7,810 research outputs found

    Abstraction in situation calculus action theories

    Get PDF
    We develop a general framework for agent abstraction based on the situation calculus and the ConGolog agent programming language. We assume that we have a high-level specification and a low-level specification of the agent, both repre- sented as basic action theories. A refinement mapping specifies how each high-level action is implemented by a low- level ConGolog program and how each high-level fluent can be translated into a low-level formula. We define a notion of sound abstraction between such action theories in terms of the existence of a suitable bisimulation between their respective models. Sound abstractions have many useful properties that ensure that we can reason about the agent’s actions (e.g., executability, projection, and planning) at the abstract level, and refine and concretely execute them at the low level. We also characterize the notion of complete abstraction where all actions (including exogenous ones) that the high level thinks can happen can in fact occur at the low level

    Abstraction in situation calculus action theories

    Get PDF
    We develop a general framework for agent abstraction based on the situation calculus and the ConGolog agent programming language. We assume that we have a high-level specification and a low-level specification of the agent, both repre- sented as basic action theories. A refinement mapping specifies how each high-level action is implemented by a low- level ConGolog program and how each high-level fluent can be translated into a low-level formula. We define a notion of sound abstraction between such action theories in terms of the existence of a suitable bisimulation between their respective models. Sound abstractions have many useful properties that ensure that we can reason about the agent’s actions (e.g., executability, projection, and planning) at the abstract level, and refine and concretely execute them at the low level. We also characterize the notion of complete abstraction where all actions (including exogenous ones) that the high level thinks can happen can in fact occur at the low level

    A Goal-Directed Implementation of Query Answering for Hybrid MKNF Knowledge Bases

    Full text link
    Ontologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly-coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from an ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by a CDF Type-1 (ALQ) theory. To appear in Theory and Practice of Logic Programming (TPLP

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A decomposition approach for commodity pickup and delivery with time-windows under uncertainty

    Get PDF
    We consider a special class of large-scale, network-based, resource allocation problems under uncertainty, namely that of multi-commodity flows with time-windows under uncertainty. In this class, we focus on problems involving commodity pickup and delivery with time-windows. Our work examines methods of proactive planning, that is, robust plan generation to protect against future uncertainty. By a priori modeling uncertainties in data corresponding to service times, resource availability, supplies and demands, we generate solutions that are more robust operationally, that is, more likely to be executed or easier to repair when disrupted. We propose a novel modeling and solution framework involving a decomposition scheme that separates problems into a routing master problem and Scheduling Sub-Problems; and iterates to find the optimal solution. Uncertainty is captured in part by the master problem and in part by the Scheduling Sub-Problem. We present proof-of-concept for our approach using real data involving routing and scheduling for a large shipment carrier’s ground network, and demonstrate the improved robustness of solutions from our approach

    Agent Based E-Market: Framework, Design, and Implementation

    Get PDF
    Attempt has been made to design and develop a complete adoptive Multi Agent System pertaining to merchant brokering stage of Customer Buying Behaviour Model with the intent of appropriate framework. Intelligent agents are autonomous entity which observe and act upon an environment. In general, they are software robots and vitally used in variety of e-Business applications. This paper focuses on the discussions on electronic markets and the adoptive role, which agents can play in information transformation for automating e-market transactions. It is proposed to develop a framework for agent-based electronic markets for buyers and sellers totally with the assistance of software agents.Agent Oriented e-Business, Agent Oriented e-Markets, Buyer/Seller Agents, Java, Multi Agent Systems

    Optimal employment of scale economies in the Federal Reserve's currency infrastructure

    Get PDF
    Given estimates of shipping costs and scale economies for high-speed currency sorting, the authors investigate whether the Federal Reserve might lower its costs by reallocating the volume of sorting among its processing sites.Money ; Federal Reserve banks - Costs

    SOLUTION AND PERFORMANCE EVALUATION OF TRANS-SHIPMENT PROBLEM USING A MINIMUM SPANNING TREE APPROACH

    Get PDF
    Purpose: Transportation problem plays an important role in operations research. The more generalized cases of transportation problems are trans-shipment problems. Further, the trans-shipment problems may have a set of trans-shipment nodes, or the source/destination nodes themselves act as the trans-shipment nodes. The study of the trans-shipment problems and their solution methodology is the goal of this paper. Methodology: The solution of a trans-shipment problem could be done by transferring it to a transportation problem. Further, there exist various conventional methods for solving the transportation problem. The present paper discusses about the scope of application of an existing heuristic algorithm directly over the trans-shipment problem. The heuristic is based on the minimum spanning tree approach. We implement the algorithm over a test problem and further compare its performance by the performance of the corresponding algorithm Vogel’s Approximation Method. Main findings: The spanning tree approach gives a better solution or almost the nearby solution as compared to the solution obtained by Vogel’s Approximation Method. Implications: The solution obtained by the spanning-tree approach takes lesser computational effort to reach a better feasible solution. The novelty of study: The algorithm to deal with the trans-shipment problem i.e. for finding the feasible solution of the trans-shipment problem is the main focus of this paper.Transportation Proble
    • …
    corecore