4 research outputs found

    Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements

    Get PDF
    NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013

    Goal-Directed Grid-Enabled Computing for Legacy Simulations

    No full text

    Reusing simulation experiments for model composition and extension

    Get PDF
    This thesis aims to reuse simulation experiments to support developing models via model reuse, with a focus on validating the resulting model. Individual models are annotated with their simulation experiments. Upon reuse of those models for building new ones, the associated simulation experiments are also reused and executed with the new model, to inspect whether the key behavior exhibited by the original models is preserved or not in the new model. Hence, the changes of model behavior resulting from the model reuse are revealed, and insights into validity of the new model are provided
    corecore