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Abstract We consider a special class of large-scale,
network-based, resource allocation problems under un-
certainty, namely that of multi-commodity flows with

time-windows under uncertainty. In this class, we fo-
cus on problems involving commodity pickup and de-
livery with time windows. Our work examines meth-

ods of proactive planning, that is, robust plan genera-
tion to protect against future uncertainty. By a priori
modeling uncertainties in data corresponding to service

times, resource availability, supplies and demands, we
generate solutions that are more robust operationally,
that is, more likely to be executed or easier to repair

when disrupted. We propose a novel modeling and solu-
tion framework involving a decomposition scheme that
separates problems into a routing master problem and

scheduling sub-problems; and iterates to find the opti-
mal solution. Uncertainty is captured in part by the
master problem and in part by the scheduling sub-

problem. We present proof-of-concept for our approach
using real data involving routing and scheduling for a
large shipment carrier’s ground network, and demon-

strate the improved robustness of solutions from our
approach.

Lavanya Marla
iLab, Heinz College, Carnegie Mellon University
Pittsburgh, PA.
E-mail: lavanyamarla@cmu.edu

Cynthia Barnhart
Department of Civil and Environmental Engineering, Mas-
sachusetts Institute of Technology
Cambridge, MA.
E-mail: cbarnhart@mit.edu

Varun Biyani
Heinz College, Carnegie Mellon University
Pittsburgh, PA.
E-mail: vbiyani@andrew.cmu.edu

Keywords robust routing and scheduling · multi-
commodity routing and scheduling · uncertainty ·
decomposition

1 Introduction

In this paper, we consider the class of large-scale network-

based problems including multi-commodity flow prob-
lems with time-windows, which are at the core of prob-
lems arising in transportation, communications and lo-

gistics. Such resource allocation problems with their
large-scale nature and associated complexity, have been
ideal candidates for the application of optimization tech-

niques (Barnhart et al. 1994; Desrosiers et al. 1995;
Barnhart et al. 1998a; Dumas et al. 1991). However,
conventional optimization techniques usually involve as-

sumptions of deterministic inputs, leading to solutions
that are easily disrupted when realized parameter val-
ues are different; and thus exhibit a lack of robustness

and high costs of recovery or repair. Such solutions are
rarely (if ever) executed, and certainly, never truly op-
timal. In this work, our objective is to build robust

network resource allocation solutions that: (i) are less
fragile to disruption, (ii) easier to repair if needed, and
(iii) minimize the realized, not just planned, problem

costs.

Uncertainty in multi-commodity flows with time-

windows can occur in the form of stochasticity in the
supplies and demands of commodities; available capac-
ities of the network links; and travel and service times

on the network. The multi-commodity flows with time-
windows is at the core of network design problems,
and hence, in finding robust solutions to the multi-

commodity flows with time-windows we expect to pro-
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vide insights into the more complex problem of network

design under uncertainty.

1.1 Problem Description

To illustrate and evaluate our approach, we consider a
specific problem, namely the Commodity Routing Prob-
lem with Time Windows Under Uncertainty (CRTW-

UU ). Under CRTW-UU, for each vehicle v (such as a
plane or truck) in the set of vehicles V , we are given
a set of vehicle routes defining a network of locations

with time-independent travel times and capacities uij

corresponding to vehicle capacities on the links, and
service times at locations. Each commodity k (such as

a trailer, package, crew member or passenger) in the set
of commodities K with demand dk needs to be routed
over this network, from its origin O(k) to its destination

D(k). Transshipment routing is allowed. All dk units of
commodity k are assumed to have the same route and
schedule. (In cases where different units of a commod-

ity can have different routes and schedules, each unit
can be treated as a commodity by creating dk sepa-
rate commodities. Thus this assumption has no loss of

generality.) Commodity k must be picked up after its
earliest available time at its origin (EAT k

O(k)) and de-
livered before its latest delivery time at its destination

(LDT k
D(k)). The objective is to find commodity routes,

and vehicle and commodity schedules, which minimize
costs due to vehicle operations, and non-service of com-

modities. We consider early drop-offs to have no bonuses,
and we disallow late drop-offs (that is, if a commodity
is late, it will not be delivered). We are therefore inter-

ested in determining commodity routes and commodity
and vehicle schedules, given the sequence of stops each
vehicle makes. In this work, we are particularly inter-

ested in addressing the stochastic nature of input data
as seen in vehicle capacities, demands of commodities,
and service times. In the remainder of the paper, we

use the words ‘commodity’, ‘shipment’ and ‘trailer’ in-
terchangeably.

CRTW-UU is at the core of the classic network de-
sign problem of vehicle routing with pickup and deliv-

ery of shipments under time-windows and under uncer-
tainty (Cordeau et al. 2006). The problem of vehicle
routing with pickup and delivery of shipments under

time-windows under uncertainty reduces to the CRTW-
UU if we assume the routes of vehicles to be known,
with the schedule still unspecified. Instances (and vari-

ants) of the CRTW-UU arise in package delivery, con-
tainer scheduling, airline scheduling, etc. These prob-
lems have been shown to be NP-hard Cordeau et al.

(2006), and are more so in the case of uncertainty.

Approaches to capture uncertainty and build robust

solutions have been in three categories: (i) tailored ap-
proaches, (ii) general, distribution-free approaches, and
(iii) general-distribution-based approaches. Tailored ap-

proaches like Shebalov and Klabjan (2004), Lan et al.
(2006), Paraskevopoulos et al. (1991) and Kang and
Clarke (2002) identify specific features of the problem

that can make the solution flexible, and maximize such
attributes. General, distribution free approaches do not
capture distribution information, but use information

about uncertainty sets, as described in Soyster (1973),
Ben-Tal and Nemirovski (1999), Ben-Tal and Nemirovski
(2000), Bertsimas and Sim (2004) and Bertsimas and

Sim (2003). General, distribution-based approaches such
as Birge and Louveaux (1997), Charnes and Cooper
(1959), Charnes and Cooper (1963), Rockafellar and

Uryasev (2000) and Mulvey et al. (1981) model the un-
derlying distributions analytically or through scenarios,
to generate robust solutions for those distributions. In
this work, our goal is to develop analytical and com-

putational frameworks that help us take advantage of
partial knowledge of data distributions, for example, in
the form of quantiles.

Other studies have modeled uncertainty in the vehi-
cle routing and multi-commodity flow contexts. Bertsi-

mas and Simchi-Levi (1996) survey the vehicle routing
problem (VRP) literature and studies the determinis-
tic, dynamic and stochastic variants for the VRP. In

the stochastic and dynamic cases, they study uncer-
tainty in demands, location or arrival time of requests.
For these, in particular, for the dynamic version, good

solutions can be found by adapting the static meth-
ods appropriately. For stochastic VRPs, they consider
the VRP under congestion, and based on structural in-

sights from these problems, construct algorithms for
the stochastic and dynamic cases. However, commod-
ity pickup and delivery under uncertainty is not con-

sidered. Dror et al. (1989) study the vehicle routing
with stochastic demands. They propose two new solu-
tion frameworks - one is a stochastic programming with

recourse model that can be applied for structures with
relatively general recourse actions, and the second is
a Markov decision process based model. The authors

do not consider uncertainty in other elements of the
problem, and do not provide computational proof-of-
concept. Mahr (2011) studies the problem of truckload

pickup-delivery-and-return problem with time-windows,
with release time-uncertainty, truck breakdown uncer-
tainty and service time uncertainty. The author pro-

poses a substitution algorithm that improves the per-
formance of the agent-based approach in cases with
and without uncertainty. He also shows that distributed

heuristics are comparable to centralized optimization
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methods in the case of dynamic pickup and delivery

problems. Yang et al. (2004) consider a real-time (dy-
namic) multi-vehicle pickup and delivery problem, where
requests arrive in real time, and their pickup and deliv-

ery windows are known at arrival. They propose formu-
lations for the offline and online contexts of the prob-
lem, and describe that the best policy is one that takes

some future demand distribution into consideration. This
points to the necessity of robust models, although the
paper does not explicitly plan for robustness.

Dessouky et al. (1999) study the impact of man-
aging uncertainty by increasing the amount of infor-
mation available, in the context of bus dispatching.

