∀(a, ac) to abbreviate ¬∃(a,¬ac). We will also write acC ∼= ac′C to denote the semantical

equivalence of acC and ac′C on C .

Example 3.6. In Figure 10, the application condition ãcs of the rule p̃s is stated above the

rule, while the relevant morphisms are shown on the right. This condition forbids various

edges coming from or going to node 1. The match morphism m̃ satisfies this application

condition.

In the current paper, we consider rules of the form

p =
(
L

l← K
r→ R, ac

)
,

where (
L

l← K
r→ R

)
is a (plain) rule and ac is an application condition on L. There are two important

concepts we need in order to handle rules with application conditions, namely, the shifts

of application conditions over morphisms and rules (Habel and Pennemann 2009; Ehrig

et al. 2014).

For the shift construction over morphisms, we use a distinguished class E ′ of morphism

pairs with the same codomain such that for any pair of morphisms with common

codomain, a unique E ′-M pair factorisation exists.

Definition 3.7 (shift over morphism). Given an application condition ac = ∃(a, ac′) over

P and a morphism b : P → P ′, we define Shift(b, ac) to be an application condition over
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P ′ such that

Shift(b, ac) = ∨(a′ ,b′)∈F∃(a′, Shift(b′, ac′))

with

F = {(a′, b′) | (a′, b′) ∈ E ′, b′ ∈M, b′ ◦ a = a′ ◦ b}.

P C

P ′ C ′

ac

Shift(b, ac)

ac′

Shift(b′, ac′)

a

b b′

a′

Moreover,

Shift(b, true) = true

and the construction is extended for Boolean formulas in the usual way.

Remark 3.8. F is finite if E ′ consists of jointly surjective pairs of morphisms, which is the

case in our example categories.

Example 3.9. An example for shifting an application condition over a morphism is given

on the left-hand side of Figure 7. We have that

Shift(v1,¬∃a′1) = ¬∃a11,

because square (∗) is the only possible commuting square leading to a11 and b11 jointly

surjective and b11 injective.

Fact 3.10. Given an application condition ac over P and morphisms

b : P → P ′

p : P ′ → G,

we have

p |= Shift(b, ac)

if and only if

p ◦ b |= ac.

P P ′

G

Shift(b, ac)ac b

p◦b p

Proof. See Habel and Pennemann (2009) and Ehrig et al. (2014).

By analogy with the application condition over L, which is a pre-application condition,

it is also possible to define post-application conditions over the right-hand side R of a

rule. Since these application conditions over R can be translated to equivalent application

conditions over L, and vice versa (Habel and Pennemann 2009), we can restrict our rules

to application conditions over L.
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Definition 3.11 (shift over rule). Given a rule

p =
(
L

l← K
r→ R, ac

)

and an application condition

acR = ∃(a, ac′R)

over R, we define L(p, acR) to be an application condition over L with

L(p, acR) = ∃(b,L(p∗, ac′R))

if a ◦ r has a pushout complement (1) and

p∗ =

(
Y

l∗← Z
r∗→ X

)

is the derived rule by constructing pushout (2):

L K R

Y Z X

acR

ac′RL(p∗, ac′R)

L(p, acR) l r

l∗ r∗

b c a(2) (1)

Otherwise

L(p, acR) = false.

Moreover,

L(p, true) = true,

and the construction is extended to Boolean formulas in the usual way.

Example 3.12. Figure 7 gives an example of shifting an application condition over a rule

shown by the two pushout squares (PO1) and (PO2) where

L(p∗1,¬∃a11) = ¬∃a1.

Fact 3.13. Given a transformation G =
p,m
=⇒ H via a rule

p =
(
L

l← K
r→ R, ac

)

and an application condition acR over R, we have

m |= L(p, acR)

if and only if

n |= acR.

L K R

G D H

L(p, acR) acR
l r

f g

m k n(1) (2)

Proof. See Habel and Pennemann (2009).
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Shifts over morphisms are compositional and shifts over morphisms and rules are

compatible via double pushouts.

Fact 3.14. Given an application condition ac on R, the double pushouts (1) and (2) and

morphisms a, b

L K R P Q

L′ K ′ R′

ac
p :

p′ :

a bl r

l′ r′

m k n(2) (1)

we have

Shift(b, Shift(a, ac)) ∼= Shift(b ◦ a, ac)

and

Shift(m,L(p, ac)) ∼= L(p′, Shift(n, ac)).

Proof. See Habel and Pennemann (2009) and Ehrig et al. (2014).

3.1. General assumptions

In the rest of the paper, we assume we have an M-adhesive category with bin-

ary coproducts, initial pushouts, E ′-M-pair factorisation and effective pushouts (Ehrig

et al. 2006; Golas 2011). We consider rules with (nested) application conditions (Habel and

Pennemann 2009) as explained above, and in the presentation we will assume familiarity

with parallelism and concurrency in the sense of Ehrig et al. (2006). Moreover, we use

the corresponding constructions and results for the case with application conditions given

in Ehrig et al. (2014). In the following, a bundle represents a family of morphisms or

transformation steps with the same domain, which means that a bundle always starts at

the same object.

4. Decomposition of direct transformations

In this section, we show how to decompose a direct transformation in M-adhesive

categories into transformations via a kernel and a complement rule, which will lead us to

the Complement Rule Theorem.

A kernel morphism describes how a smaller rule, the kernel rule, is embedded into a

larger rule, the multi-rule, which gets its name from the fact that it can be applied multiple

times for a given kernel rule match, as described in Section 5. We will need some more

technical preconditions to ensure that the embeddings of the L-, K- and R-components

and the application conditions are consistent and will allow us to construct a complement

rule.
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Definition 4.1 (kernel morphism). Given rules

p0 =

(
L0

l0←− K0
r0−→ R0, ac0

)

p1 =

(
L1

l1←− K1
r1−→ R1, ac1

)
,

a kernel morphism s1 : p0 → p1, with

s1 = (s1,L, s1,K , s1,R)

consists of M-morphisms

s1,L : L0 → L1

s1,K : K0 → K1

s1,R : R0 → R1

such that (11) and (21) in the following diagram are pullbacks, (11) has a pushout

complement (1′1) for s1,L ◦ l0, and ac0 and ac1 are complement-compatible with respect to

s1, that is, given pushout (31), we have

ac1
∼= Shift(s1,L, ac0) ∧ L(p∗1, Shift(v1, ac′1))

for some ac′1 on L10 and

p∗1 =
(
L1

u1←− L10
v1−→ E1

)
.

In this case, p0 is called a kernel rule and p1 a multi-rule.

L0 K0 R0

L1 K1 R1

ac0

ac1

L0 K0

L1 L10

R0

E1

ac′1

p0 :

p1 :

l0 r0

l1 r1

s1,L s1,K
s1,Rs1

l0

w1s1,L

u1

r0

e11

v1

(11) (21) (1′1) (31)

Remark 4.2. The complement compatibility of the application conditions makes sure that

there is a decomposition of ac1 into parts on L0 and L10, where we will use the latter for

the application conditions of the complement rule later in the paper.

Example 4.3. To explain the concept of amalgamation, we will model a small transform-

ation system for switching the direction of edges in labelled graphs, where we only have

different labels for edges – black and dotted edges. The kernel rule p0 is shown at the

top of Figure 6. It selects a node with a black loop, deletes this loop and adds a dotted

loop, all of this provided no dotted loop is already present. The matches are defined by

the numbers at the nodes and can be induced for the edges by their position.

The middle and bottom rows of Figure 6 show two multi-rules p1 and p2, which extend

the rule p0 and also reverse an edge if no backward edge is present. They also inherit

the application condition of p0 forbidding a dotted loop at the selected node. There is a
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p0 : ac0

ac0 = ¬∃a0

1

L0

1

K0

1

R0

1

L0

1

p0 : ac0 L0 K0 R0

p1 : ac1

ac1 = Shift(s1,L, ac0) ∧ ¬∃a1

1

2

L1

1

2

K1

1

2

R1

L0 K0

1

2

L1

1

2

L10

1

2

L1

1

2

p0 : ac0 L0 K0 R0 L0 K0

p2 : ac2

ac2 = Shift(s2,L, ac0) ∧ ¬∃a2

1

3

L2

1

3

K2

1

3

R2

1

3

L2

1

3

L20

1

3

L2

1

3

l0 r0

l1 r1

s1,L s1,K s1,R

l0

s1,L

u1

w1

a1

l0 r0

l2 r2

s2,L s2,K s2,R

l0

s2,L

u2

w2

a2

l0 r0 a0

(11) (21) (1′
1)

(12) (22) (1′
2)

Fig. 6. (Colour online) The kernel rule p0 and the multi-rules p1 and p2

1

2

L10

1

2

E1

1

2

L1

1

2

L10

1

2

E1

1

2

L10

1

2

L1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

v1 u1 v1 u11

b11

a′
1 a1 a′

1a11 a11 a1(∗) (PO1) (PO2)

Fig. 7. (Colour online) Constructions for the application conditions

kernel morphism s1 : p0 → p1 as shown at the top of Figure 6 with pullbacks (11) and (21),

and pushout complement (1′1). For the application conditions, we have

ac1 = Shift(s1,L, ac0) ∧ ¬∃a1

∼= Shift(s1,L, ac0) ∧ L(p∗1, Shift(v1,¬∃a′1)),

as shown on the left-hand side of Figure 7. Thus ac′1 = ¬∃a′1, and ac0 and ac1 are

complement compatible.
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Similarly, there is a kernel morphism s2 : p0 → p2, as shown in the bottom row of

Figure 6, with pullbacks (12) and (22), pushout complement (1′2), and ac0 and ac2 being

complement compatible.

For a given kernel morphism, the complement rule is the remainder of the multi-rule

after the application of the kernel rule, that is, it describes what the multi-rule does in

addition to the kernel rule.

