11,133 research outputs found

    Geographic Gossip: Efficient Averaging for Sensor Networks

    Full text link
    Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of nn and n\sqrt{n} respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy ϵ\epsilon using O(n1.5lognlogϵ1)O(\frac{n^{1.5}}{\sqrt{\log n}} \log \epsilon^{-1}) radio transmissions, which yields a nlogn\sqrt{\frac{n}{\log n}} factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.Comment: To appear, IEEE Transactions on Signal Processin

    Greedy Gossip with Eavesdropping

    Full text link
    This paper presents greedy gossip with eavesdropping (GGE), a novel randomized gossip algorithm for distributed computation of the average consensus problem. In gossip algorithms, nodes in the network randomly communicate with their neighbors and exchange information iteratively. The algorithms are simple and decentralized, making them attractive for wireless network applications. In general, gossip algorithms are robust to unreliable wireless conditions and time varying network topologies. In this paper we introduce GGE and demonstrate that greedy updates lead to rapid convergence. We do not require nodes to have any location information. Instead, greedy updates are made possible by exploiting the broadcast nature of wireless communications. During the operation of GGE, when a node decides to gossip, instead of choosing one of its neighbors at random, it makes a greedy selection, choosing the node which has the value most different from its own. In order to make this selection, nodes need to know their neighbors' values. Therefore, we assume that all transmissions are wireless broadcasts and nodes keep track of their neighbors' values by eavesdropping on their communications. We show that the convergence of GGE is guaranteed for connected network topologies. We also study the rates of convergence and illustrate, through theoretical bounds and numerical simulations, that GGE consistently outperforms randomized gossip and performs comparably to geographic gossip on moderate-sized random geometric graph topologies.Comment: 25 pages, 7 figure

    Exploiting the Synergy Between Gossiping and Structured Overlays

    Get PDF
    In this position paper we argue for exploiting the synergy between gossip-based algorithms and structured overlay networks (SON). These two strands of research have both aimed at building fault-tolerant, dynamic, self-managing, and large-scale distributed systems. Despite the common goals, the two areas have, however, been relatively isolated. We focus on three problem domains where there is an untapped potential of using gossiping combined with SONs. We argue for applying gossip-based membership for ring-based SONs---such as Chord and Bamboo---to make them handle partition mergers and loopy networks. We argue that small world SONs---such as Accordion and Mercury---are specifically well-suited for gossip-based membership management. The benefits would be better graph-theoretic properties. Finally, we argue that gossip-based algorithms could use the overlay constructed by SONs. For example, many unreliable broadcast algorithms for SONs could be augmented with anti-entropy protocols. Similarly, gossip-based aggregation could be used in SONs for network size estimation and load-balancing purposes

    Finite-time Convergent Gossiping

    Full text link
    Gossip algorithms are widely used in modern distributed systems, with applications ranging from sensor networks and peer-to-peer networks to mobile vehicle networks and social networks. A tremendous research effort has been devoted to analyzing and improving the asymptotic rate of convergence for gossip algorithms. In this work we study finite-time convergence of deterministic gossiping. We show that there exists a symmetric gossip algorithm that converges in finite time if and only if the number of network nodes is a power of two, while there always exists an asymmetric gossip algorithm with finite-time convergence, independent of the number of nodes. For n=2mn=2^m nodes, we prove that a fastest convergence can be reached in nm=nlog2nnm=n\log_2 n node updates via symmetric gossiping. On the other hand, under asymmetric gossip among n=2m+rn=2^m+r nodes with 0r<2m0\leq r<2^m, it takes at least mn+2rmn+2r node updates for achieving finite-time convergence. It is also shown that the existence of finite-time convergent gossiping often imposes strong structural requirements on the underlying interaction graph. Finally, we apply our results to gossip algorithms in quantum networks, where the goal is to control the state of a quantum system via pairwise interactions. We show that finite-time convergence is never possible for such systems.Comment: IEEE/ACM Transactions on Networking, In Pres

    Optimal Gossip with Direct Addressing

    Full text link
    Gossip algorithms spread information by having nodes repeatedly forward information to a few random contacts. By their very nature, gossip algorithms tend to be distributed and fault tolerant. If done right, they can also be fast and message-efficient. A common model for gossip communication is the random phone call model, in which in each synchronous round each node can PUSH or PULL information to or from a random other node. For example, Karp et al. [FOCS 2000] gave algorithms in this model that spread a message to all nodes in Θ(logn)\Theta(\log n) rounds while sending only O(loglogn)O(\log \log n) messages per node on average. Recently, Avin and Els\"asser [DISC 2013], studied the random phone call model with the natural and commonly used assumption of direct addressing. Direct addressing allows nodes to directly contact nodes whose ID (e.g., IP address) was learned before. They show that in this setting, one can "break the logn\log n barrier" and achieve a gossip algorithm running in O(logn)O(\sqrt{\log n}) rounds, albeit while using O(logn)O(\sqrt{\log n}) messages per node. We study the same model and give a simple gossip algorithm which spreads a message in only O(loglogn)O(\log \log n) rounds. We also prove a matching Ω(loglogn)\Omega(\log \log n) lower bound which shows that this running time is best possible. In particular we show that any gossip algorithm takes with high probability at least 0.99loglogn0.99 \log \log n rounds to terminate. Lastly, our algorithm can be tweaked to send only O(1)O(1) messages per node on average with only O(logn)O(\log n) bits per message. Our algorithm therefore simultaneously achieves the optimal round-, message-, and bit-complexity for this setting. As all prior gossip algorithms, our algorithm is also robust against failures. In particular, if in the beginning an oblivious adversary fails any FF nodes our algorithm still, with high probability, informs all but o(F)o(F) surviving nodes
    corecore