They use technologies that enable greater control of
systems by tracking information in real-time and using
the information to control schedules, thus improving

service levels. However, they consider in this paper an
information-sparse scenario without implementation of
intelligent transportation systems. Sungur et al. (2010)

consider the courier delivery problem with probabilistic
customer arrivals and uncertain travel times, and use an
approach that combines stochastic programming with

recourse to model customer arrival uncertainty and ro-
bust optimization to capture uncertainty in travel times.
This scenario-based approach maximizes customer cov-

erage and route similarity over scenarios, and minimizes
earliness and lateness penalties and total travel times.
This is a network design problem unlike the CRTW-

UU. For large-scale problem instances, therefore, the
authors use insertion-based heuristics to balance the
multiple objectives presented. Wollmer (1980) consid-

ers multi-commodity flow networks where link capac-
ities are uncertain and commodities are to be trans-
ported from origin to destination. The objective is to

find an investment strategy that adds link capacities
while minimizing associated expected investment costs
for increasing link capacities. A two-stage stochastic

program is formulated, wherein the objective of the sec-
ond stage is to minimize transportation costs once link
capacities are realized. This is again a network design

problem, solved using stochastic optimization, which re-
quires extensive scenario generation and knowledge of
distributions of uncertain parameters to solve the prob-

lem. Ordonez and Zhao (2011) solve a similar problem
by applying a robust optimization framework to the
problem of expanding network capacity when demand

and travel times are uncertain. This work is a network
design problem, but is closest to our work in the goal of
capturing both demand and travel time uncertainty in

the presence of partial information about uncertainty.

1.2 Motivation for a new approach

While there has been extensive work on capturing spe-
cific types of uncertainty (such as demand uncertainty

or travel time uncertainty) separately, there is relatively
less work (for example, Sungur et al. (2010) and Or-
donez and Zhao (2011)) on capturing both types of

uncertainty and generating robust solutions. Moreover,
most models require knowledge of uncertainty distri-
butions, whereas in practice, data generated from the

field has only partial knowledge of the underlying dis-
tribution. Our goal is to develop a framework for the
CRTW-UU that helps capture multiple kinds of uncer-

tainty simultaneously, while having the ability to make
use of data distributions, if known, or partial informa-
tion, if available (for example, in the form of quantiles).

1.3 Contributions

In addressing the CRTW-UU problem, our contribu-
tions are as follows. First, to capture demand and ca-

pacity uncertainty, we extend the Chance-Constrained
model of Charnes and Cooper Charnes and Cooper
(1959) Charnes and Cooper (1963) and present our new
Extended Chance-Constrained Programming (ECCP)

model. Second, we develop a decomposition scheme that
provides a new modeling and algorithmic approach, which
captures travel time and demand uncertainty (building

on the ECCP), and provides robust solutions that are
less vulnerable to uncertainty. Our approach: (i) pro-
vides a new way of modeling the problem by separat-

ing the routing and scheduling elements of the problem,
capturing different types of uncertainty in each, and
maintaining accuracy by iterating among the modules;

and (ii) is flexible with respect to data requirements in
that it can be applied with partial or complete knowl-
edge of data distributions.

1.4 Outline of the paper

In §2 we present our new decomposition modeling ap-
proach. We present the different elements of the model

and discuss how uncertainty is captured using this model.
In §3 we present an algorithm to solve the decomposi-
tion model. We then discuss the advantages and limi-

tations of the approach. In §4 we apply our approach
and discuss results for the problems of truckload rout-
ing and scheduling for a U.S. carrier. We summarize

and conclude in §6.
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2 Decomposition Modeling Approach

2.1 Decomposition Overview

Our decomposition approach for CRTW-UU involves
the repeated solution of a master problem and sub-
problems. At each iteration of the procedure, the mas-

ter problem is solved to generate a proposed solution to
the CRTW-UU problem. The master chooses one path
for each commodity from multiple paths available, while
satisfying capacity constraints. The set of paths for each

commodity include an ‘artificial’ path (a high cost path
with zero travel time), which means a shipment cannot
be delivered within the specified time windows and has

to use a higher cost alternative. Each solution to the
master problem ensures satisfaction of all constraints
in the problem except scheduling constraints; and min-

imum cost with respect to the satisfied constraints. To
test if schedule infeasibilities exist in the solution, we
solve sub-problems in which infeasibilities are detected

using efficient network node-labeling algorithms. If no
infeasibilities are found, a feasible schedule exists for
the CRTW-UU solution and the CRTW-UU problem is

solved. If, however, scheduling conflicts are identified,
these scheduling conflicts are translated into inequali-
ties that are added to the master problem to eliminate

the current infeasible solution. After a finite (but pos-
sibly large) number of iterations, our approach is guar-
anteed to find a feasible, and hence optimal, solution

to the CRTW-UU problem, as will be discussed in §3.6
and §3.7. A diagrammatic overview of our decomposi-
tion approach is presented in Figure 1.

2.2 Flow Master Problem (CRTW-UU-MP)

When scheduling constraints are relaxed, the CRTW-
UU reduces to flowing shipments on the vehicles. In

solving it deterministically without modeling uncertainty,
the flow master problem involves solving the standard
path-based multi-commodity flow formulation detailed

in Ahuja et al. Ahuja et al. (1993), that is, choosing
paths for each commodity k on its subnetwork Gk.

To model uncertainty in demands and capacities, we

extend the Chance-Constrained Programming (CCP)
model (Charnes and Cooper 1959, 1963) of Charnes and
Cooper and present our Extended Chance-Constrained

Programming model (ECCP). CCP is based on con-
straint satisfaction, that is, constraints containing un-
certain capacity parameters are required to be satisfied

for a pre-specified probability of protection γ. In our
ECCP approach, however, the achieved level of protec-
tion is modeled as a variable. We use partial informa-

tion about the distributions of uncertain capacity pa-
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Fig. 1 Schematic diagram of the Decomposition Approach

rameters, in the form of quantiles; or full information in
the form of distribution parameters. With each quan-
tile is associated a level of protection, as defined by

the Chance-Constrained Programming approach and
defined more formally later in this section. Among these
different levels of protection, our ECCP approach al-

lows the model to maximize the level of protection un-
der a robustness budget ∆. Compared to the Chance-
Constrained Programming approach, the ECCP allows

costs to be contained when achieving robustness and
thus control the level of conservatism, and also avoids
the necessity for the user to specify protection levels a

priori, which can be difficult when multiple uncertain
parameters in several constraints are involved Marla
(2007). For further details of the approach, we refer the

reader to Marla (2010). In the CRTW-UU, we capture
uncertainty explicitly in capacities, that is, we protect
against capacity drops. Through the increased slack in

the capacity constraint, this acts as a proxy for protect-
ing against demand uncertainty.

We now describe the network underlying the deter-
ministic and ECCP models. For each shipment k we
build a network Gk = (Nk, Ak) that is a copy of net-

work G = (N,A) described here. In G = (N,A), each
node j ∈ N has three attributes: a location l(j), vehicle
v(j) : v(j) ∈ V , and information if it represents arrival

or departure of v at l(j). Connecting these nodes are
arcs a ∈ A of three types: travel arcs, connection arcs
and transfer arcs. Travel arcs (i, j) on the network rep-

resent movement of vehicle v(i)(= v(j)) departing from
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l(i) and arriving at l(j). Flows on these arcs represent

the movement of shipments on v(i) from l(i) to l(j).
Connection arcs connect the arrival node of v(i) at lo-
cation l(i) and the departure node of v(i) = v(j) at

l(j) = l(i). Flows on these arcs represent shipments re-
maining on v(i) while it is positioned at l(i). Travel and
connection arcs belong to Av, the set of arcs of vehicle v.

Flows on transfer arcs (i, j), which connect the arrival
node of v(i) at l(i) to the departure node of v(j)( ̸= v(i))
at l(j) = l(i), represent the transfer of shipments be-

tween vehicles, and have an associated transfer time.
G = (N,A) is used to aggregate information (detailed
in §3) from the networks Gk = (Nk, Ak) ∀k ∈ K. Each

arc (i, j) ∈ G has a capacity of uij , that is determined
based on the type of arc (travel, transfer or connection
arc). P k is the set of origin to destination paths for

commodity k in Gk. δ
p
ij is an arc-path indicator variable

that is equal to 1 if arc (i, j) is on path p, 0 otherwise.

In addition, we have an artificial path for each ship-
ment k ∈ K, which is not physically present in the
shipment network Gk, but is used to model the case

when the shipment does not have any feasible path.
The use of an artificial path in the solution denotes the
schedule infeasibility of that shipment within the spec-

ified time windows. cij is the cost on arc (i, j). cp is the
cost due to 1 unit of flow on path p, equivalent to the
sum of costs of the arcs on the path. cp =

∑
(i,j)∈p

cij .

Because we focus on finding feasible schedules, cij = 0,
and hence cp = 0 for all arcs and paths, except for

the artificial path (denoting schedule infeasibility). For
each shipment k, the cost associated with the artificial
path is a penalty cost (for no service or late service, or

for subcontracting out the service to another carrier).

We summarize the notation for the model as follows:

– K = set of shipments k

– Gk = network for shipment k, constructed as de-
scribed above.