Theorem 4.4 (existence of complement rule). Given rules

p0 =

(
L0

l0←− K0
r0−→ R0, ac0

)

p1 =

(
L1

l1←− K1
r1−→ R1, ac1

)
,

and a kernel morphism s1 : p0 → p1, there is a canonical way to construct a rule

p1 =

(
L1

l1←− K1
r1−→ R1, ac1

)

and a jointly epimorphic cospan R0
e11−→ E1

e12←− L1 such that the E1-concurrent rule

p0 ∗E1
p1 exists and p1 = p0 ∗E1

p1:

L0 K0 R0 L1 K1 R1

L1 L10 E1 R10 R1

K1

ac0

ac1

ac1

ac′1

l0 r0 l1 r1

u1 v1 u1 v1

s1,L w1 e11 e12 w1 t1

l1 r1

l10 r10

(1′1) (31)

(81) + (91)

(91) (131)

See Ehrig et al. (2014) for the definition of E-concurrent rules for rules with application

conditions.

Proof. See Section A.1 in the appendix.

Remark 4.5. Note that when we use the construction in the appendix, the interface K0 of

the kernel rule has to be preserved in the complement rule. This canonical construction

of p1 is not unique with respect to the property p1 = p0 ∗E1
p1 since other choices for S1

with M-morphisms s11 and s13 also lead to a well-defined construction. In particular, we

could choose S1 = R0 leading to

p1 = E1
u1←− R10

v1−→ R1.

Our choice represents a smallest possible complement, which should be preferred in most

application areas.
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p1 : ac1

ac1 = ¬∃a1

1

2

L1

1

2

K1

1

2

R1

1

2

L1

1

2

p2 : ac2

ac2 = ¬∃a2

1

3

L2

1

3

K2

1

3

R2

1

3

L2

1

3

l1 r1 a1

l2 r2 a2

Fig. 8. (Colour online) The complement rules for the kernel morphisms

Definition 4.6 (complement rule). Given rules

p0 =

(
L0

l0←− K0
r0−→ R0, ac0

)

p1 =

(
L1

l1←− K1
r1−→ R1, ac1

)
,

and a kernel morphism s1 : p0 → p1, the canonical rule

p1 =

(
L1

l1←− K1
r1−→ R1, ac1

)

identified by Theorem 4.4 is called the complement rule (of s1).

Example 4.7. Consider the kernel morphism s1 in Figure 6. Using the construction in

Theorem 4.4, we obtain the complement rule in the top row of Figure 8 with the

application condition ac1 = ¬∃a1 constructed in the right-hand side of Figure 7. Figure 9

shows the diagrams of the construction. In a similar way, we can obtain a complement

rule for the kernel morphism s2 : p0 → p2 in Figure 6 – see the bottom row of Figure 8.

Each direct transformation via a multi-rule can be decomposed into a direct trans-

formation via the kernel rule followed by a direct transformation via the complement

rule.

Fact 4.8 (decomposition of transformations). Given rules

p0 =

(
L0

l0←− K0
r0−→ R0, ac0

)

p1 =

(
L1

l1←− K1
r1−→ R1, ac1

)
,

a kernel morphism s1 : p0 → p1, and a direct transformation t1 : G =
p1 ,m1
==⇒ G1, we have

that t1 can be decomposed into the transformation

G =
p0 ,m0
==⇒ G0 =

p1 ,m1
==⇒ G1
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1

L0

1

K0

1

S1

1

R0

1

2

L1

1

2

K1

1

2

K1

1

2

R10

1

2

L10

1

2

L1

1

2

E1

1

2

R10

1

2

R1

1

R0

1

2

L1

1

2

K1

1

2

R1

1

S1

1

2

C1

1

B1

1

S1

1

2

K1

l0 s11 s13

l1 v11 w1

u11 e12

l1 r1 u13

u1 v1 s1,R

u1

s13 l1◦s14

s1,L s1,K s14 u12

l10 l1 u1

s13e12 w1 t1

s12

l1

l10 r10

r1

(11) (61) (71)

(71) + (91)

(91) (131) (111)

(101)

(81) (91)

(81) + (91)

Fig. 9. (Colour online) The construction of the complement rule for the kernel morphism s1

with

m0 = m1 ◦ s1,L
where p1 is the complement rule of s1:

G

G0

G1

p0,m0 p1,m1

p1,m1

Proof. We have

p1
∼= p0 ∗E1

p1.
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The analysis part of the Concurrency Theorem (Ehrig et al. 2014) then implies the

decomposition into

G =
p0 ,m0
==⇒ G0 =

p1 ,m1
==⇒ G1

with m0 = m1 ◦ s1,L.

5. Multi-amalgamation

Böhm et al. (1987) developed an Amalgamation Theorem for a pair of graph rules without

application conditions, which can be seen as a generalisation of the Parallelism Theorem

(Ehrig and Kreowski 1976) in which the assumption of parallel independence is dropped

and pure parallelism is generalised to synchronised parallelism. In this section, we present

the Multi-Amalgamation Theorem as an Amalgamation Theorem for a bundle of rules

with application conditions over objects in an M-adhesive category.

We consider not only single kernel morphisms, but bundles of morphisms over a fixed

kernel rule. We can then combine the multi-rules of such a bundle to give an amalgamated

rule by gluing them along the common kernel rule.

Definition 5.1 (amalgamated rule). Given rules

pi =

(
Li

li←− Ki

ri−→ Ri, aci

)

for i = 0, . . . , n and a bundle of kernel morphisms

s = (si : p0 → pi)i=1,...,n,

the amalgamated rule

p̃s =

(
L̃s

l̃s←− K̃s

r̃s−→ R̃s, ãcs

)

is constructed using:

— the componentwise colimits of the kernel morphisms

L̃s = Col ((si,L)i=1,...,n)

K̃s = Col ((si,K)i=1,...,n)

R̃s = Col ((si,R)i=1,...,n);

— l̃s and r̃s are induced by (ti,L ◦ li)i=0,...,n and (ti,R ◦ ri)0=1,...,n, respectively; and

— ãcs given by

ãcs =
∧

i=1,...,n

Shift(ti,L, aci).
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p̃s :

cã s

cã s = ¬∃b1 ∧ ¬∃b2 ∧ ¬∃b3 ∧ ¬∃b4

1

2 3 4

L̃s

1

2 3 4

K̃s

1

2 3 4

R̃s

1

2 3 4

5 6 7

G

1

2 3 4

5 6 7

D

1

2 3 4

5 6 7

H

1

2 3 4

1

2 3 4

1

2 3 4

1

2 3 4

1

2 3 4

L̃s

l̃s r̃s

f g

m̃ k̃ ñ

b1

b2

b3

b4

Fig. 10. (Colour online) An amalgamated transformation

ac0

aci

cã s

L0 K0 R0

Li Ki Ri

L̃s K̃s R̃s

p0 :

pi :

p̃s :

l0 r0

li ri

si,L si,K si,R

l̃s r̃s

ti,L ti,K ti,R

si

ti

(1i) (2i)

(14i) (15i)

Fact 5.2. The amalgamated rule is well defined and we have kernel morphisms

ti = (ti,L, ti,K , ti,R) : pi → p̃s

for i = 0, . . . , n.

Proof. See Section A.2 in the appendix.

The application of an amalgamated rule yields an amalgamated transformation.

Definition 5.3 (amalgamated transformation). The application of an amalgamated rule to

a graph G is called an amalgamated transformation.

Example 5.4. Consider the bundle s = (s1, s2, s3 = s1) of kernel morphisms shown in

Figure 6. The corresponding amalgamated rule p̃s is shown in the top row of Figure 10.

This amalgamated rule can be applied to the graph G leading to the amalgamated

transformation shown in Figure 10, where the application condition ãcs is obviously

fulfilled by the match m̃.

If we have a bundle of direct transformations of a graph G, where for each transform-

ation one of the multi-rules is applied, we want to determine if the amalgamated rule is
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applicable to G in combining all of the single transformation steps. These transformations

are compatible, that is, multi-amalgamable, if the matches agree on the kernel rules and

are independent outside.

Definition 5.5 (s-amalgamable). Given a bundle of kernel morphisms

s = (si : p0 → pi)i=1,...,n,

we say a bundle of direct transformations steps

(G =
pi,mi

==⇒ Gi)i=1,...n

is s-amalgamable if:

— it has consistent matches, that is,

mi ◦ si,L = mj ◦ sj,L =: m0

for all i, j = 1, . . . , n and

— it has weakly independent matches, that is, for all i �= j, if we consider the pushout

complements (1′i) and (1′j), there exist morphisms

pij : Li0 → Dj

pji : Lj0 → Di

such that

fj ◦ pij = mi ◦ ui
fi ◦ pji = mj ◦ uj

and

gj ◦ pij |= ac′i

gi ◦ pji |= ac′j .

L0K0 K0

LiLi0 Lj0

Ki Kj

Lj

GDi Dj

Ri Rj

Gi Gj

ac′i ac′j

ac0

si,L sj,L

mi mj

m0

l0

wi

ui

l0

wj

uj

si,K

li

ki

fi

sj,K

lj

kj

fj

pijpji

rj

gj

nj

ri

gi

ni

(1′i) (1′j)

We can give a set-theoretical characterisation of weak independence without application

conditions in a similar way to the characterisation of parallel independence in Ehrig

et al. (2006).
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Fact 5.6. For graphs and other set-based structures, weakly independent matching, without

considering the application conditions, means that

mi(Li) ∩ mj(Lj) ⊆ m0(L0) ∪ (mi(li(Ki)) ∩ mj(lj(Kj)))

for all i �= j, that is, the elements in the intersection of the matches mi and mj are either

preserved by both transformations or are also matched by m0.

L0

LiKi Lj Kj

G

si,L sj,L

mi mj

m0
li lj

Proof. We have to prove the equivalence of

mi(Li) ∩ mj(Lj) ⊆ m0(L0) ∪ (mi(li(Ki)) ∩ mj(lj(Kj)))

for all i �= j = 1, . . . , n to the definition of weakly independent matches.

(⇐) Let

x = mi(yi) = mj(yj),

and suppose x /∈ m0(L0). Since (1′i) is a pushout, we have

yi = ui(zi) ∈ ui(Li0\wi(K0)),

and

x = mi(ui(zi)) = fj(pij(zi)) = mj(yj),

and by pushout properties, yj ∈ lj(Kj) and x ∈ mj(lj(Kj)). Similarly, x ∈ mi(li(Ki)).

(⇒) For x ∈ Li0 and x = wi(k), we define

pij(x) = kj(sj,K(k)).

