44,851 research outputs found

    A model for Bioinformatics training : the Marine Biological Laboratory

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Briefings in Bioinformatics 6 (2010): 610-615, doi:10.1093/bib/bbq029.Many areas of science such as biology, medicine, and oceanography are becoming increasingly data-rich and most programs that train scientists do not address informatics techniques or technologies that are necessary for managing and analyzing large amounts of data. Educational resources for scientists in informatics are scarce, yet scientists need the skills and knowledge to work with informaticians and manage graduate students and post-docs in informatics projects. The Marine Biological Laboratory houses a world-renowned library and is involved in a number of informatics projects in the sciences. The MBL has been home to the National Library of Medicine's BioMedical Informatics Course for nearly two decades and is committed to educating scientists and other scholars in informatics. In an innovative, immersive learning experience, Grant Yamashita, a biologist and post-doc at Arizona State University, visited the Science Informatics Group at MBL to learn first hand how informatics is done and how informatics teams work. Hands-on work with developers, systems administrators, librarians, and other scientists provided an invaluable education in informatics and is a model for future science informatics training.This work was supported by the National Science Foundation [0926026 to G.Y., SES-0623176]; Jewett Foundation; Ellison Medical Foundation

    Pathology Informatics Essentials for Residents: A Flexible Informatics Curriculum Linked to Accreditation Council for Graduate Medical Education Milestones (a secondary publication)*

    Get PDF
    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http:// www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time

    Development of a Standardized Curriculum for Nursing Informatics in Korea

    Get PDF
    Objectives: This study explored the current status of nursing informatics education in South Korea and developed a standardized curriculum for it. Methods: Data were collected in two stages: first, an online survey conducted from December 2020 to February 2021 among 60 nursing schools to analyze the current status of nursing informatics education; and second, a two-round Delphi survey with 15 experts from March to April 2021 to determine the mean and standard deviation of the demand for each learning objective in nursing informatics education. A standardized curriculum proposal was developed based on the results of the two-round Delphi survey. Results: Nursing informatics was most commonly taught in the fourth year (34%), with two credits. The proportion of elective major subjects was high in undergraduate and graduate programs (77.4% and 78.6%, respectively), while the proportion of nursing informatics majors was low (21.4%). The curriculum developed included topics such as nursing information system-related concepts, definitions and components of healthcare information systems, electronic medical records, clinical decision support systems, mobile technology and health management, medical information standards, personal information protection and ethics, understanding of big data, use of information technology in evidence-based practice, use of information in community nursing, genome information usage, artificial intelligence clinical information systems, administrative management systems, and information technology nursing education. Conclusions: Nursing informatics professors should receive ongoing training to obtain recent medical information. Further review and modification of the nursing informatics curriculum should be performed to ensure that it remains up-to-date with recent developments.ope

    Participatory Approach to Program Evaluation: Learning from Students and Faculty to Improve Training in Biomedical Informatics

    Get PDF
    Participatory evaluation tools have shown to be effective for program development in various settings, including in higher education. Taking student perspectives into consideration is key for graduate program development, particularly in interdisciplinary programs.The current study utilizes Group Level Assessment (GLA),a participatory program evaluation tool, to evaluate the Biomedical Informatics (BMI) PhD Program at the University of Cincinnati (UC) and Cincinnati Children’s Hospital Medical Center (CCHMC). The study was conducted two years after the program was established, an appropriate timing to gauge the opinions of current doctoral students as the program grows and develops. The findings show the strengths and identify areas of improvement of the doctoral program, providing an evidence base for administrators and faculty to work collaboratively with students to capitalize on assets and address potential issues

    The CHIME graduate programme in health informatics

    Get PDF
    In 1999 University College London inaugurated a programme of graduate part-time Health Informatics courses to support the UK National Health Service?s Information for Health strategy. The programme has attracted students from across the UK and abroad, with a diverse range of backgrounds and skills and has proved a challenging and rewarding experience for students and tutors alike. The modular programme aims to provide a thorough grounding in the theory and practice of Health Informatics and addresses important application areas. The guiding principle is that Health Informatics graduates need to understand computers and programming but that, since the majority are not going to become programmers, programming methods should not dominate the curriculum.In the taught phase of the programme students attend college for 3 days a month and complete an assignment each month, based on home study. Students may graduate with a certificate or diploma, or go on to tackle a dissertation leading to an MSc. Research projects have included a patient record system based on speech input, a mathematical model for illustrating to patients the risks associated with smoking, an analysis of Trust staff's preparedness for Information for Health and a patient information leaflet giving advice about drug related information on the Web. As we move towards our fifth intake of students, we are in the process of evaluating our programme and carrying out a follow up study of our graduates? subsequent career pathways

    Implementing Pharmacy Informatics in College Curricula: The AACP Technology in Pharmacy Education and Learning Special Interest Group

    Get PDF
    Many professional organizations have initiatives to increase the awareness and use of informatics in the practice of pharmacy. Within education we must respond to these initiatives and make technology integral to all aspects of the curriculum, inculcating in students the importance of technology in practice. This document proposes 5 central domains for organizing planning related to informatics and technology within pharmacy education. The document is intended to encourage discussion of informatics within pharmacy education and the implications of informatics in future pharmacy practice, and to guide colleges of pharmacy in identifying and analyzing informatics topics to be taught and methods of instruction to be used within the doctor of pharmacy curriculum

    Data analytics based positioning of health informatics programs

    Full text link
    The Master of Science in Computer Information Systems (CIS) with concentration in Health Informatics (HI) at Metropolitan College (MET), Boston University (BU), is a 40-credit degree program that are delivered in three formats: face-to-face, online, and blended. The MET CIS-HI program is unique because of the population of students it serves, namely those interested in gaining skills in HI technology field, to serve as data analysts and knowledge-based technology drivers in the thriving health care industry. This set of skills is essential for addressing the challenges of Big Data and knowledge-based health care support of the modern health care. The MET CIS-HI program was accredited by the Commission on Accreditation for Health Informatics and Information Management Education (CAHIIM) in 2017

    Labour market success of Hungarian higher education graduates in 2011

    Get PDF

    Download the PDF of the full issue

    Get PDF

    Outlook Magazine, Summer 2018

    Get PDF
    https://digitalcommons.wustl.edu/outlook/1204/thumbnail.jp
    • 

    corecore