– G = network that aggregates information from net-

works Gk, ∀k ∈ K
– P k = set of origin to destination paths for commod-

ity k in Gk, including the ‘artificial’ path for k

– dk = number of units of commodity k to be trans-
ported from origin to destination

– uij = capacity of arc(i, j) ∈ G

– δpij = arc-path indicator that is equal to 1 if arc (i, j)
is on path p, 0 otherwise

– fp = 1 if all dk units of commodity k flow on any

path p ∈ Pk; and 0 otherwise.
– cp = cost due to 1 unit of flow on path p (if p is the

artificial path this corresponds to penalties for no

service, late service or subcontracting)

The deterministic formulation to find a path for

each shipment on its subnetwork Gk, without capturing
any uncertainty, is the same as the path-based multi-
commodity flow formulation, and is as follows:

min
∑
k∈K

∑
p∈Pk

dkcpfp (1)

s.t.
∑
p∈Pk

fp = 1 ∀ k ∈ K (2)

∑
k∈K

∑
p∈Pk

dkfpδ
p
ij ≤ uij ∀ (i, j) ∈ A (3)

fp ∈ {0, 1} ∀ p ∈ P k, ∀ k ∈ K (4)

The objective (1) minimizes costs of commodity flows

on the network. Constraints (2) correspond to finding
exactly one feasible path on the network for each com-
modity, constraints (3) to ensure that flows satisfy arc

capacity constraints, and constraints (4) correspond to
integrality of commodity flows. We model the fp vari-
ables as binary because it is more advantageous when

adding constraints from the Scheduling Sub-Problem
into the Flow Master problem; and furthermore, make
our approach easier to explain. This is without any loss

of generality, as the dk units of each commodity k can
also be split into multiple commodities of one unit each.

In order to capture uncertainty in demand or sup-

plies (or, uncertainty in capacities as a proxy for de-
mand uncertainty), we apply our ECCP model to (1) -
(4). We first define the following additional notation.

– f
′∗
p = optimal solution to the deterministic problem

((1) - (4)) that minimizes costs when data assume
nominal values,

– uij = capacity of arc (i, j), indicating vehicle capac-

ities or transshipment capacities, depending on the
type of arc,

– Qij = set of quantiles q = 1, ...|Qij | of uncertain

capacity parameters uij , for each constraint corre-
sponding to arc (i, j),

– uq
ij = capacity associated with quantile q ∈ Qij ,

– pqij = protection level probability associated with
quantile q ∈ Qij for the capacity constraint cor-
responding to arc (i, j), 0 ≤ pqij ≤ 1; such that
P (uij ≤ uq

ij) = pqij ,

– yqij is the binary variable that is equal to 1 if the
protection level expressed as a probability pqij , rep-
resented by the qth quantile, is attained in the ca-

pacity constraint for arc (i, j); and 0 otherwise,
– δ = pre-specified budget of cost from the nominal

value
∑
k∈K

∑
p∈Pk

dkcpf
′∗
p , and

– γij = achieved protection level for the capacity of

arc (i, j).
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The ECCP formulation corresponding to (1)-(4) is:

CRTW-UU-MP:

max
∑

(i,j)∈A

wijγij (5)

s.t.
∑
k∈K

∑
p∈Pk

dkcpfp ≤
∑
k∈K

∑
p∈Pk

dkcpf
′∗
p +∆ (6)

∑
p∈Pk

fp = 1 ∀ k ∈ K (7)

∑
k∈K

∑
p∈Pk

dkfpδ
p
ij ≤

|Qij |∑
q=1

uq
ij(y

q
ij − yq−1

ij ) ∀ (i, j) ∈ A

(8)

yqij ≥ yq−1
ij ∀ q ∈ Qij ,∀ (i, j) ∈ A (9)

y0ij = 0 ∀ (i, j) ∈ A (10)

y
|Qij |
ij = 1 ∀ (i, j) ∈ A (11)

γij ≤
|Qij |∑
q=1

pqij(y
q
ij − yq−1

ij ) ∀ (i, j) ∈ A (12)

fp ∈ {0, 1} ∀ p ∈ P k, ∀ k ∈ K (13)

yqij ∈ {0, 1} ∀ q ∈ Qij , ∀ (i, j) ∈ A (14)

0 ≤ γij ≤ 1 ∀ (i, j) ∈ A (15)

The goal of our model is to choose the solution with

the highest level of protection, within a pre-specified
budget δ.

(5) is the ECCP objective function that maximizes a
weighted sum of protection levels (with weights wij and

achieved protection γij) over constraints with uncertain
parameters. Constraints (6) limit the expected cost of
the robust solution to no more than a user-specified

budget of ∆ more than the expected optimal cost when
using nominal parameter values. Constraints (7) assign
one path to each shipment. Constraints (8) find the
highest protection level attainable for the uncertain pa-

rameters. Inequalities (12) set γij to be no greater than
the highest protection level provided to the capacity
constraint corresponding to (i, j). (9) ensure that the

protection level variables follow a step function, that
is, if a higher level of protection is achieved, all lower
levels of protection are also achieved. (10) and (11) set

the boundary values of the step functions. Constraints
(13), (14) and (15) describe the variable ranges.

2.3 Scheduling Sub-Problem (CRTW-UU-SP)

Given a shipment flow solution F from the CRTW-
UU-MP, the objective of the Scheduling Sub-Problem

(CRTW-UU-SP) is to determine if the shipment flows

obtained from solving the Flow Master Problem have a

feasible and robust schedule that obeys shipment pickup
and delivery time-windows, allows connections and trans-
fers, and has sufficient slack in its path. If a shipment

is assigned to any path other than the artificial path in
the solution to (5) - (15), it is possible that infeasibility
might exist in its schedule. We determine the existence

of a feasible robust schedule for the Flow Master Prob-
lem solution by solving a series of shortest path and
network-labeling algorithms, detailed in §3.1 and §3.3.
If we find a feasible schedule, we are done, otherwise,
the same algorithm identifies the sources of infeasibility.

To find a robust schedule, we assign as a proxy a

‘protection level’ for each shipment path in the Flow
Master Problem solution. The intuition behind this is
that each shipment path is protected up to a certain

probability level, the entire schedule is better protected
because there is more flexibility in schedule movements.
The higher protection basically adds slack in travel times

by assuming higher quantiles of travel times (according
to the protection level) than the average, thus adding
buffers and allowing for movements under uncertain
(and higher) travel time realizations. Note also that

slack in the travel time also corresponds to wider time-
windows of movements on the shipment path. The quan-
tile value for the arc travel time to be used in the

Scheduling Sub Problem can be determined based on
the desired protection level for the path, using our knowl-
edge of uncertainty based on historical data. Note that

using this model, we protect only a subset of all arcs in
the network, namely, those that are present on paths
in the Flow Master Problem solution. This also helps

avoid over-conservatism or ‘guessing’ in choosing which
arcs to selectively protect, which would be the case in
a non-decomposition based approach where path flows

were not known before assigning protection levels to
paths or arcs.

The protection level assigned to each arc in a ship-

ment path needs to be chosen a priori by the user,
and can be an iterative process. Our decomposition ap-
proach also includes additional flexibility in changing

the level of protection over iterations. The actual quan-
tile of travel time used on an arc can be changed dur-
ing the iterations of the decomposition approach. Dur-

ing subsequent applications of the sub-problem to the
master problem solution, higher quantile values may be
used if a higher level of protection for the service times

is desired.

2.4 Iterative Feedback Mechanism

We iterate between solving the CRTW-UU-MP and the

CRTW-UU-SP, identifying infeasibilities in the CRTW-
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UU-SP solutions and adding them as new constraints

into the CRTW-UU-MP in order to eliminate current
infeasibilities. With each iteration, the constraints added
to the CRTW-UU-MP increase its size minimally, but

decrease the size of its feasible solution space. We will
show that we converge to the optimal solution with each
iteration of the algorithm. The CRTW-UU is solved

when the shipment flows obtained from the CRTW-
UU-MP have associated feasible schedules and no cuts
are added, and the iterative procedure terminates.

3 Solution algorithm for the decomposition

modeling approach

In this section, we more formally describe the algo-

rithm, depicted in Figure 2. As described in §2.2 and
§2.3, uncertainty is captured using the ECCP in the
Flow Master Problem and using quantiles for travel

time using the CCP in the Scheduling Sub-Problem.
We improve the solvability of the Flow Master Prob-

lem and Scheduling Sub-Problem by invoking a pre-

processing step that identifies time-infeasible path as-
signments a priori. The Pre-processing step is executed
before the commencement of iterations solving the Flow

Master Problem and Scheduling Sub-Problem. We use
the same notation introduced in §2, and detail each
module of the Decomposition algorithm in the follow-

ing sections.