Then

fj(pij(x)) = fj(kj(sj,K(k)))

= mj(lj(sj,K(k)))

= mj(sj,L(l0(k)))

= mi(si,L(l0(k)))

= mi(ui(wi(k)))

= mi(ui(x)).

Otherwise, we have x /∈ wi(K0), that is, ui(x) /∈ si,L(L0), and define

pij(x) = y

with

fj(y) = mi(ui(x)).
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p2, m2

p1, m3

Fig. 11. (Colour online) An s-amalgamable bundle of direct transformations

This y exists because either

mi(ui(x)) /∈ mj(Lj)

or

mi(ui(x)) ∈ mj(Lj)

and thus

mi(ui(x)) ∈ mj(lj(Kj)),

and in both cases

mi(ui(x)) ∈ fj(Dj).

We can also define pji with the required property in a similar way.

Example 5.7. Consider the bundle s = (s1, s2, s3 = s1) of kernel morphisms we considered

in Example 5.4. For the graph G given in Figure 10, we find matches

m0 : L0 → G

m1 : L1 → G

m2 : L2 → G

m3 : L1 → G

mapping all nodes from the left-hand side to their corresponding nodes in G, except for

m3, which maps node 2 in L1 to node 4 in G. For all these matches, the corresponding

application conditions are fulfilled, and we can apply the rules p1, p2, p1, respectively,

to give the bundle of direct transformations shown in Figure 11. This bundle is s-

amalgamable because the matches m1, m2 and m3 agree on the match m0, and are weakly

independent because they only overlap in m0.

For an s-amalgamable bundle of direct transformations, each single transformation step

can be decomposed into an application of the kernel rule followed by an application of

the complement rule. Moreover, all kernel rule applications lead to the same object, and
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the following applications of the complement rules are parallel independent.

G G0

Gi

Gj

p0,m0

pi,mi

pj ,mj

pi,mi

pj ,mj

Fact 5.8. Given a bundle of kernel morphisms

s = (si : p0 → pi)i=1,...,n

and an s-amalgamable bundle of direct transformations

(G =
pi,mi

==⇒ Gi)i=1,...,n,

each direct transformation G =
pi,mi

==⇒ Gi can be decomposed into a transformation

G =
p0 ,m0
==⇒ G0 =

pi,mi

==⇒ Gi.

Moreover, the transformations

G0 =
pi,mi

==⇒ Gi

are pairwise parallel independent.

Proof. See Section A.3 in the appendix.

If a bundle of direct transformations of a graph G is s-amalgamable, we can apply the

amalgamated rule directly to G to give a parallel execution of all the changes made by

the single transformation steps.

Theorem 5.9 (multi-amalgamation). Consider a bundle of kernel morphisms

s = (si : p0 → pi)i=1,...,n.

Then:

(1) Synthesis:

Given an s-amalgamable bundle (
G =

pi,mi

==⇒ Gi

)
i=1,...,n

of direct transformations, there is an amalgamated transformation G =
p̃s,m̃
==⇒ H and

transformations Gi =
qi⇒ H over the complement rules qi of the kernel morphisms

ti : pi → p̃s such that

G =
pi,mi

==⇒ Gi =
qi⇒ H

is a decomposition of G =
p̃s,m̃
==⇒ H:

H

Gi

G p̃s,m̃

pi,mi qi
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(2) Analysis:

Given an amalgamated transformation G =
p̃s,m̃
==⇒ H , there are si-related transformations

G =
pi,mi

==⇒ Gi =
qi⇒ H

for i = 1, . . . , n such that G =
pi,mi

==⇒ Gi is s-amalgamable.

(3) Bijective correspondence:

The synthesis and analysis constructions are inverse to each other up to isomorphism.

Proof. See Section A.4 in the appendix.

Remark 5.10. Note that qi can be constructed as the amalgamated rule of the kernel

morphisms

(pK0
→ pj)j �=i,

where

pK0
=

(
K0

idK0←− K0

idK0−→ K0, true

)

and pj is the complement rule of pj .

For n = 2 and rules without application conditions, the Multi-Amalgamation Theorem

specialises to the Amalgamation Theorem in Böhm et al. (1987). Moreover, if p0 is the

empty rule, it is just the Parallelism Theorem in Ehrig et al. (2014) since the transformations

are parallel independent for an empty kernel match.

Example 5.11. As stated in Example 5.7, the transformations

G =
p1 ,m1
==⇒ G1

G =
p2 ,m2
==⇒ G2

G =
p1 ,m3
==⇒ G3

shown in Figure 11 are s-amalgamable for the bundle

s = (s1, s2, s3 = s1)

of kernel morphisms. Applying Fact 5.8, we can decompose these transformations into a

transformation G =
p0 ,m0
==⇒ G0 followed by transformations

G0 =
p1 ,m1
==⇒ G1

G0 =
p2 ,m2
==⇒ G2

G0 =
p1 ,m3
==⇒ G3

via the complement rules, which are pairwise parallel independent. These transformations

are shown in Figure 12. Moreover, Theorem 5.9 implies that we obtain an amalgamated

transformation G =
p̃s,m̃
==⇒ H for this bundle of direct transformations – this is the

transformation already shown in Figure 10. Conversely, the analysis of this amalgamated
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p0, m0 p1, m1
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Fig. 12. (Colour online) The decomposition of the s-amalgamable bundle

transformation leads to the s-amalgamable bundle of transformations

G =
p1 ,m1
==⇒ G1

G =
p2 ,m2
==⇒ G2

G =
p1 ,m3
==⇒ G3

from Figure 11.

6. Multi-amalgamation with maximal matchings

An important extension of the theory presented so far is the introduction of interaction

schemes and maximal matchings. For many interesting application areas, including the

operational semantics for Petri nets and statecharts, we do not want to define the matches

for the multi-rules explicitly, but obtain them dependent on the object to be transformed.

For example, for the firing semantics of statcharts (Golas et al. 2011), an unknown number

of state transitions triggered by the same event, which is highly dependent on the actual

system state, can be handled in parallel. Similarly, for our Petri net semantics introduced

in Section 2, the pre-places and post-places of a transition should be computed during

runtime, and they are dependent on the current Petri net model.

An interaction scheme defines a bundle of kernel morphisms. In contrast to a concrete

bundle, in order to apply such an interaction scheme, all possible matches for the multi-

rules that agree on a given kernel match are computed and lead to an amalgamable

bundle of transformations.

Definition 6.1 (interaction scheme). A kernel rule p0 and a set of multi-rules

{p1, . . . , pk}

with kernel morphisms si : p0 → pi form an interaction scheme

is = {s1, . . . , sk}.

When given an interaction scheme, we want to apply as many rules occurring in the

interaction scheme as often as possible over a certain kernel rule match. For maximal

weakly independent matchings, we require the matchings of the multi-rules to be weakly
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independent to ensure that the resulting bundle of transformations is amalgamable. This

is the minimal requirement to meet the definition.

Definition 6.2 (maximal weakly independent matching). Given an interaction scheme

is = {s1, . . . , sk}

with sj : p0 → pj for j = 1, . . . , k and a family of matchings

m = (mi : L′i → G),

where each p′i corresponds to some pj for j � k, with transformations G =
p′i ,mi

==⇒ Gi, we

say m forms a maximal weakly independent matching if the bundle G =
p′i ,mi

==⇒ Gi is multi-

amalgamable and, for any rule pj , no other match m′ : Lj → G can be found such that

((mi), m
′) fulfils this property.

This definition leads directly to the following algorithm to compute maximal weakly

independent matchings for graphs and graph-like structures.

Algorithm 6.3 (maximal weakly independent matching). Given a graph G and an interac-

tion scheme

is = {s1, . . . , sk},
a maximal weakly disjoint matching

m = (m0, m1, . . . , mn)

can be computed as follows:

(1) Set i = 0 and choose a kernel matching m0 : L0 → G such that

G =
p0 ,m0
==⇒ G0

is a valid transformation.

(2) For as long as possible, increase i, choose a multi-rule p̂i = pj with j ∈ {1, . . . , k}, and

find a match mi : Lj → G such that:

— mi ◦ sj,L = m0;

— G =
pj ,mi

==⇒ Gi is a valid transformation;

— the matches m1, . . . , mi are weakly independent; and

— mi �= m� for all � = 1, . . . , i− 1.

(3) If no more valid matches for any rule in the interaction scheme can be found, return

m = (m0, m1, . . . , mn).

The maximal weakly independent matching leads to a bundle of kernel morphisms

s = (si : p0 → p̂i)

and an s-amalgamable bundle of direct transformations G =
p̂i ,mi

==⇒ Gi.
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For applications, the computation of maximal weakly independent matchings requires

a lot of backtracking because a match in Step (2) is often not weakly independent from

an already chosen one, which has to be checked pairwise for this new match compared

to all others. While the application conditions always have to be analysed since they

may state global properties of the resulting graph, at least for the elements available for

the new match, some restrictions may help to enhance the computation. In many cases,

it is enough to require the matches to be disjoint outside the kernel match. A typical

example is the semantics of Petri nets described in Section 2, where all maximal weakly

independent matchings are also weakly disjoint. This disjointness property is described

formally by a certain pullback requirement. Using maximal weakly disjoint matchings for

the implementation, we can rule out model parts that have already been matched.

Definition 6.4 (maximal weakly disjoint matching). Given an interaction scheme

is = {s1, . . . , sk}

and a maximal weakly independent matching

m = (mi : L′i → G),

we say m forms a maximal weakly disjoint matching if the square (Pi�) is a pullback for all

i �= �:

L0 L′
i

L′
� G

si,L

s�,L mi

m�

(Pi�)

Note that for maximal weakly disjoint matchings, the pullback requirement already

implies the existence of the morphisms for the weakly independent matches, and only the

property for the application conditions has to be checked in addition.

Fact 6.5. Given an object G, a bundle of kernel morphisms s = (s1, . . . , sn) and matches

m1, . . . , mn leading to a bundle of direct transformations G =
pi,mi

==⇒ Gi such that

mi ◦ si,L = m0

and square (Pi�) is a pullback for all i �= �, the bundle G =
pi,mi

==⇒ Gi is s-amalgamable for

transformations without application conditions.

