158,158 research outputs found

    Human-Agent Decision-making: Combining Theory and Practice

    Full text link
    Extensive work has been conducted both in game theory and logic to model strategic interaction. An important question is whether we can use these theories to design agents for interacting with people? On the one hand, they provide a formal design specification for agent strategies. On the other hand, people do not necessarily adhere to playing in accordance with these strategies, and their behavior is affected by a multitude of social and psychological factors. In this paper we will consider the question of whether strategies implied by theories of strategic behavior can be used by automated agents that interact proficiently with people. We will focus on automated agents that we built that need to interact with people in two negotiation settings: bargaining and deliberation. For bargaining we will study game-theory based equilibrium agents and for argumentation we will discuss logic-based argumentation theory. We will also consider security games and persuasion games and will discuss the benefits of using equilibrium based agents.Comment: In Proceedings TARK 2015, arXiv:1606.0729

    A comparative study of game theoretic and evolutionary models for software agents

    No full text
    Most of the existing work in the study of bargaining behaviour uses techniques from game theory. Game theoretic models for bargaining assume that players are perfectly rational and that this rationality in common knowledge. However, the perfect rationality assumption does not hold for real-life bargaining scenarios with humans as players, since results from experimental economics show that humans find their way to the best strategy through trial and error, and not typically by means of rational deliberation. Such players are said to be boundedly rational. In playing a game against an opponent with bounded rationality, the most effective strategy of a player is not the equilibrium strategy but the one that is the best reply to the opponent's strategy. The evolutionary model provides a means for studying the bargaining behaviour of boundedly rational players. This paper provides a comprehensive comparison of the game theoretic and evolutionary approaches to bargaining by examining their assumptions, goals, and limitations. We then study the implications of these differences from the perspective of the software agent developer

    Evolutionary Tournament-Based Comparison of Learning and Non-Learning Algorithms for Iterated Games

    Get PDF
    Evolutionary tournaments have been used effectively as a tool for comparing game-playing algorithms. For instance, in the late 1970's, Axelrod organized tournaments to compare algorithms for playing the iterated prisoner's dilemma (PD) game. These tournaments capture the dynamics in a population of agents that periodically adopt relatively successful algorithms in the environment. While these tournaments have provided us with a better understanding of the relative merits of algorithms for iterated PD, our understanding is less clear about algorithms for playing iterated versions of arbitrary single-stage games in an environment of heterogeneous agents. While the Nash equilibrium solution concept has been used to recommend using Nash equilibrium strategies for rational players playing general-sum games, learning algorithms like fictitious play may be preferred for playing against sub-rational players. In this paper, we study the relative performance of learning and non-learning algorithms in an evolutionary tournament where agents periodically adopt relatively successful algorithms in the population. The tournament is played over a testbed composed of all possible structurally distinct 2×2 conflicted games with ordinal payoffs: a baseline, neutral testbed for comparing algorithms. Before analyzing results from the evolutionary tournament, we discuss the testbed, our choice of representative learning and non-learning algorithms and relative rankings of these algorithms in a round-robin competition. The results from the tournament highlight the advantage of learning algorithms over players using static equilibrium strategies for repeated plays of arbitrary single-stage games. The results are likely to be of more benefit compared to work on static analysis of equilibrium strategies for choosing decision procedures for open, adapting agent society consisting of a variety of competitors.Repeated Games, Evolution, Simulation

    On Partially Controlled Multi-Agent Systems

    Full text link
    Motivated by the control theoretic distinction between controllable and uncontrollable events, we distinguish between two types of agents within a multi-agent system: controllable agents, which are directly controlled by the system's designer, and uncontrollable agents, which are not under the designer's direct control. We refer to such systems as partially controlled multi-agent systems, and we investigate how one might influence the behavior of the uncontrolled agents through appropriate design of the controlled agents. In particular, we wish to understand which problems are naturally described in these terms, what methods can be applied to influence the uncontrollable agents, the effectiveness of such methods, and whether similar methods work across different domains. Using a game-theoretic framework, this paper studies the design of partially controlled multi-agent systems in two contexts: in one context, the uncontrollable agents are expected utility maximizers, while in the other they are reinforcement learners. We suggest different techniques for controlling agents' behavior in each domain, assess their success, and examine their relationship.Comment: See http://www.jair.org/ for any accompanying file

    Computational Mechanism Design: A Call to Arms

    No full text
    Game theory has developed powerful tools for analyzing decision making in systems with multiple autonomous actors. These tools, when tailored to computational settings, provide a foundation for building multiagent software systems. This tailoring gives rise to the field of computational mechanism design, which applies economic principles to computer systems design

    The virtues and vices of equilibrium and the future of financial economics

    Get PDF
    The use of equilibrium models in economics springs from the desire for parsimonious models of economic phenomena that take human reasoning into account. This approach has been the cornerstone of modern economic theory. We explain why this is so, extolling the virtues of equilibrium theory; then we present a critique and describe why this approach is inherently limited, and why economics needs to move in new directions if it is to continue to make progress. We stress that this shouldn't be a question of dogma, but should be resolved empirically. There are situations where equilibrium models provide useful predictions and there are situations where they can never provide useful predictions. There are also many situations where the jury is still out, i.e., where so far they fail to provide a good description of the world, but where proper extensions might change this. Our goal is to convince the skeptics that equilibrium models can be useful, but also to make traditional economists more aware of the limitations of equilibrium models. We sketch some alternative approaches and discuss why they should play an important role in future research in economics.Comment: 68 pages, one figur

    Q-Strategy: A Bidding Strategy for Market-Based Allocation of Grid Services

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational services is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic service provisioning and usage of Grid services, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a bidding agent framework for implementing artificial bidding agents, supporting consumers and providers in technical and economic preference elicitation as well as automated bid generation by the requesting and provisioning of Grid services. Secondly, we introduce a novel consumer-side bidding strategy, which enables a goal-oriented and strategic behavior by the generation and submission of consumer service requests and selection of provider offers. Thirdly, we evaluate and compare the Q-strategy, implemented within the presented framework, against the Truth-Telling bidding strategy in three mechanisms – a centralized CDA, a decentralized on-line machine scheduling and a FIFO-scheduling mechanisms

    Modelling Learning as Modelling

    Get PDF
    Economists tend to represent learning as a procedure for estimating the parameters of the "correct" econometric model. We extend this approach by assuming that agents specify as well as estimate models. Learning thus takes the form of a dynamic process of developing models using an internal language of representation where expectations are formed by forecasting with the best current model. This introduces a distinction between the form and content of the internal models which is particularly relevant for boundedly rational agents. We propose a framework for such model development which use a combination of measures: the error with respect to past data, the complexity of the model, the cost of finding the model and a measure of the model's specificity The agent has to make various trade-offs between them. A utility learning agent is given as an example

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Doubts and equilibria

    Get PDF
    In real life strategic interactions decision-makers are likely to entertain doubts about the degree of optimality of their play. To capture this feature of real choice-making, we present here a model based on the doubts felt by an agent about how well is playing a game. The doubts are coupled with (and mutually reinforced by) imperfect discrimination capacity, which we model here by means of similarity relations. We assume that each agent builds procedural preferences defined on the space of expected payoffsstrategy frequencies attached to his current strategy. These preferences, together with an adaptive learning process lead to doubt-based selection dynamic systems. We introduce the concepts of Mixed Strategy Doubt Equilibria, Mixed Strategy Doubt-Full Equilibria and Mixed Strategy Doubtless Equilibria and show the theoretical and the empirical relevance of these concept
    corecore