3.1 Step 1: Network Pre-processing

On Gk, for all k ∈ K, we define EAT k
j as the earliest

time shipment k can reach node j after starting from
O(k) and LDT k

j as the latest time shipment k can leave
node j to get to its destinationD(k) on time. spki,j is the

shortest path distance for shipment k from i to node j.
EAT v

j and LDT v
j are the earliest arrival time and latest

departure time of vehicle v at each node j ∈ N .

The steps of the network Pre-processing phase are
detailed as follows:

(i) For each shipment network Gk for all k ∈ K, based

on EAT k
O(k) and LDT k

D(k), find time-windows, ex-
pressed as the earliest arrival time and latest depar-
ture time [EAT k

i , LDT k
i ], of any shipment k ∈ K

at each node i ∈ Nk. Thus,

EAT k
i = EAT k

O(k) + spkO(k),i; and (16)

LDT k
i = LDT k

D(k) − spkj,D(k) (17)

(ii) Find time-windows (EAT v
i , LDT v

i ) for each vehicle
v ∈ V at each node i ∈ N along its route based on

the earliest start time and latest allowed return time

  Pre-processing 

Scheduling 

Sub-problem 

Feasible 

Schedule? 

Yes 

No 

 CRTW-UU solved 

Yes 

No 

Artificial 

paths to 

commodities 

with no 

network path 

Flow Master 

Problem 

Add 

Constraint(s) 

Feasible 

Commodity 

Network Paths? 

Fig. 2 Flow Chart of the Decomposition Approach

at the depot. These constraints are driven by driver
work rules. If vehicle v does not pass through a node
i, i is labeled unreachable for v. For all reachable

arcs (i, j) ∈ Av, for all v ∈ V , we have

EAT v
j = EAT v

i + ttij ; and (18)

LDT v
i = LDT v

j − ttij (19)

We label the time-windows and labels of vehicles
and shipments thus obtained as pre-processing time

windows or labels. They are the broadest set of time
windows possible over any travel path for the vehi-
cles and shipments (because these time-windows are

formed using the shortest paths).
(iii) If LDT k

i −EAT k
i < 0, the time-window duration of

a shipment k is negative at a node i ∈ Nk. Because

the pre-processing time-windows are the broadest
time-windows, no schedule feasible path for ship-
ment k passes through i. For each shipment network

Gk∀k ∈ K, remove all the schedule infeasible nodes,
and all arcs incident to these nodes. This results in
a reduced version of Gk containing only those arcs

and nodes through which shipment k may pass.
(iv) We say that the time-windows of shipment k and

vehicle v overlap at node i if the combined vehicle-

shipment pre-processing time-window has non-negative
duration. We denote the time-window at node i for
the vehicle-shipment pair v and k as: (EAT k,v

i , LDT k,v
i ),

where EAT k,v
i = max{EAT k

i , EAT v
i } and LDT k,v

i =
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min{LDT k
i , LDT v

i }. Find all possible overlaps of

shipment-vehicle pairs at each node i ∈ N,∀ k ∈
K, ∀ v ∈ V . If the overlap between time-windows
of shipment k and vehicle v is negative at node i,

that is, LDT k,v
i − EAT k,v

i < 0, shipment k cannot
travel on the vehicle arcs in Av incident to node
i. We delete such arcs and nodes from Gk, further

reducing its size. If the time-windows of a vehicle-
shipment pair (v, k) are non-zero at both ends of an
arc (i, j) ∈ Av, shipment k can travel on (i, j), that

is, on that segment of vehicle v’s path, within the
specified time-windows.

(v) Consider the aggregate network G with the vehicle-

shipment pre-processing time-windows for all k ∈ K
superimposed on each other at each node i ∈ N .
Suppose the time windows of two shipment-vehicle

pairs (v, k1) and (v, k2) at a node i are individually
positive; but do not overlap with each other, thus
making it infeasible for both k1 and k2 to travel

together on any (i, j) ∈ Av in any schedule-feasible
solution to the CRTW-UU. This infeasibility can
be eliminated from the set of feasible solutions to
the Flow Master Problem by adding the following

constraint to CRTW-UU-SP:∑
p1∈Pk1

|(i,j)∈p1

fp1 +
∑

p2∈Pk2
|(i,j)∈p2

fp2 ≤ 1, (20)

where fp, p ∈ Pk is defined as in (5)-(15), that is,

it is a binary variable that takes on value 1 if ship-
ment k is assigned to path p; and 0 otherwise. We
add these constraints to the Flow Master Problem

in the Pre-processing step to eliminate known infea-
sible solutions.

3.2 Step 2: Flow Master Problem (CRTW-UU-MP)

The goal of the Flow Master Problem is to assign a

route to each shipment in the network. We formulate
the basic route choice without uncertainty as a multi-
commodity flow problem of choosing paths on the net-

works Gk (resulting after the Pre-processing step), for
each shipment in K. To capture uncertainty in capac-
ities and demands, we use the Extended Chance Con-

strained Programming (ECCP) Marla (2010) that re-
sults in the CRTW-UU-MP. The ECCP maintains the
structure of the multi-commodity flow problem and al-

lows the use of implicit or explicit column generation
techniques for large instances Marla (2007). (Column
generation is a technique used in very large-scale for-

mulations where variables number in millions or bil-
lions, however only a subset of variables are included in
the formulation to begin with. Implicit column genera-

tion uses a mathematical formulation to decide which

variables not already included should be brought into

the Master Problem, without explicitly enumerating
the variables. Explicit column generation on the other
hand, enumerates the list of all (or most) variables and

evaluates the value of adding them to the Master Prob-
lem. Explicit column generation in very large-scale in-
stances is often intractable, while implicit column gen-

eration is efficient.) Other approaches that change the
structure of the multi-commodity flow formulation, such
as Bertsimas and Sim’s robust framework Bertsimas

and Sim (2004) Bertsimas and Sim (2003), can also be
used, and explicit column generation may have to be
used for large-scale instances.

3.3 Step 3: Scheduling Sub-problem (CRTW-UU-SP)

After solving the CRTW-UU-MP, vehicle routes and

assigned shipment paths p
′

1, ..., p
′

|K| for shipments k =
1, ..., |K| are known. Though the paths introduced into
the Flow Master Problem are individually schedule-

feasible, it is still possible that interactions between
these shipment paths p

′

1, ..., p
′

|K| produce infeasible sched-
ules. Therefore, in the Scheduling Sub-Problem, we ‘flow’

these shipments on the network G to determine a com-
bined feasible schedule. Thus all the computations in
this step are on the aggregate network.

When we wish to protect against travel time uncer-
tainty, we do the following. Use an a priori chosen quan-
tile (higher quantile) of travel time for all the shipment
paths in the network. For all arcs belonging to shipment

paths output by the Flow Master Problem in that iter-
ation, the travel time is selected to be a higher quantile
as described in §2.3. All other arcs in the network are

assumed to have travel time equal to the mean travel
time.

The Scheduling Sub-Problem consists of the follow-

ing steps on the aggregate network:

i) Initialization: Let k = 0 represent the vehicle flows,

and commodities k = 1, ...|K| represent the ship-
ments.
(a) Set EAT k

i = 0, and LDT k
i = M , a very large

number, ∀i ∈ N , ∀k ∈ K. Set EAT k
O(k) to EATk

at its origin, LDT k
O(k) = M , LDT k

D(k) to LDTk

at its destination, and EAT k
D(k) = 0.

(b) Set EATi = 0, and LDTi = M .

(c) Let Li be the label set at node i, consisting of the
list of shipments that impact the time-windows
at i. Set Li = ϕ (empty).

(d) Set processing list to empty.
(e) For k = 0, 1, ...|K|, determine the time-windows

for shipment k in sequence along its currently

assigned path p
′

k, (forwards from O(k) for EAT
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values and backwards from D(k) for LDT val-

ues) in the aggregate network, as indicated in
(21) and (22).

EAT k
j = max{EAT k

j , EAT k
i + ttij}

∀ (i, j) ∈ p
′

k, ∀ k = 0, 1, ..., |K| (21)

LDT k
i = min{LDT k

i , LDT k
j − ttij}

∀ (i, j) ∈ p
′

k, ∀ k = 0, 1, ..., |K| (22)

These time-windows will at least be as tight as
the Pre-processing step time-windows, because

each shipment k ∈ K is restricted to path p
′

k.
The time-windows for the vehicles (k = 0) re-
main the same as those in the Pre-processing

step, because the vehicle routes are given inputs
that do not change in solving the CRTW-UU.

ii) For node i ∈ N and k = 0, 1, ..., |K|,
(a) if EAT k

i > EATi and EAT k
i ̸= 0, set EATi =

EAT k
i , add k to Li if not already present.