Proof. By construction, the matches mi agree on the match m0 of the kernel rule, so it

just remains to show that they are weakly independent.

Consider the transformations G =
pi,mi

==⇒ Gi with pushouts (20i) and (21i) in the following

diagram:

Ki Ri

Di Gi

Li

G fi

li

mi

ri

ki

gi

ni(20i) (21i)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000345
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:50:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000345
https://www.cambridge.org/core


Multi-amalgamation of rules with application conditions in M-adhesive categories 29

For the cube

K0

L0

Ki

Li

P

L�

Di

G

l0
si,K

p

s�,L

si,L
li

ki

f̂

m̂

m�

fi mi

the bottom face is pushout (20i), the back right face is pullback (1i) and the front right

face is pullback (Pi�). Now construct the pullback of fi and m� as the front left face, and

since

m� ◦ s�,L ◦ l0 = mi ◦ si,L ◦ l0
= mi ◦ li ◦ si,K
= fi ◦ ki ◦ si,K ,

we obtain a morphism p with

f̂ ◦ p = s�,L ◦ l0
and

m̂ ◦ p = ki ◦ si,K .
From pullback composition and decomposition of the right and left faces, it follows

that the back left face is a pullback too. The M-van Kampen property can now be

applied to give a pushout in the top face. Since pushout complements are unique up to

isomorphism, we can substitute the top face by pushout (1′i) from Definition 5.5 with

P ∼= L�0. Thus we have found the morphism p�i := m̂ with

fi ◦ p�i = m� ◦ ui.

This construction can be applied for all pairs i, � leading to weakly independent matches

without application conditions.

This fact leads to a set-theoretical characterisation of maximal weakly disjoint matchings

similar to the result in Fact 5.6.

Fact 6.6. For graphs and graph-based structures, valid matches m0, m1, . . . , mn with

mi ◦ si,L = m0

for all i = 1, . . . , n form a maximal weakly disjoint matching without application conditions

if and only if

mi(Li) ∩ m�(L�) = m0(L0)

for all i �= �.

Proof. The fact that we have valid matches means that the transformations

G =
pi,mi

==⇒ Gi
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Fig. 13. (Colour online) Application of an amalgamated rule via maximal matchings

are well defined. In graphs and graph-like structures, (Pi�) is a pullback if and only if

mi(Li) ∩ m�(L�) = m0(L0).

Fact 6.5 then implies that the matches form a maximal weakly disjoint matching without

application conditions.

Example 6.7. Consider the interaction scheme is = (s1, s2) defined by the kernel morphisms

s1 and s2 in Figure 6, the graph X shown in the middle of Figure 13 and the kernel rule

match m0 mapping the node 1 in L0 to the node 1 in X.

If we choose maximal weakly independent matchings, the construction works as follows

to define the following matches, where f is the edge from 1 to 2 in L1 and g is the reverse

edge in L2:

i = 1 : p̂1 = p1, m1 : 2 �→ 3, f �→ c,

i = 2 : p̂2 = p1, m2 : 2 �→ 4, f �→ d,

i = 3 : p̂3 = p2, m3 : 3 �→ 2, g �→ a,

i = 4 : p̂4 = p1, m4 : 2 �→ 4, f �→ e,

i = 5 : p̂5 = p2, m5 : 3 �→ 2, g �→ b.

Thus, we find five different matches: three for the multi-rule p1 and two for the multi-

rule p2. Note that in addition to the overlapping m0, the matches m3 and m5 overlap in

the node 2, while m2 and m4 overlap in the node 4, but since these matches are still weakly

independent because the nodes 2 and 4 are not deleted by the rule applications, this is a

valid maximal weakly independent matching. This leads to the bundle

s = (s1, s1, s1, s2, s2)

and the amalgamated rule p̃s, which can be applied to X to give the amalgamated

transformation X =
p̃s ,m̃
==⇒ X ′, as shown on the left of Figure 13.

If we choose maximal weakly disjoint matchings instead, the matches m4 and m5

are no longer valid because they overlap with m2 and m3, respectively, in more than

the match m0. Thus, we obtain the maximal weakly disjoint matching (m0, m1, m2, m3), the

corresponding bundle s′ = (s1, s1, s2) giving the amalgamated rule p̃s′ and the amalgamated

transformation X =
p̃s′ ,m̃

′

==⇒ X ′′ shown on the right of Figure 13. Note that this matching is

not unique, and (m0, m1, m2, m4) could also have been chosen as a maximal weakly disjoint

matching.
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7. Conclusions

In the current paper, we have generalised the theory of amalgamation in Böhm et al. (1987)

to multi-amalgamation in M-adhesive categories, and introduced interaction schemes and

maximal matchings. More precisely, the Complement Rule and Amalgamation Theorems

in Böhm et al. (1987) are presented on a set-theoretical basis for pairs of plain graph

rules without any application conditions. The Complement Rule and Multi-Amalgamation

Theorems in the current paper are valid in adhesive and M-adhesive categories for n

rules with application conditions (Habel and Pennemann 2009). These generalisations

are non-trivial, and are important for applications of parallel graph transformations

to communication-based systems (Taentzer 1996) and to model transformations from

BPMN to BPEL (Biermann et al. 2010a), and for modelling the operational semantics

of visual languages (Ermel 2006), where interaction schemes are used to generate multi-

amalgamated rules and transformations based on suitable maximal matchings.

The theory of multi-amalgamation is a solid mathematical basis for analysing interesting

properties of the operational semantics, such as termination, local confluence and func-

tional behaviour. However, generalising the corresponding results in Ehrig et al. (2006),

such as the Local Church–Rosser, Parallelism and Local Confluence Theorems, to the

case of multi-amalgamated rules, and, in particular, to the operational semantics of

statecharts based on amalgamated graph transformation with maximal matchings in

Golas et al. (2011), is left for future work.

Appendix A. Proofs of facts and theorems

In this appendix, we prove the facts and theorems used within the main part. They rely

on the technical lemmas proved in Appendix B.

A.1. Proof of Theorem 4.4

Proof. We begin by considering the construction without application conditions.

Since s1 is a kernel morphism, the diagrams (11) and (21) in

L0 K0 R0

L1 K1 R1

l0 r0

l1 r1

s1,L s1,K s1,R(11) (21)

are pullbacks and (11) has a pushout complement (1′1) for s1,L ◦ l0 (see Definition 4.1). We

construct the pushout (31):

L0 K0 R0

L1 L10 E1

l0 r0

u1 v1

s1,L w1 e11(1′1) (31)
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We now construct the initial pushout (41) over s1,R with b1, c1 ∈M, P1 as the pullback

object of r0 and b1, and the pushout (51) in

B1

C1

R0

R1

P1 S1

K0

b1

c1

s1,R

s12

s11
s13

r0

(41)

(51)

We obtain an induced morphism s13 : S1 → R0 with

s13 ◦ s12 = b1

s13 ◦ s11 = r0

and s13 ∈M by effective pushouts. Since (11) is a pullback, Lemma B.1 implies that there

is a unique morphism l10 : K1 → L10 with

l10 ◦ s1,K = w1

u1 ◦ l10 = l1,

and l10 ∈M as in

L0 K0

L1 L10

K1

l0

u1

s1,L w1

l1
l10

s1,K

(1′1)

We can then construct pushouts (61)–(91)

K0 S1 R0

K1 K1 R10

L10 L1 E1

s11

s1,K

s13

s14 u12

v11 w1

l10

u11

l1

e12

u1

e11

(81) (91)

(61) (71)

as a decomposition of pushout (31) above, which leads to L1 and K1 of the complement

rule, so e11 and e12 are jointly epimorphic because (71) + (91) is a pushout.

The pushout (41) can be decomposed into pushouts (101) and (111) as in

B1

C1

S1

R1

R0

R1

s12 s13

u13 s1,R

t1

(101) (111)
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to give the right-hand side R1 of the complement rule. The pullback (21) can be

decomposed into pushout (61) and square (121), which is a pullback by Lemma B.2

as shown in

K0

K1

S1

K1

R0

R1

s11 s13

s1,K s14 s1,R

v11 v12

(61) (121)

Lemma B.1 now implies that there is a unique morphism r1 : K1 → R1 in

S1 R0

R1 R1

K1

s13

u13 s1,R

t1s14

v12
r1

(111)

with

r1 ◦ s14 = u13

t1 ◦ r1 = v12,

and r1 ∈M.

The pushout (71) implies that there is a unique morphism v1 : R10 → R1 as shown in

S1 R0

K1 R10

R1

s13

s14 u12

w1 s1,R

v1v12

(71)

and, by pushout decomposition of (111) = (71) + (131), square (131) is a pushout:

S1

R0

K1

R10

R1

R1

s14 r1

s13 w1 t1

u12 v1

(71) (131)

Moreover, (81) + (91), as a pushout over M-morphisms, is also a pullback, which

completes the construction shown below, leading to the required rule

p1 =

(
L1

l1←− K1
r1−→ R1

)

and

p1 = p0 ∗E1
p1
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for rules without application conditions.

C1 B1

L0 K0 S1 R0 L1 K1 R1 S1

S1

L1 K1 K1 R10

L10 L1 E1 R10 R1 R0

K1

l0 s11 s13

s13 l1◦s14

l1 r1 u13

s12

l1 v11 w1

u1

u11 e12 u1 v1 s1,R

l1

l10 r10

r1

s1,L s1,K s14 u12

l10 l1 u1

e12 w1 t1 s13

b1(11) (61) (71)

(81) (91)

(81) + (91)

(71) + (91)

(91)

(101)

(131) (111)

For the application conditions, suppose

ac1
∼= Shift(s1,L, ac0) ∧ L

(
p∗1, Shift(v1, ac′1)

)
for

p∗1 = (L1
u1←− L10

v1−→ E1)

with

v1 = e12 ◦ u11

and ac′1 on L10. We now define

ac1 = Shift(u11, ac′1),

which is an application condition on L1. We have to show that

(p1, acp0∗E1
p1

) ∼= (p1, ac1).