(b) if LDT k
i < LDTi and LDT k

i ̸= M , set LDTi =

LDT k
i , add k to Li if not already present.

(c) and add k to the processing list, if it is not al-
ready present.

We refer to (EATi, LDTi) as the movement time
windows at node i.

iii) For node i ∈ N if the movement time windows

(EATi, LDTi) satisfy LDTi < EATi then there ex-
ist two shipments k1 and k2 in Li with paths p1
and p2 respectively passing through i, such that

EAT k1
i > LDT k2

i .
(a) Without loss of generality, if k1 = 0 (it is a ve-

hicle path), add a constraint of the form

fp2 ≤ 0, (23)

(b) Else if k1 > 0 and k2 > 0 add a constraint of the
form:

fp1 + fp2 ≤ 1, (24)

to the Flow Master Problem.
iv) If the processing list is not empty, remove the first

element from the list, add it at the end of the list,
and go to step v.

v) Update EATi, LDTi for all (i, j) ∈ p
′

k∀k ∈ 0, 1, ..., |K|,
(that is, for each arc in each vehicle path and each
shipment path chosen by the Master Problem), pro-
cessing (i, j) in sequence along p

′

k (propagating in

the forward direction for the EAT values and in the
backward direction for the LDT values) as:
If EATj < EATi + ttij ,then

EATj = EATi + ttij , Lj = Lj ∪ Li, (25)

If LDTi > LDTj − ttij ,then

LDTi = LDTj − ttij , Li = Li ∪ Lj (26)

Remove any repeated shipments from Li and Lj

and return to Step (iv).
vi) One execution of (iv) and (v) for all vehicles and

shipments constitutes one iteration. If the change

in EATi, LDTi for successive iterations of (iv) and
(v) is significant, repeat step (iv) and (v), else go to
step (vii).

vii) For any arc (i, j) ∈ G such that (i, j) ∈ pk, k =
0, 1, .., |K|, if LDTj −EATi < ttij , this indicates an
infeasibility in schedule caused by the interaction

of paths selected by the Flow Master Problem for
shipments belonging to the set Li ∪ Lj . If no such
arcs (i, j) are found, stop; a set of feasible time-

windows is found. Else, go to step (viii).
viii) Add the following constraint to the Flow Master

Problem:∑
k∈(Li∪Lj)

fp′
k
≤ |Li ∪ Lj | − 1; (27)

where Li ∪ Lj is the set Li ∪ Lj with no elemts

repeated; and |Li ∪ Lj | is the cardinality of Li ∪ Lj .
Constraint (27) states that the set of paths causing
schedule infeasibility of the current solution should

not be repeated in further iterations.

3.4 Stopping Criterion

If no schedule infeasibilities are identified in the schedul-

ing algorithm, that is, LDTj − EATi < ttij for all
(i, j) ∈ G, the CRTW-UU is solved; otherwise, the al-
gorithm returns to Step 2 with added constraints of

the type (27) in the Flow Master Problem. We iter-
ate between solving the Flow Master Problem and the
Scheduling Sub-Problem until no schedule infeasibili-

ties are identified in the Flow Master Problem solution
by the Scheduling Sub-Problem. Then the algorithm
terminates with a feasible routing and schedule. (Note

that a feasible solution is guaranteed because there ex-
ists at least one feasible solution of assigning to each
shipment its artificial path - which has high cost but is,

by definition, always schedule feasible.)

3.5 Output

The solution obtained from the above algorithm is a
set of paths to which shipments are assigned and a set

of time-windows indicating the earliest and latest time
each vehicle and shipment movement can occur. The
solution might route a shipment along one or more ve-

hicles; or on its artificial arc, in which case it is not
served and incurs a penalty. The schedule time-windows
for the routing provide bounds within which the current

set of vehicle and shipment flows may be scheduled.
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3.6 Correctness of the Algorithm

The correctness of the decomposition approach is de-
pendent on the fact that the cuts introduced in the
Pre-processing and Scheduling Sub-Problems eliminate

only regions of the Flow Master Problem solution space
that are infeasible to the original CRTW(-UU) prob-
lem, and ensure that the current infeasible solution is

not repeated.

Proposition: The cuts generated in the Pre-processing
module and Scheduling Sub-Problem correspond to in-
feasible CRTW(-UU) solutions, and do not eliminate

any feasible CRTW(-UU) solutions.
Proof. In the Pre-processing stage, the pre-processing

time-windows are identified using shortest path com-

putations, and therefore the time-windows identified
are the broadest possible time-windows for any possi-
ble shipment and vehicle movements. Therefore, when

we eliminate nodes and arcs from a shipment network
Gk∀k ∈ K, we eliminate those solutions that cannot
satisfy schedule constraints under any conditions. For

the same reason, adding constraints of the type (20)
eliminates all vehicle-shipment pairs that are schedule-
infeasible even under the broadest (shortest-path-based)

time-windows. Hence, such pairs of vehicle-shipment
pairs or shipment-shipment pairs cannot travel together
in any solution. Thus, constraints (20) are valid, and do

not eliminate more feasible space from the Flow Master
Problem than necessary.

The correctness of the Scheduling Sub-Problem

(CRTW-UU-SP) is due to two reasons - first, that the
movement time-windows calculated via steps (i) - (vi)
are the broadest possible time-windows for the ship-

ments and vehicles as assigned in the FlowMaster Prob-
lem solution; and second, that the labeling procedure
employed identifies shipment paths that are infeasible

together.

Step (i) of the scheduling sub-problem first iden-
tifies the possible time-windows EAT k

i and LDT k
i of

each vehicle-shipment pair along the paths of each ship-

ment. These are the broadest possible time-windows
that allow each individual shipment to travel on the net-
work, without ensuring combined consistency of ship-

ment paths in the solution. If no overlaps exist between
a pair of shipment paths at a node in step (ii), it in-
dicates that the paths that do not have overlapping

time-windows are not feasible together even under the
broadest time windows for each path, ensuring correct-
ness of constraints (23) and (24). The node labels at

this step consist of all shipments that tighten the time
windows. We then iterate through steps (iv) and (v)
to generate the broadest time windows that allow all

vehicle and shipment movements assigned by the Flow

Master Problem to take place together. As the itera-

tions take place via propagation along paths, the la-
beling procedure identifies all preceding and consecu-
tive nodes that tighten the time windows at a node;

and add the list of shipments that determine the time-
windows at the preceding or consecutive steps. More-
over, because the EAT s are propagated forward and

the LDT s are propagated backwards along all paths,
when the time-windows converge, we have the broadest
time windows that allow all path movements to occur.

If after step (vi), all nodes and arcs have time- win-
dows that are non-negative, then one or more feasible
schedules can be constructed. One trivial case is to set

the scheduled time at each node i ∈ N to EATi. Al-
ternatively, a feasible schedule can be constructed by
setting the scheduled time at each node i ∈ N to LDTi.

If we find instead, that ttij ≤ LDTj − EATi for some
(i, j) ∈ A, the minimum time necessary to traverse the
arc (i, j) exceeds the maximum allowable time to get

from i to j, and there is a schedule infeasibility. Then,
the labels at i and j together identify the shipment
paths that lead to the time-windows, and consequently,

to infeasibility. The constraint (27) added to the Mas-
ter Problem then prevents re-occurrence of the same
infeasible solution. ⊓⊔

3.7 Convergence of the Algorithm

There exists at least one feasible solution to the CRTW-
UU, namely, the choice of artificial paths for all ship-
ments, which is also the maximum cost solution. There-

fore, there exists an optimal solution to the CRTW-UU.

In each iteration of our decomposition approach, we
solve a relaxed version of the CRTW-UU formulation in

the CRTW-UU-MP by relaxing scheduling constraints.
Thus the cost incurred by the solution to the CRTW-
UU-MP is a lower bound on the objective function cost

of the CRTW-UU. As we add cuts to the Flow Mas-
ter Problem, the objective function cost increases or
stays the same. Each cut corresponds to the elimina-

tion of at least one infeasible solution to the CRTW-
UU. Hence, each cut is unique, and after a finite (but
possibly large) number of iterations, all infeasible so-

lutions are eliminated and the Flow Master Problem
solution will be feasible to the CRTW-UU. Because the
Flow Master Problem is a relaxation of CRTW-UU and

the added cuts eliminate only infeasible CRTW-UU so-
lutions, finding a feasible schedule to the Flow Master
Problem corresponds to solving, that is, finding an op-

timal solution to, the CRTW-UU.
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3.8 Running Time of the Algorithm

Pre-processing involves employing network labeling and
shortest path algorithms. We solveO(2(|K|+|V |)) short-
est path problems, for which highly efficient algorithms

such as Dijkstra’s algorithm are available. Note that
in the Pre-processing stage, the shipment networks are
reduced in size, due to elimination of arcs and nodes.

Computation of time-windows involves computation at
each node and arc of each shipment network, requiring
a maximum of |K|(|N |+ |A|) computations.

The Flow Master Problem is solved using standard
integer programming techniques. Its size is smaller than

conventional multi-commodity flow formulations with
time windows (captured either as time variables through
time-space networks) and therefore expected to be less

complex, with fewer variables, as well as more tractable.

The Scheduling Sub-Problem involves network la-
beling algorithms to compute the time-windows, sim-
ilar to the Pre-processing stage. Tracing the paths of

commodities involves O(|N |2(|K| + |V |) + |N |(|K| +
|V |)) operations, because label initialization requires
O(|N |(|K|+ |V |)) and each time a shipment or vehicle

path is traced, at least one label at some node i is tight-
ened (except for the last set of propagations, where we
stop). The number of labels at each node is restricted

to (|K|+ |V |) and each relabeling takes O(|N |) steps.
One can add multiple constraints of the form (23),

(24) or (27) in each iteration by identifying all infea-
sibilities corresponding to a selected set of paths in

a single iteration, or by adding constraints for a sub-
set of infeasibilities and breaking out of the schedul-
ing sub-problem. Because calling the optimization en-

gine to solve the Flow Master Problem multiple times
is more computationally expensive than the scheduling
sub-problem, we recommend identifying and eliminat-

ing as many infeasibilities as possible in each iteration.

It is possible that the number of iterations between
the FlowMaster Problem and the Scheduling Sub- Prob-
lem will be large. Each cuts that is added to the space

will always be effective as atleast one infeasible sched-
ule solution is eliminated at each iteration. However,
it may happen that several such cuts will need to be

added, increasing the number of iterations. In theory,
we can construct pathological instances where the num-
ber of iterations can be very large. However, computa-

tionally, we observe that the number of iterations of
the decomposition approach is sensitive to the start-
ing solution from the Flow Master Problem in the first

iteration. To speed it up, a seed solution such as one
from a traditional modeling approach, or one that is
being implemented by the carrier, may be provided. In

case of a high degree of infeasibility in the optimal solu-

tion (specifically, if several shipments cannot be served

and take on artificial paths in the optimal solution)
the decomposition approach can consume a lot of time
iterating between the Flow Master Problem and the

Scheduling Sub-Problem. This is because the Flow mas-
ter Problem minimizes the penalties and maximizes the
number of shipments served. It will therefore examine

all possible combinations before assigning a shipment
to an artificial path. To decrease the number of itera-
tions in such cases, we use the techniques described in

§3.9 and §3.10.

3.9 Identification of Dominant Cuts

We can strengthen the constraints in the Pre-processing

and Scheduling Sub-Problem as described below.
Consider constraints in the Scheduling Sub-Problem

of the form:

fp1 + fp2 ≤ 1, (28)

fp1 + fp3 ≤ 1, and (29)

fp2 + fp3 ≤ 1. (30)

Notice that these three constraints can be modeled

effectively with a single, dominant constraint, of the
form:

fp1 + fp2 + fp3 ≤ 1. (31)

Similarly, in the Pre-processing step, suppose ship-
ments k1, k2 and k3 are identified, such that each pair

cannot travel together on an arc (i, j), pair-wise con-
straints of type (20) are generated for k1 and k2, k2
and k3, k3 and k1. These constraints can be replaced

by a single dominant constraint :

∑
p1∈Pk1

|(i,j)∈p1

fp1 +
∑

p2∈Pk2
|(i,j)∈p2

fp2

+
∑

p3∈Pk3
|(i,j)∈p3

fp3 ≤ 1. (32)

One approach to finding such constraints is to con-
struct an incompatibility network over which completely

connected subgraphs, called cliques, are identified. To
construct the incompatibility network, we create one
node for each path in the Flow Master Problem so-

lution. An arc connects a pair of nodes if the associ-
ated paths are contained in at least one constraint that
is added to the Flow Master Problem as a result of

the Pre-processing or Scheduling Sub-Problem solution
steps. Each completely connected subgraph in the in-
compatibility network is a clique that corresponds to

set of paths (the nodes of the clique), of which at most
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one can exist in a solution. We find dominant, or strong

cuts, by identifying maximally connected components,
or cliques. For the constraints (28) - (30), Figure 3 is
the incompatibility network, giving rise to the dominant

constraint (31).

Fig. 3 Incompatibility Network: Cliques

Cliques have been well-studied in the literature. Tar-

jan (1972) presents one of the earliest and best (asymp-
totically efficient) to find cliques in a graph. More effi-
cient algorithms that build upon the above have been

proposed in Nuutila and Soisalon-Soininen (1994) and
Wood (1997). Though identifying maximally connected
components in a network is NP-hard (Garey and John-

son 1979), because we expect to have only a subset of
shipments incurring infeasibilities at a particular node,
we expect that the size of our incompatibility network
will be small and therefore tractability should not be an

issue. Also, we need not identify all cliques in the graph
to improve the algorithmic efficiency; adding even a
few clique constraints can improve algorithmic perfor-

mance.
Identification of dominant cuts minimizes the num-

ber of cuts that must be identified and added to the

Flow Master Problem, thus potentially reducing the
number of iterations of the decomposition algorithm
and leading to faster solution times. Note that iden-

tifying cliques and stronger constraints requires addi-
tional computation time. It is necessary, then, to find
appropriate trade-offs between increased time to iden-

tify stronger constraints and the corresponding reduc-
tion in overall solution time.

3.10 Identifying multiple cuts per iteration

Suppose we identify, in a specific iteration, a set of m
paths p1, p2, ..., pm, belonging to commodities k1, k2, ...,

km respectively, as schedule-incompatible. That is, in
steps (vii) and (viii) of the Scheduling Sub-Problem,
we identify a set of arcs (i, j) ∈ G for which LDTj −
EATi < ttij and the labels on the nodes indicate that
paths p1, p2,..., pm are the ones that cause the infeasi-
bility. Then, the constraint p1 + p2 + ...+ pm ≤ m− 1

is to be added to eliminate the infeasibility.

Proposition: Now suppose, without loss of gener-

ality, that path p1 ∈ P k1 (of commodity k1) contains
arcs (i1, j1), ..., (ip, jp) ∈ G, all of which have negative
time-windows with LDTj − EATi < ttij , as shown in

the Figure. Let p̃ ∈ P k1 be another path of commod-
ity k1 that has tighter time-windows than p1 on arcs
(i1, j1), ..., (ip, jp) ∈ G, as shown in Figure 4.

 

 

 

Path p~  

Path 1p  

(i1 ,j1)  

(i2 ,j2)  

(i3 ,j3)  

(i4 ,j4)  

(i5 ,j5)  

O(k1) = Origin of k1 

D(k1) = 

Destination of k1 

Fig. 4 Multiple paths for commodity k1

Then, p̃+ p2 + ...+ pm ≤ m− 1 can also be added
to the Flow Master Problem in the same iteration.

Proof. We are given that the time-windows of p̃
when propagated as described in Step (i) of the Schedul-

ing Sub-Problem (CRTW-UU-SP) are tighter than the
corresponding time-windows of p1 on arcs (i1, j1), ...,
(ip, jp) ∈ G. Then, when time-windows on p̃, p2, ..., pm
are propagated in the following steps of the Scheduling
Sub-Problem to check for compatibility, the movement
time windows and the final time windows in Step (vii)

will be at least as tight as those for p1, p2, ..., pm. Be-
cause p1 causes infeasibility, p̃ will also cause infeasibil-
ity and the constraint p̃ + p2 + ... + pm ≤ m − 1 can
also be added to the Flow Master Problem in the same

iteration.

Paths of the type p̃ can be identified by a examin-
ing the network Gk1 and performing a network modi-
fication to combine arcs (i1, j1), ..., (ip, jp) into a single

arc, and examining the other paths of commodity k1
on this network. They may also be found by detecting
‘longer paths’, for example, by finding the shortest path

(with all distances made negative) between O(k1) and
(i1, j1), and (i5, j5) and D(k1) as shown in the figure.

⊓⊔
Similarly, such paths may be found for k2 as well,

keeping p1, p3, ...pm the same and identifying those paths

that will cause infeasibility with p1, p3, ...pm on Gk2 ,
etc. This is most useful when there are several paths
per shipment which differ by a few arcs. In such a case,

it is possible that the algorithm will try each and every
alternate path in every iteration, causing the number of
iterations to grow significantly. Then, adding multiple

such cuts by examining the existing paths and deter-



A Decomposition Approach for Commodity Pickup and Delivery with Time-Windows Under Uncertainty 13

mining more than one path of type p̃ that can cause

infeasibility can decrease the number of iterations of
the algorithm.