By construction of the E1-concurrent rule,

acp0∗E1
p1
∼= Shift(s1,L, ac0) ∧ L(p∗1, Shift(e12, ac1))

∼= Shift(s1,L, ac0) ∧ L(p∗1, Shift(e12, Shift(u11, ac′1)))

∼= Shift(s1,L, ac0) ∧ L(p∗1, Shift(e12 ◦ u11, ac′1))

∼= Shift(s1,L, ac0) ∧ L(p∗1, Shift(v1, ac′1))

∼= ac1.

A.2. Proof of Fact 5.2

Proof. We will begin by showing the well definedness of the morphisms l̃s and r̃s:

K0 Ki

K̃s

L̃s

K0 Ki

K̃s

R̃s

si,K

t0,K ti,K

t0,L◦l0 ti,L◦li

l̃s

si,K

t0,K ti,K

t0,R◦r0 ti,R◦ri

r̃s
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Consider the colimits

(
L̃s, (ti,L)i=0,...,n

)
of (si,L)i=1,...,n(

K̃s, (ti,K)i=0,...,n

)
of (si,K)i=1,...,n(

R̃s, (ti,R)i=0,...,n

)
of (si,R)i=1,...,n,

with

t0,∗ = ti,∗ ◦ si,∗
for ∗ ∈ {L,K, R} in the right-hand digram above. Since

ti,L ◦ li ◦ si,K = ti,L ◦ si,L ◦ l0 = t0,L ◦ l0,

we get an induced morphism l̃s : K̃s → L̃s with

l̃s ◦ ti,K = ti,L ◦ li

for i = 0, . . . , n. Similarly, we obtain r̃s : K̃s → R̃s with

r̃s ◦ ti,K = ti,R ◦ ri

for i = 0, . . . , n. The colimit of a bundle of n morphisms can be constructed by

iterated pushout constructions, which means that we only have to require pushouts

over M-morphisms. Since pushouts are closed under M-morphisms, the iterated pushout

construction leads to ti ∈M.

It remains to show that (14i) and (14i) + (1i), and (15i) and (15i) + (2i) in Definition 5.1

are pullbacks, and (14i) and (14i) + (1i) have a pushout complement for ti,L ◦ li. We will

prove this by induction over j for the (14i) and (14i)+(1i) case only; the pullback property

for (15i) follows analogously.

Let L̃j and K̃j be the colimits of (si,L)i=1,...,j and (si,K)i=1,...,j , respectively. We need to

prove that (16ij) in

Ki K̃j

Li L̃j

li (16ij)

is a pullback with the pushout complement property for all i = 0, . . . , j.

— Base case (j = 1):

The colimits of s1,L and s1,K are L1 and K1, respectively, which means that (1601) =

(1)1 + (1611) and (1611) are both pushouts and pullbacks:

K0

L0

K1 K̃1

L1 L̃1

l0

s1,K

s1,L

l1 (1611)(11)
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— Induction step (j → j + 1):

We construct

L̃j+1 = L̃j +L0
Lj+1

K̃j+1 = K̃j +K0
Kj+1

as pushouts in the cube

K0

Kj+1

L0

Lj+1

K̃j

K̃j+1

L̃j

L̃j+1

sj+1,K

l0

lj+1

sj+1,L

The top and bottom faces are pushouts, the back faces are pullbacks, and, by the

van Kampen property, the front faces are also pullbacks. Moreover, by Lemma B.3,

the front faces have the pushout complement property, and, by Lemma B.4, this also

holds for (160j) and (16ij) as compositions.

Thus, for a given n, (16in) is the required pullback (14i) and (14i)+(1i) with the pushout

complement property using K̃n = K̃s and L̃n = L̃s.

Moreover, we have pushout complements (17i) and (17i) + (1′i) for ti,L ◦ li as in

ac0

aci

cã s

L0 K0 R0

Li Li0 Ei

L̃s L̃0 Ẽ

p0 :

p∗i :

p̃∗s :

l0 r0

ui vi

ũ ṽ

si,L wi ei1

ti,L l̃i k̃i

(1′i) (3i)

(17i) (18i)

Since ac0 and aci are complement-compatible for all i, we have

aci ∼= Shift(si,L, ac0) ∧ L
(
p∗i , Shift

(
vi, ac′i

))
.

For any ac′i, we have

Shift(ti,L,L(p∗i , Shift(vi, ac′i))))
∼= L

(
p̃∗s , Shift

(
k̃i ◦ vi, ac′i

))
∼= L

(
p̃∗s , Shift

(
ṽ, Shift

(̃
li, ac′i

)))

since all squares are pushouts by pushout–pullback decomposition and the uniqueness

of pushout complements. We define

ac∗i := Shift
(̃
li, ac′i

)
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as an application condition on L̃0. It then follows that

ãcs =
∧

i=1,...,n

Shift(ti,L, aci)

∼=
∧

i=1,...,n

(Shift(ti,L ◦ si,L, ac0) ∧ Shift(ti,L,L(p∗i , Shift(vi, ac′i))))

∼= Shift(t0,L, ac0) ∧
∧

i=1,...,n

L(p̃∗s , Shift(ṽ, ac∗i )).

For i = 0, we define

ac′s0 =
∧

j=1,...,n

ac∗j ,

so

ãcs = Shift(t0,L, ac0) ∧ L(p̃∗s , Shift
(
ṽ, ac′s0)

)
implies the complement-compatibility of ac0 and ãcs.

For i > 0, we have

Shift(t0,L, ac0) ∧ L(p̃∗s , Shift(ṽ, ac∗i ))
∼= Shift(ti,L, aci).

We define

ac′si =
∧

j=1,...,n\i

ac∗j ,

so

ãcs = Shift(ti,L, aci) ∧ L(p̃∗s , Shift(ṽ, ac′si))

implies the complement-compatibility of aci and ãcs.

A.3. Proof of Fact 5.8

Proof. From Fact 4.8, each single direct transformation G =
pi,mi

==⇒ Gi can be decomposed

into a transformation

G =
p0 ,m

i
0

==⇒ Gi
0 =

pi,mi

==⇒ Gi

with

mi
0 = mi ◦ si,L,

and since the bundle is s-amalgamable,

m0 = mi ◦ si,L = mi
0

and G0 := Gi
0 for all i = 1, . . . , n.

We now have to show the pairwise parallel independence.
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From the constructions of the complement rule and the Concurrency Theorem, we

obtain the following diagram for all i = 1, . . . , n:

L0 K0 Si R0 Li Ki Ri

Li Ki Ki Ri0

Li0 Li Ei Ri0 Ri

Ki

G D0 G0 Di Gi

Di

l0 si1 si3 li ri

li vi1 wi

ui

ui1 ei2 ui vi

li

li0 ri0

ri

si,L si,K si4 ui2

li0 li ui

ei2 wi ti

mi

xi0 ki0 xi ni

ki

fi

di0 di
gi

f0 g0 fi gi

m0

wi

(1i) (6i) (7i)

(8i) (9i)

(9i) (13i)

For i �= j, the weakly independent matches mean we have a morphism pij : Li0 → Dj

with

fj ◦ pij = mi ◦ ui.

It follows that

fj ◦ pij ◦ wi = mi ◦ ui ◦ wi

= mi ◦ si,L ◦ l0
= m0 ◦ l0
= mj ◦ sj,L ◦ l0
= mj ◦ uj ◦ wj

= mj ◦ uj ◦ lj0 ◦ sj,K
= mj ◦ lj ◦ sj,K
= fj ◦ kj ◦ sj,K ,

and with fj ∈M, we have

pij ◦ wi = kj ◦ sjk. (∗)

Now consider the pushout (19i) = (6i) + (8i) in comparison with object Dj and

morphisms dj ◦ pij and xj ◦ uj2 ◦ si3 as shown below:

K0 Si

Li0 Li

Dj

si1

li0◦si,K li◦si4

ui1 xj◦uj2◦si3

qij
dj◦pij

(19i)
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We have

dj ◦ pij ◦ li0 ◦ si,K = dj ◦ pij ◦ wi

= dj ◦ kj ◦ sj,K (by ∗)
= xj ◦ rj0 ◦ sj,K
= xj ◦ wj ◦ vj1 ◦ sj,K
= xj ◦ uj2 ◦ sj3 ◦ sj1
= xj ◦ uj2 ◦ r0
= xj ◦ uj2 ◦ si3 ◦ si1.

Now, pushout (19i) induces a unique morphism qij with

qij ◦ ui1 = dj ◦ pij
qij ◦ li ◦ si4 = xj ◦ uj2 ◦ si3.

For the parallel independence of

G0 =
pi,mi

==⇒ Gi

G0 =
pj ,mj

==⇒ Gj,

we have to show that qij : Li → Dj satisfies

fj ◦ qij = ki0 ◦ ei2 =: mi.

With f0 ∈M and

f0 ◦ dj0 ◦ pij = fj ◦ pij
= mi ◦ ui
= f0 ◦ xi0

it follows that

dj0 ◦ pij = xi0. (∗∗)

This means that

fj ◦ qij ◦ ui1 = fj ◦ dj ◦ pij
= g0 ◦ d0 ◦ pij (by ∗∗)
= g0 ◦ xi0
= ki0 ◦ ei2 ◦ ui1.

We also have

fj ◦ qij ◦ li ◦ si4 = fj ◦ xj ◦ uj2 ◦ si3
= kj0 ◦ uj ◦ uj2 ◦ si3
= ki0 ◦ ui ◦ ui2 ◦ si3
= ki0 ◦ ei2 ◦ li ◦ si4.
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Since (19i) is a pushout, ui1 and li ◦ si4 are jointly epimorphic, so

fj ◦ qij = ki0 ◦ ei2.

If ac0 and aci are not complement-compatible, then aci = true and, trivially,

gj ◦ qij |= aci

for all j �= i. Otherwise, we have

gj ◦ pij |= ac′i,

and with

gj ◦ pij = gj ◦ dj ◦ pij
= gj ◦ qij ◦ ui1

it follows that

gj ◦ qij ◦ ui1 |= ac′i,

which is equivalent to

gj ◦ qij |= Shift(ui1, ac′1) = aci.

A.4. Proof of Theorem 5.9

Proof.

(1) Synthesis:

We have to show that p̃s is applicable to G leading to an amalgamated transformation

G =
p̃s,m̃
==⇒ H with mi = m̃ ◦ ti,L, where ti : pi → p̃i is the kernel morphism constructed in

Fact 5.2.

Then we can apply Fact 4.8, which implies the decomposition of G =
p̃s,m̃
==⇒ H into

G =
pi,mi

==⇒ Gi =
qi⇒ H,

where qi is the (weak) complement rule of the kernel morphism ti.

Given the kernel morphisms, the amalgamated rule and the bundle of direct transform-

ations, we have the pullbacks (1i), (2i), (14i), (15i) (see Definition 5.1)

ac0

aci

cã s

L0 K0 R0

Li Ki Ri

L̃s K̃s R̃s

l0 r0

li ri

si,L si,K si,R

l̃s r̃s

ti,L ti,K ti,R

(1i) (2i)

(14i) (15i)

and the pushouts (20i), (21i) (see proof of Fact 6.5) on the right

Li Ki Ri

G Di Gi

li ri

fi
gi

mi ki ni(20i) (21i)
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Using Fact 5.8, we know that we can apply p0 via m0 to give a direct transformation

G =
p0 ,m0
==⇒ G0 given by the pushouts (200) and (210):

L0 K0 R0

G D0 G0

l0 r0

f0 g0

m0 k0 n0(200) (210)

Moreover, we can find decompositions of pushouts (200) and (20i) into pushouts (1′i)

and (22i), and (22i) and (23i), respectively, by M-pushout–pullback decomposition and

the uniqueness of pushout complements as in

L0 K0

Li Li0 Ki

G D0 Di

l0

si,K

ui li0

si,L wi

f0 di0

mi xi0 ki

(1′i)

(22i) (23i)

Since we have consistent matches,

mi ◦ si,L = m0

for all i = 1, . . . , n. The colimit L̃s then implies that there is a unique morphism m̃ : L̃s → G

with

m̃ ◦ ti,L = mi

m̃ ◦ t0,L = m0.

L0 Li

L̃s

G

si,L

t0,L ti,L

mim0
m̃

Moreover,

mi |= aci ⇒ m̃ ◦ ti,L |= aci

⇒ m̃ |= Shift(ti,L, aci)

for all i = 1, . . . , n, so

m̃ |= ãcs =
∧

i=1,...,n

Shift(ti,L, aci).

The fact that we have weakly independent matches means that there exist morphisms

pij with

fj ◦ pij = mi ◦ ui
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for i �= j. We now construct D as the limit of (di0)i=1,...,n with morphisms di. Now f0 being

a monomorphism with

f0 ◦ di0 ◦ pji = fi ◦ pji
= mj ◦ uj
= f0 ◦ xj0

implies that

di0 ◦ pji = xj0,

so

di0 ◦ pji ◦ lj0 = xj0 ◦ lj0,
and, together with

di0 ◦ ki = xi0 ◦ li0,
limit D then implies that there exists a unique morphism rj with

di ◦ rj = pji ◦ lj0
di ◦ ri = ki

d0 ◦ rj = xj0 ◦ lj0.

Kj

D

Di D0di0

d0di

i �=j:pji◦lj0

i=j:ki

xj0◦lj0
rj

Similarly, fj being a monomorphism with

fj ◦ pij ◦ li0 ◦ si,K = mi ◦ ui ◦ wi

= mi ◦ si,L ◦ l0
= m0 ◦ l0
= mj ◦ sj,L ◦ l0
= mj ◦ lj ◦ sj,K
= fj ◦ kj ◦ sj,K

implies that

pij ◦ li0 ◦ si,K = kj ◦ sj,K .
Now, colimit K̃s implies that there is a unique morphisms r̃j with

r̃j ◦ ti,K = pij ◦ li0
r̃j ◦ tj,K = kj

r̃j ◦ t0,K = kj ◦ sj,K .
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K0 Ki

K̃s

Dj

si,K

t0,K ti,K

i �=j:pij◦li0

i=j:ki
kj◦sj,K

r̃j

Since

di0 ◦ r̃i ◦ ti,K = di0 ◦ ki
= qi ◦ li0
= dj0 ◦ pij ◦ li0
= dj0 ◦ r̃j ◦ ti,K

and

di0 ◦ r̃i ◦ t0,K = di0 ◦ ki ◦ si,K
= k0

= dj0 ◦ r̃j ◦ t0,K ,

colimit K̃s implies that for all i, j we have

di0 ◦ r̃i = dj0 ◦ r̃j =: r̃.

From limit D, it now follows that there exists a unique morphism k̃ with

di ◦ k̃ = r̃i

d0 ◦ k̃ = r̃.

K̃s

D

Di D0di0

d0di

r̃i r̃
k̃

We now have to show that (20s) in

L̃s K̃s

G D

l̃s

f

m̃ k̃(20s)

with f = f0 ◦ d0 is a pushout.
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With

f ◦ k̃ ◦ ti,K = f0 ◦ d0 ◦ k̃ ◦ ti,K
= f0 ◦ r̃ ◦ ti,K
= f0 ◦ di0 ◦ r̃i ◦ ti,K
= f0 ◦ di0 ◦ ki
= fi ◦ ki
= mi ◦ li
= m̃ ◦ ti,L ◦ li
= m̃ ◦ l̃s ◦ ti,K

and

f ◦ k̃ ◦ t0,K = f0 ◦ d0 ◦ k̃ ◦ t0,K
= f0 ◦ r̃ ◦ t0,K
= f0 ◦ di0 ◦ r̃i ◦ t0,K
= f0 ◦ di0 ◦ ki ◦ si,K
= f0 ◦ k0 = m0 ◦ l0
= m̃ ◦ t0,L ◦ l0
= m̃ ◦ l̃s ◦ t0,K

and K̃s being a colimit, it follows that

f ◦ k̃ = m̃ ◦ l̃s,

so the square commutes.

Pushout (23i) can be decomposed into pushouts (24i) and (25i) in

Ki D

Li0 Pi

Di

D0

ri

xi0

li0 xi

di

yi0

di0(24i) (25i)

Using Lemma B.5, it follows that D0 is the colimit of (xi)i=1,...,n, because (23i) is a

pushout, D is the limit of (di0)i=1,...,n, and we have morphisms pij with dj0 ◦ pij = qi.

Lemma B.6 then implies that (25) in

+Ki +Li0

D D0

+li0

d0

r d(25)

is also a pushout, where + represents the coproduct construction with index i = 1, . . . , n

with injections ιKi
and ιLi0

, respectively.
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Consider the n-ary coequalisers:

— K̃s of (ιKi
◦ si,K : K0 → +Ki)i=1,...,n

(which is actually K̃s by construction of colimits);

— L̃0 of (iotaLi0
◦ wi : K0 → +Li0)i=1,...,n

(as already constructed in Fact 5.2);

— D of (k̃ ◦ t0,K : K0 → D)i=1,...,n;

— D0 of (k0 : K0 → D0)i=1,...,n.

In the cube

K0

K0

+Ki

+Li0

K̃s

L̃0

K0

K0

D

D0

D

D0

+li0
r

d

k̃

d0

idD

idD0

d0

. . .
ιKi

◦si,K

. . .
ιLi0◦wi. . .

k̃◦t0,K

. . .
k0

the top square with identical morphisms is a pushout, the top cube commutes and the

middle square is pushout (25) from above. Using Lemma B.7, it follows that the bottom

square

K̃s L̃0

D D0d0

k̃ (26)

constructed of the four coequalisers is a pushout too.

Now consider the cube

K0

K0

K0

K̃s

L0

L̃0

K̃s

L̃s

K0

K0

K0

D

L0

D0

D

G

l̃s
k̃

f
m̃
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where the top and middle squares are pushouts and the two top cubes commute. Using

Lemma B.7 again, it follows that (20s) in the bottom is actually a pushout, where

(27) = (1′i) + (17i)

is a pushout by composition:

K0 L̃0

L0 L̃st0,K

l0 (27)

We can now construct pushout (21s), which completes the direct transformation

G =
p̃s,m̃
==⇒ H.

L̃s

G

K̃s R̃s

D H

l̃s r̃s

f g

m̃ k̃ ñ(21s)

(2) Analysis:

Using the kernel morphisms ti, we obtain transformations

G =
pi,mi

==⇒ Gi =
qi⇒ H

from Fact 4.8 with

mi = m̃ ◦ ti,L.

We have to show that this bundle of transformation is s-amalgamable. Applying Fact 4.8

again, we obtain transformations

G =
p0 ,m

i
0

==⇒ Gi
0 =

pi⇒ Gi

with

mi
0 = mi ◦ si,L.

It follows that

mi
0 = mi ◦ si,L

= m̃ ◦ ti,L ◦ si,L
= m̃ ◦ t0,L
= m̃ ◦ tj,L ◦ sj,L
= mj ◦ sj,L,

sos we have consistent matches with m0 := mi
0 well defined and G0 = Gi

0.

We still need to show the weakly independent matches. Given the above transformations,

we have pushouts (200), (20i) and (20s) as above. We can find decompositions of (200)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000345
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:50:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000345
https://www.cambridge.org/core


Multi-amalgamation of rules with application conditions in M-adhesive categories 47

and (20s) into pushouts (27) + (28) and (26) + (28), respectively:

K̃s L̃0 L̃s

K0 L0

D D0 G

l0

ũ

d0 f0

k

t0,L

m̃(26) (28)

(27)

Using pushout (26) and Lemma B.8, it follows that (25) as above is a pushout since

K̃s is the colimit of (si,L)i=1,...,n and L̃0 is the colimit of (wi)i=1,...,n, and idK0
is obviously an

epimorphism.

Lemma B.6 now implies that there is a decomposition into pushouts (24i) with colimit

D0 of (xi)i=1,...,n and pushout (25i) by the M-pushout–pullback decomposition

K0 Li0 Pi D0

Ki D Di

L0 Li G

wi

ri di

xi0 yi0

si,L mi

l0

li0

ui

xi di0

f0(1′i)

(24i) (25i)

Since D0 is the colimit of (xi)i=1,...,n and (25j) is a pushout, it follows that Dj is the

colimit of (xi)i=1,...,j−1,j+1,...,n with morphisms qij : Pi → Dj and dj0 ◦ qij = yi0:

Pj

D0

D

Dj

Pi

Li0

xj
dj

yj0
dj0

xi

qij

xi0

yi0

(25j)

Hence, we obtain for all i �= j, a morphism

pij = qij ◦ xi0

and

fj ◦ pij = f0 ◦ dj0 ◦ qij ◦ xi0
= f0 ◦ yi0 ◦ xi0
= mi ◦ ui.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000345
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:50:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000345
https://www.cambridge.org/core


U. Golas, A. Habel and H. Ehrig 48

(3) Bijective correspondence:

Because of the uniqueness of the constructions used, the above constructions are inverse

to each other up to isomorphism.