3.11 Advantages and Disadvantages of the
Decomposition Modeling Approach

Our decomposition methodology involves solving a multi-
commodity FlowMaster Problem and a series of network-
based, easy-to-solve sub-problems. Because we are break-

ing a large optimization problem into two smaller parts,
one involving finding an optimal solution and the other
simply finding a feasible solution, each iteration is fairly

tractable. Moreover, the Scheduling Sub-Problems to
ascertain whether or not a feasible schedule exists for
the Flow Master Problem solution are very efficient.

Polynomial-time network labeling algorithms are used,
which not only identify if a feasible schedule exists, but
also identify one or more constraints that can be added

to the master problem to guide it towards schedule-
feasible solutions. Also, specific types of additional con-
straints, such as those restricting time-windows of a ve-

hicle at a particular location, can be added without
increasing algorithmic complexity.

The decomposition approach explicitly captures the

fact that associated with any feasible solution to the
CRTW-UU, there is not only one feasible schedule but
in fact, a set of time-windows associated with move-

ments. Upon termination of the algorithm, the schedul-
ing sub-problem would have identified a set of feasi-
ble time-windows corresponding to those movements.

Therefore, for a solution obtained from any approach
(traditional, decomposition, or other), the scheduling
sub-problem can be used as a post-processing step, in

order to generate windows of schedules and characterize
the solution’s sensitivity to uncertainty.

Modeling uncertainty in the demand and travel time

parameters using the decomposition approach does not
incur much additional complexity relative to solving the
CRTW for the nominal case. However, there are limi-

tations in the modeling capabilities. One such is that
correlations between uncertain parameters (such as be-
tween travel times of adjacent links on a network) are

not modeled. A second is that the choice of ‘protection
levels’ for travel times on the network has to be made
a priori, and involves repeated solution of instances of

our model. It is possible to apply a sequential process
to try increased protection levels in later iterations of
the Scheduling Sub-Problem, however, it would involve

a trial-and-error process on the part of the user. As in
the case of the ECCP formulation of the Flow Mas-
ter Problem that maximizes protection level within a

budget, it would be useful to develop a mechanism to

automate the choice of path protection levels in the

Scheduling Sub-Problem.

Mathematically, the presented approach always works
in the feasible domain, because the set of paths for
each commodity include an artificial path with high

cost and zero travel time. Note that there is always a
feasible but cost-maximizing solution (all commodities
take their artificial paths). In practice, the use of an ar-

tificial path indicates infeasibility in the sense that the
related shipment(s) cannot be served within the speci-
fied time-window, and these shipments will be delayed

in service. They can either be delivered with an ex-
panded time window, during the next day of service, or
subcontracted to another carrier. The appropriate cost

can be assigned for the delay, and incorporated into
the Master Problem as the ‘penalty cost of not serving
within the specified time window’.

Computationally, the number of iterations of the
decomposition approach is sensitive to the starting so-

lution to the Flow Master Problem in the first itera-
tion. To speed it up, a seed solution such as one from
a traditional modeling approach, or one that is being

implemented by the carrier, may be provided. In case
of a high degree of infeasibility in the optimal solu-
tion (specifically, if several shipments cannot be served

and take on artificial paths in the optimal solution)
the decomposition approach can consume a lot of time
iterating between the Flow Master Problem and the

Scheduling Sub-Problem. This is because the Flow mas-
ter Problem minimizes the penalties and maximizes the
number of shipments served. It will therefore examine

all possible combinations before assigning a shipment
to an artificial path.

When the algorithm terminates, we always find a
feasible solution. The solution contains feasible sched-

ules for the routes; and moreover, all possible feasible
solutions are found. To find feasible solutions more eas-
ily, warm start procedures with solutions used by the

carrier (even if partially infeasible) can be used.

However, if the algorithm is stopped before com-
pletion, it is possible that in the current solution, a
set of commodity routes have incompatible schedules

with each other. This solution could be made feasible
by assigning artificial paths to those shipments with in-
compatible schedules that is, in practice, expand their

time window and serve them late, or use an alternate
(subcontracted) carrier. Another possible way to obtain
a feasible solution is to use insertion heuristics to add

these commodities into existing route in the solution,
or create new route(s) for these commodities. Thus, the
solution from the algorithm does not leave one with no

solution at all, though it could be far from optimal. In
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practice, this is particularly true in the case of a warm

start solution.

This algorithm can be applicable for any cost struc-
ture in which the objective function can be decomposed

between the master Problem and the Scheduling Sub-
Problem. Specifically, if the costs related to the choice
of paths can be captured in the Master Problem alone,

and the Scheduling problem can be cast purely as a
feasibility problem, the decomposition algorithm can
be used. This means that the decomposition algorithm

can be used if the objective is based on cost structures
that price routes based on length of routes, number of
routes chosen, shipment type, etc.

4 Case Study: Truckload shipment routing and
scheduling

4.1 Problem Description

Our proof-of-concept case study considers the planning

of region-wide ground movements of a large pickup and
delivery carrier. We consider truckload movements from
a set of depots to a number of locations. The carrier

owns a fleet of trucks whose movements (routes) over
the network are pre-determined. However, schedules for
these routes are not determined. Demands arise in the

form of trailers that need to be moved from their ori-
gins to their destinations on the network of vehicles.
Time-windows within which the trailers should move

are also specified. Shipments that are not served within
the specified time-windows incur a non-service penalty.
The data instance upon which most of our experiments

are performed has 6 depots, 28 locations, 41 vehicles
and 87 shipments in a daily schedule, and is described
further in §4.4. This data set represents a medium-

sized operation for this carrier. Our goal is to find a set
of routes for the trailers, and schedules for truck and
trailer moves; which minimize non-service costs, and are

robust to uncertainty in travel times and demands.

We solve this problem using the decomposition ap-
proach algorithm presented in §3 and the traditional

model presented in §4.2. We measure the performance
of our algorithm based on various metrics: (i) number
of shipments with infeasible schedules, (ii) running time

of the algorithm, (ii) Percentage of scenarios requiring
delivery deadline extensions of 0, 15, 30 and 60 minutes
respectively to be feasible; (iii) percentage of scenarios

infeasible with 60 minute extension in latest delivery
time; and iv) level of robustness of solutions. To evalu-
ate solution robustness, we use the simulator described

in §4.3.

4.2 Traditional Approach

In this section, we present a traditional modeling ap-
proach for CRTW, in which we model time as a continu-

ous variable Cordeau et al. (2007). Let ti be continuous
variable representing the time at which vehicle v de-
parts from node i ∈ N(v)∀ v ∈ V and fk

0 represent the

artificial path for shipment k. Borrowing notation from
§2.2, the formulation of the traditional model is:

min
∑
k∈K

∑
p∈Pk

dkcpfp (33)

s.t.ti + ttkijδ
p
ijfp −M(1− fp) ≤ tj ∀ (i, j) ∈ A,

∀ p ∈ Pk, ∀ k = 0, 1, ...|K| (34)

tO(k) ≥ EAT k
O(k)(1− fk

0 ) ∀ k = 0, 1, ..., |K| (35)

tD(k) ≤ LDT k
D(k) +M(fk

0 ) ∀ k = 0, 1, ..., |K| (36)∑
p∈Pk

fp = 1 ∀ k = 0, 1, ..., |K| (37)

∑
k∈K

∑
p∈Pk

dkδ
p
ijfp ≤ uij ∀ (i, j) ∈ A (38)

fp ∈ {0, 1} ∀ p ∈ P k, ∀ k = 0, 1, ..., |K| (39)

ti ≥ 0 ∀ i ∈ N. (40)

Constraints (37) - (39) form the path-based multi-
commodity flow formulation that assigns a path to each

shipment. Schedule related constraints (34) constrain
the differences in the departure time on adjacent nodes
of a vehicle or shipment path to the travel time on the

arc. (35) and (36) constrain pickup and delivery of a
shipment to be within the time-windows of pickup and
delivery of the shipment at its origin and destination

respectively.

4.3 Simulator

The simulator examines if a given solution is feasible
under a set of scenarios, where each scenario comprises

of a set of realized demands for shipments and a set of
travel times on arcs. The simulator (41) - (49) is run
once for each scenario and ttij∀ (i, j) ∈ A and dk∀ k ∈
K represent the realizations in that scenario. Let psolk

be the path for shipment (trailer) k, for all shipments
(trailers) k output by the optimization (decomposition

or other) approach. Let ti be the time of departure of
the vehicle (whose path i belongs to) at each node i ∈
N . Let l ∈ L represent the allowable levels of extension

to the shipment delivery time, to measure degree of
schedule infeasibility; and el be the extension in minutes
allowed for level l. In our experiments we set L = 3, and

e1 = 15 minutes, e2 = 30 minutes, e3 = 60 minutes. Let
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ylk = 1 if shipment k ∈ K requires an extension of up

to el in order to be feasible.