Appendix B. Additional lemmas

The following lemmas are valid in all adhesive and M-adhesive categories, and are used

in the proofs of the main theorems: Lemmas B.1 and B.2 are used in the proof of

Theorem 4.4; Lemmas B.3 and B.4 are used in the proof of Fact 5.2; and Lemmas B.5,

B.6, B.7 and B.8 are used in the proof of Theorem 5.9.

Lemma B.1 (M complement property). If

A B

C D

m

n

f g(1)

is a pushout and

A B

C ′ D

C

m

n′
f ′ g

n

f

c

(2)

is a pullback, and n′ ∈ M, then there exists a unique morphism c : C ′ → C such that

c ◦ f′ = f, n ◦ c = n′ and c ∈M.

Proof. Since (2) is a pullback, n′ ∈ M implies that m ∈ M, and then n ∈ M also

because (1) is a pushout. We construct the pullback

A

C ′′ C ′

C D

f ′
f∗

f v

n

v′ n′(3)

with v, v′ ∈M, and since

n′ ◦ f = g ◦ m = n ◦ f,
there is a unique morphism f∗ : A→ C ′′ with

v ◦ f∗ = f′

v′ ◦ f∗ = f.
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Now consider the cube

A

C ′′

A

C

A

C ′

B

D

f∗

idA

idA

v

v′
fm

f ′

m

n′

g
n

where the bottom face is pushout (1), the back left face is a pullback because m ∈M,

the front left face is pullback (2) and the front right face is pullback (3). Now, by

pullback composition and decomposition, the back right face is a pullback too, and the

VK property then implies that the top face is a pushout. Since

A C ′′

A C ′

f∗

f ′

idA v

is a pushout, and pushout objects are unique up to isomorphism, this implies that v is an

isomorphism and C ′′ ∼= C ′. We now define c := v′ ◦ v−1 and have

c ◦ f′ = v′ ◦ v−1 ◦ f′

= v′ ◦ f∗

= f

and

n ◦ c = n ◦ v′ ◦ v−1

= n′,

and c ∈M by decomposition of M-morphisms.

Lemma B.2 (M pullback-pushout decomposition). Consider

A B

C D

E

F

f

f ′

m n o

g

g′

(1) (2)

If (1) + (2) is a pullback, (1) is a pushout, (2) commutes and o ∈ M, then (2) is a

pullback too.
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Proof. With o ∈M and the fact that (1) + (2) is a pullback and (1) is a pushout, we

have that m, n ∈M. We construct the pullback

B E

D F

g

g′

n o(3)

of o and g′. It then follows that n ∈M and we get an induced morphism b : B → B with

g ◦ b = g

n ◦ b = n,

and, by decomposition of M-morphisms, b ∈M.

By pullback decomposition, (4) is a pullback too:

A B B

C D

E

F

f b

f ′

m n o

g

g′

(4) (3)

So we can apply Lemma B.1 with pushout (1) and n ∈M to obtain a unique morphism

b ∈M with n ◦ b = n and b ◦ b ◦ f = f:

A C

B D

B

m

n

b◦f f ′

n

f

b

(3)

Now n ∈M and

n ◦ b ◦ b = n ◦ b = n

implies that

b ◦ b = idB,

and, similarly, n ∈M and

n ◦ b ◦ b = n ◦ b = n

implies that b ◦ b = idB , which means that B and B are isomorphic, so (2) is a pullback

too.
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Lemma B.3. Given the commutative cube

A′

B′

A

B

C ′

D′

C

D

m′

a

f ′

g′

b
m

f

n′

c

n
g

d

with the bottom face a pushout, the front right face has a pushout complement over g ◦ b
if the back left face has a pushout complement over f ◦ a.

Proof. We construct the initial pushout (1) over f:

A′

B′

A

B

C ′

D′

C

D
Bf

Cf

m′

a

f ′

g′

b
m

f

n′

c

d

n
g

af

bf

cf

b∗

(1)

Since the back left face has a pushout complement, there is a morphism b∗ : Bf → A′

such that a ◦ b∗ = bf . Since the bottom face is a pushout, the square

Bf B

Cf D

m◦bf

n◦cf

af g(2)

as the composition, is the initial pushout over g. Now

b ◦ m′ ◦ b∗ = m ◦ a ◦ b∗

= m ◦ bf,

so the pushout complement of g ◦ b exists.

Lemma B.4. If we are given pullbacks (1) and (2)

A B

C D

E F

m

n

f f ′

o

g g′

(1)

(2)
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with pushout complements over f′ ◦m and g′ ◦ n, respectively, then (1) + (2) also has a

pushout complement over (g′ ◦ f′) ◦ m.

Proof. Let C ′ and E ′ be the pushout complements of (1) and (2), respectively.

By Lemma B.1, there are morphisms c and e such that

c ◦ f = f∗

n∗ ◦ c = n

e ◦ g = g∗
o∗ ◦ e = o.

A B

C

C ′
D

E
E′

F

m

n

f
n∗

f∗
f ′

o

g
o∗

g∗ g′

c

e

(1′)

(2′)

Now (2′) can be decomposed into pushouts (3) and (4):

A B

C ′C D

E′ G F

m

n∗

f∗ f ′

g′

e

c

g∗

(1)

(3) (4)

and (1′) + (4) is also a pushout and the pushout complement of (g′ ◦ f′) ◦ m.

Lemma B.5. If we are given:

— the pushouts

Ai Ci

Bi D

ai

bi ci

di

(1i)

and

Ai E

Bi Fi

D

gi

bi hi

ki

di

li

e

(3i)

with bi ∈M for i = 1, . . . , n;
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— morphisms fij : Bi → Cj with cj ◦ fij = di for all i �= j:

Bi Cj

D

fij

di
cj

— the limit

E

Cj D

ej e

cj

(2)

of (cj)j=1,...,n such that gi is the induced morphism into E with

ei ◦ gi = ai

ej ◦ gi = fij ◦ bi

using

cj ◦ fij ◦ bi = di ◦ bi
= ci ◦ ai,

Ai

E

Cj D

ej e

cj

i �=j:fij◦bi

i=j:ai

gi

ci◦ai

(2)

then we have

E Fi

D

hi

lie

(4)

is the colimit of (hi)i=1,...,n, where li is the induced morphism from pushout (3i) compared

with

e ◦ gi = ci ◦ ei ◦ gi = ci ◦ ai = di ◦ bi.

Proof. We use induction over n:

— Base case (n = 1):
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For n = 1, we have that C1 is the limit of c1, that is, E = C1. It follows that F1 = C1

for the pushout (31) = (11), so we have

A1 C1

B1 D

ai

bi ci

di

(11)

and

C1

C1 D

ei e

ci

(2)

and it is obvious that

C1 D

D

hi

lie
(41)

is a colimit.

— Induction step (n→ n + 1):

Consider:

– the pushouts

Ai Ci

Bi D

ai

bi ci

di

(1i)

with bi ∈M for i = 1, . . . , n + 1;

– the morphisms fij : Bi → Cj with cj ◦ fij = di for all i �= j; and

– the limits

En

Ci D

ein en

ci

(2n)
and

En+1

Ci D

ein+1 en+1

ci

(2n+1)

of (ci)i=1,...,n and (ci)i=1,...,n+1, respectively, leading to the pullback

En+1 Cn+1

En D

en+1n+1

pn+1 cn+1

en

(5n+1)

by the construction of limits.
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Moreover, gin and gin+1 are the induced morphisms into En and En+1, respectively,

leading to the pushouts

Ai En

Bi Fin

gin

bi hin

kin

(3in)

and

Ai En+1

Bi Fin+1

gin+1

bi hin+1

kin+1

(3in+1)

By the induction hypothesis,

En Fin

D

hin

linen

(4n)

is the colimit of (hin)i=1,...,n, and we have to show that

En+1 Fin+1

D

hin+1

lin+1en+1

(4n+1)

is the colimit of (hin+1)i=1,...,n+1.

Since (2n) is a limit and

ci ◦ fn+1i = dn+1

for all i = 1, . . . , n, we obtain a unique morphism mn+1 with

ein ◦ mn+1 = fn+1i

en ◦ mn+1 = dn+1.

Bn+1

En

Ci D

fn+1i dn+1

mn+1

ein en

ci

(2n)

Since (1n+1) is a pushout and (5n+1) is a pullback, by M-pushout–pullback decompos-

ition, (5n+1) and (6n+1) are pushouts too:

An+1 En+1

Bn+1 En

Cn+1

D

gn+1n+1

bn+1 pn+1

mn+1

en+1n+1

cn+1

en

dn+1

an+1

(6n+1) (5n+1)
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So Fn+1n+1 = En. From pushout (3in+1) and

hin ◦ pn+1 ◦ gin+1 = hin ◦ gin = kin ◦ bi
we get an induced morphism qin+1 with

qin+1 ◦ hin+1 = hin ◦ pn+1

qin+1 ◦ kin+1 = kin,

and from pushout decomposition, (7in+1) is a pushout too:

Ai En+1

Bi Fin+1

En

Fin

gin+1

bi hin+1

kin+1

pn+1

hin

qin+1

kin

gin

(3in+1) (7in+1)

To show that (4n+1) is a colimit, consider an object X and morphisms (xi) and y with

xi ◦ hin+1 = y

for i = 1, . . . , n and

xn+1 ◦ pn+1 = y.

En+1En Fin+1

D

X

pn+1 hin+1

lin+1en

en+1

xixn+1

z

y

From pushout (7in+1), we obtain a unique morphism zi with

zi ◦ qin+1 = xi

zi ◦ hin = xn+1.

En+1 En

Fin+1 Fin

X

pn+1

hin+1 hin

qin+1
xn+1

xi

zi

(7in+1)

Now, colimit (4n) induces a unique morphism z with

z ◦ en = xn+1

z ◦ lin = zi.
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It then follows directly that

z ◦ lin+1 = z ◦ lin ◦ qin+1

= zi ◦ qin+1

= xi

and

z ◦ en+1 = z ◦ en ◦ pn+1

= xn+1 ◦ pn+1

= y.

En Fin

D

X

hin

linen

z

zixn+1

(4n)

The uniqueness of z then follows directly from the construction, so (4n+1) is the

required colimit.

Lemma B.6. Given the diagrams

Ai C

Bi Di

ai

bi ci

di

(1i)

for i = 1, . . . , n,

C Di

E

ci

c ei

(2)

and

+Ai +Bi

C E

b

a e

c

(3)

with b = +bi, and a and e induced by the coproducts +Ai and +Bi, respectively, we have:

(a) If (1i) is a pushout and (2) a colimit, then (3) is also a pushout.
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(b) If (3) is a pushout, then there is a decomposition into pushout (1i) and colimit (2)

with ei ◦ di = e ◦ iBi
:

Ai

+AiC

Bi

+Bi E

bi

b

iAi
iBi

ea

ai ei◦di

= = =

Proof.

(a) We assume we are given an object X and morphisms y, z with y ◦ a = z ◦ b:

+Ai +Bi

C E

X

b

a e

c

y

z

x

(3)

From pushout (1i), we obtain with

z ◦ iBi
◦ bi = z ◦ b ◦ iAi

= y ◦ a ◦ iAi

= y ◦ ai,

a unique morphism xi

Ai C

Bi

X

Di

ai

bi ci

di

y

z◦iBi

xi

(1i)

with

xi ◦ ci = y

xi ◦ di = z ◦ iBi
.

Now colimit (2) implies a unique morphism x with

x ◦ c = y

x ◦ ei = xi.
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C Di

E

X

ci

c ei

y

x

xi

(2)

It then follows that

x ◦ e ◦ iBi
= x ◦ ei ◦ di
= xi ◦ di
= z ◦ iBi

,

and since z is unique with respect to z◦ iBi
, it follows from the coproduct that z = x◦e.

Bi +Bi

Z

iBi

z
z◦iBi

The uiqueness of x follows from the uniqueness of x and xi, so (3) is a pushout.

(b) We define ai := a ◦ iAi
and construct the pushout

Ai C

Bi

E

Di

ai

bi ci

di

c

e◦iBi

ei

(1i)

With

e ◦ iBi
◦ bi = e ◦ b ◦ iAi

= c ◦ ai,
pushout (1i) induces a unique morphism ei with

ei ◦ di = e ◦ iBi

ei ◦ ci = c.

Given an object X and morphisms y and yi with yi ◦ ci = y,

C Di

E

X

ci

c ei

y

x

yi

(2)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129512000345
Downloaded from https://www.cambridge.org/core. Universitaetsbibliothek, on 26 Oct 2017 at 13:50:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129512000345
https://www.cambridge.org/core


U. Golas, A. Habel and H. Ehrig 60

we obtain a morphism z with

z ◦ iBi
= yi ◦ di

from coproduct +Bi

Bi +Bi

X

iBi

z
yi◦di

So we have

y ◦ a ◦ iAi
= yi ◦ ci ◦ ai
= yi ◦ di ◦ bi
= z ◦ iBi

◦ bi
= z ◦ b ◦ iAi

,

and from coproduct +Ai, it follows that

y ◦ a = z ◦ b.

Now pushout (3) implies a unique morphism x with x ◦ c = y and x ◦ e = z:

+Ai +Bi

C E

X

b

a e

c

y

z

x

(3)

From pushout (1i) and using

x ◦ ei ◦ di = x ◦ e ◦ iBi

= z ◦ iBi

= yi ◦ di

and

x ◦ ei ◦ ci = x ◦ c
= y

= yi ◦ ci,

it then follows that x ◦ ei = yi, so (2) is a colimit.

Lemma B.7. Consider the colimits

Ai Aj

A

Bi Bj

B

Ci Cj

C

Di Dj

D

ak

ai aj

bk

bi bj

ck

ci cj

dk

di dj

(1) (2) (3) (4)
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such that

Ai Bi

Ci Di

fi

gi hi

ki

(5i)

is a pushout for all i = 1, . . . , n and

Ai Bi

Aj Bj

Ai Ci

Aj Cj

Bi Di

Bj Dj

Ci Di

Cj Dj

fi

ak bk

fj

gi

ak ck

gj

hi

bk dk

hj

ki

ck dk

kj

(6k) (7k) (8k) (9k)

commute for all k = 1, . . . , m. Then

A B

C D

f

g h

k

(10)

is a pushout too.

Proof. The morphisms f, g, h and k are uniquely induced by the colimits. We will just

show the case for the morphism f as an example.

From colimit (1), with

bj ◦ fj ◦ ak = bj ◦ bk ◦ fi = bi ◦ fi,

we obtain a unique morphism f with

f ◦ ai = bi ◦ fi.

Ai Aj

A

B

ak

ai aj

bi◦fi bj◦fj

f

(1)

It then follows directly that

k ◦ h = h ◦ f.

Now consider an object X and morphisms y and z with

y ◦ g = z ◦ f.
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A B

C D

X

f

g h

k z

y
x

(10)

From pushout (5i) with

y ◦ ci ◦ gi = y ◦ g ◦ ai
= z ◦ f ◦ ai
= z ◦ bi ◦ fi,

we obtain a unique morphism xi with

xi ◦ ki = y ◦ ci
xi ◦ hi = z ◦ bi.

Ai Bi

Ci Di

X

fi

gi hi

ki
z◦bi

y◦ci

xi

(5i)

For all k = 1, . . . , m, we have

xj ◦ dk ◦ ki = xj ◦ kj ◦ ck
= y ◦ cj ◦ ck
= y ◦ ci

and

xj ◦ dk ◦ hi = xj ◦ hj ◦ bk
= z ◦ bj ◦ bk
= z ◦ bi,

and pushout (5i) implies that

xi = xj ◦ dk.
This means that colimit (4) implies a unique x with x ◦ di = xi:

Di Dj

D

X

dk

di dj

xi xj

x

(4)
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Now consider colimit (2).

x ◦ h ◦ bi = x ◦ di ◦ hi
= xi ◦ hi
= z ◦ bi

implies that x ◦ h = z:

Bi Bj

B

X

bk

bi bj

z◦bi z◦bj

z

(2)

Similarly,

x ◦ k = y,

and the uniqueness follows from the uniqueness of x with respect to (4), so (10) is indeed

a pushout.

Lemma B.8. We assume:

— colimits

A Ai

A

ai

a ai

(1)

and

B Bi

B

bi

b bi

(2)

such that

A B

Ai Bi

f

ai bi

fi

(3i)

commutes for all i = 1, . . . , n;

— f is an epimorphism; and

— the square

A B

C D

f

c d

e

(4)

is a pushout with f induced by colimit (1).
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Then

+Ai +Bi

C D

+fi

c d

e

(5)

is a pushout also, where c and d are induced from the coproducts.

Proof. Since (1) is a colimit and

bi ◦ fi ◦ ai = bi ◦ bi ◦ f
= b ◦ f,

A Ai

A

B

ai

a ai

b◦f bi◦fi

f

(1)

we actually get an induced f with

f ◦ ai = bi ◦ fi
f ◦ a = b ◦ f.

From the coproducts, we obtain induced morphisms:

— c with c ◦ iAi
= c ◦ ai

Ai +Ai

C

iAi

c◦ai
c

— d with d ◦ iBi
= d ◦ bi

Bi +Bi

D

iBi

d◦bi

d

Moreover, for all i = 1, . . . , n, we have

d ◦ (+fi) ◦ iAi
= d ◦ iBi

◦ fi
= d ◦ bi ◦ fi
= d ◦ f ◦ ai
= e ◦ c ◦ ai
= e ◦ c ◦ iAi

.
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Uniqueness of the induced coproduct morphisms leads to

d ◦ (+fi) = e ◦ c,

that is, (5) commutes.

Ai +Ai

Bi +Bi

iAi

fi +fi

iBi

We now have to show that (5) is a pushout:

+Ai +Bi

C D

X

+fi

c d

e
y

z
x

(5)

Given morphisms x and y with

x ◦ c = y ◦ (+fi),

we have

y ◦ iBi
◦ bi ◦ f = y ◦ iBi

◦ fi ◦ ai
= y ◦ (+fi) ◦ iAi

◦ ai
= x ◦ c ◦ iAi

◦ ai
= x ◦ c ◦ ai ◦ ai
= x ◦ c ◦ a

for all i = 1, . . . , n. The fact that f is an epimorphism implies that

y ◦ iBi
◦ bi = y ◦ iBj

◦ bj

for all i, j. We now define y′ := y ◦ iBi
◦ bi and from colimit (2)

B Bi

B

X

bi

b bi

y′ y◦iBi

y

(2)
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we obtain a unique morphism y with y ◦ bi = y ◦ iBi
and y ◦ b = y′:

A Ai

A

X

ai

a ai

y◦f◦a y◦f◦aiy◦f

(1)

Now

x ◦ c ◦ ai = x ◦ c ◦ iAi

= y ◦ (+fi) ◦ iAi

= y ◦ iBi
◦ fi

= y ◦ bi ◦ fi
= y ◦ f ◦ ai

and

x ◦ c ◦ a = x ◦ c ◦ ai ◦ ai
= y ◦ f ◦ i ◦ ai
= y ◦ f ◦ a,

and the uniqueness of the induced colimit morphism implies that

y ◦ f = x ◦ c.

This means that X can be compared to pushout (4), and we obtain a unique morphism z

with z ◦ d = y and z ◦ e = x:

A B

C D

X

f

c d

e
y

z
x

(4)

Now

z ◦ d ◦ iBi
= z ◦ d ◦ bi
= y ◦ bi
= y ◦ iBi

,

so z ◦ d = y. Similarly, the uniqueness of z with respect to the pushout property of (5)

also follows, so (5) is a pushout.
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