Using the same notation used in §2 and §4.2, the
simulator solves the following problem. The goal is to
minimize costs of extending delivery deadlines while

constraining the problem to use only the shipment paths
from the solution to the optimization problem.

min
∑
l∈L

∑
k∈K

elylk (41)

s.t.ti + ttkijδ
p
ijfp −M(1− fp) ≤ tj ∀ (i, j) ∈ A,

∀ p ∈ Pk, ∀ k = 0, 1, ...|K| (42)

tO(k) ≥ EAT k
O(k)(1− fk

0 ) ∀ k = 0, 1, ..., |K| (43)

tD(k) ≤ LDT k
D(k) +M(fk

0 ) +
∑
l∈L

elylk

∀ k = 0, 1, ..., |K| (44)∑
p∈Pk

fp = 1 ∀ k = 0, 1, ..., |K| (45)

∑
k∈K

∑
p∈Pk

dkδ
p
ijfp ≤ uij ∀ (i, j) ∈ A (46)

fp ∈ {0, 1} ∀ p ∈ P k, ∀ k = 0, 1, ..., |K| (47)

ti ≥ 0 ∀ i ∈ N (48)

psolk = 1 ∀ k = 0, 1, ..., |K| (49)

4.4 Computational Experience

We test our approach on proprietary data provided by

the pickup and delivery carrier of interest. The data
instance contains movements of 41 vehicles spanning
28 locations, on which a set of 87 shipments has to

be picked up and delivered. The vehicles are required
to operate a daily schedule. This data set represents
a medium-size daily operation of the carrier. Our ex-

periments evaluate the performance of our decomposi-
tion approach as against a traditional approach for two
types of uncertainty (occurring simultaneously) in each

scenario: (i) travel time uncertainty and (ii) demand
uncertainty. Details of the scenarios of uncertainty are
provided in the following sections.

We solve the problem instances using (a) a tradi-

tional approach by solving the equations (33) - (40)
and (b) using our decomposition approach algorithm
described in §3. We use ILOG CPLEX 12.2 interfaced

with Java via Eclipse 3.7.0. Computational experiments
are conducted on a Dell PowerEdge R510 computer
with dual Xexon X5670 2.93 Ghz processors and 4GB

RAM.

4.5 Random scenario generation

Uncertainty in travel and service times, and uncertainty
in demands are two of the most common sources of

lack of robustness in network schedules. In our scenar-
ios, travel time uncertainty manifests independently of
demand uncertainty, that is, their realizations are as-

sumed independent.

We generate scenarios of uncertain travel times to
reflect two types of underlying service distributions -

uniform and gamma. Our first set of 5,000 scenarios is
drawn from uniform distributions centered around the
deterministic values of travel times provided by the car-

rier, with ranges of ±10% around the mean. The second
set of 5,000 scenarios is drawn from the Gamma distri-
bution, which has been seen in practice to reflect travel

time uncertainty well (Dessouky et al. 1999). Gamma
distributions are skewed to have higher probability of
delays rather than early arrivals. In our experiments,

we use a truncated gamma distribution with the mean
equal to the input travel time provided by the carrier.
The distribution is truncated to avoid overly long travel

times as well as overly short travel times compared
to the mean, as such occurrences are impractical. The
Gamma distribution samples are broader in range than

the uniform distribution samples drawn.

Scenarios of demand realizations are sampled with a

3% uncertainty in trailer demand, which is representa-
tive of the uncertainty realistically experienced by the
carrier company of interest. This means that the num-

ber of trailers (truckloads) to be picked up and delivered
can potentially increase by 3%. We generate scenarios
in which, for about 3% of the time, the carrier sees in-

creased demands from some locations in the form of
an additional trailer to be delivered (between the same
origin and destination and with the same time win-

dows). Our set of 5,000 scenarios randomly chooses 3%
of all shipments to have two trailers instead of one to
be delivered. (From discussions with the company, it

is rare that the uncertainty decreases, that is, the de-
mand between an origin-destination pair has zero trailer
demand. Moreover, the decrease in demand is not as

critical a scenario as an increase. Therefore we do not
consider the scenario of zero demand between an origin-
destination pair.)

The scenarios of demand and travel times are ran-
domly paired to generate combined uncertainty. We
present results of simulation under the traditional ap-

proach and from the robust decomposition approach.



16 Lavanya Marla et al.

4.6 Applying the decomposition approach

We model demand uncertainty using our decomposition
approach using the CRTW −UU−MP (with a budget

δ=4). The budget δ is chosen as a fraction of the infea-
sibility that is experienced by the non-robust solution
from the traditional approach. After simulating the so-

lution from the traditional approach under several sce-
narios and finding its percent infeasibility, we set the
robustness budget δ as equivalent to a small fraction

of the infeasibility of the traditional approach solution.
That is, this is the number of commodities we allow to
not be shipped in order that the entire solution be more

robust under uncertainty. We set 5% of the total num-
ber of shipments (that is 4 shipments) to be allowed to
be infeasible. Note here, that we use the ECCP model

that protects against the greatest decrease in vehicle
capacity (in the right-hand-side of the constraint (8))
as a proxy for increase in demand (in the left-hand-side

of the constraint). We model travel time uncertainty by
a priori assuming a percentage protection for shipment
paths. The quantiles of protection for the paths chosen

in the Master Problem are assumed to be about 70th
percentile protection. This is chosen based on a priori
estimates of degree of protection required.

We compare performance of the decomposition ap-
proach solutions to those from the traditional approach

(33) - (40) in which neither ECCP is used to protect
against demand uncertainty, nor are arcs protected against
travel time uncertainty. Note that in the traditional

model, a subset of arcs may be protected up to a certain
quantile, however, it is difficult to decide which arcs to
protect without knowing the paths that are present in

the solution. Protecting all arcs against uncertainty is
very expensive as it results in several schedule infeasi-
bilities.

4.7 Results and Discussion

The three solutions we discuss in Table 1 are the fol-

lowing.

– Solution 1 represents the solution using a traditional

deterministic approach, obtained by solving (33) -
(40), and not modeling travel time or demand un-
certainty.

– Solution 2 is the decomposition approach solution,
obtained using the 70th quantile of uniform distri-
bution travel times, and protected against demand

uncertainty using the ECCP formulation in CRTW-
UU-MP. The distribution used in choosing the quan-
tile is the same as the distribution that the scenarios

are sampled from.

– Solution 3 is the robust decomposition approach,

obtained using the 70th quantile of gamma distributed
travel times, and protected against demand uncer-
tainty using the ECCP formulation in CRTW-UU-

MP.

We compare the performance of these solutions us-
ing the following metrics:

– Ships. Infeasible = Number of shipments with no

path assigned (in the problem solution, they are as-
signed an ‘artificial’ path with high cost)

– Solution time = time to run the approach, in sec-

onds
– Iterations = number of iterations needed for the de-

composition approach

– ‘0 min’ Feasibility = Percentage of scenarios requir-
ing no extension to the latest delivery time of ship-
ments in order to be feasible;

– ‘15 min’ Feasibility = Percentage of scenarios re-
quiring an extension up to a max of 15 minutes after
the latest delivery time of shipments in order to be

feasible;
– ‘30 min’ Feasibility = Percentage of scenarios requir-

ing an extension greater than 15 minutes and up to

a maximum of 30 minutes after the latest delivery
time of shipments in order to be feasible;

– ‘60 min’ Feasibility = Percentage of scenarios requir-

ing an extension greater than 30 minutes and up to
a maximum of 60 minutes after the latest delivery
time of shipments in order to be feasible;

– Infeasible % = percentage scenarios infeasible even
with a deadline of 60 minutes to the latest delivery
time of shipments

Num. Approach Ships. Sol. Iterations
Infeasible Time(sec)

1 Traditional 0 5 -
2 Decomposition 4 60 5
3 Decomposition 4 58 4

Table 1 Characteristics of solutions from the traditional ap-
proach and decomposition approach

Solution Percent feasibility under extensions Infeasible %
Nr. Approach 0 min 15 min 30 min 60 min
1 Traditional 27.40 13.34 0.44 0.00 58.82
2 Decomposition 46.04 19.28 0.20 0.00 34.48

Table 2 Percentage feasibility of solutions under uniformly
distributed travel time uncertainty with 10% range and 3%
demand uncertainty

From Table 1, we see that our decomposition ap-

proach solves realistic problems in reasonable time scales.
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Solution Percent feasibility under extensions Infeasible %
Nr. Approach 0 min 15 min 30 min 60 min
1 Traditional 4.84 8.30 19.44 5.62 61.8
3 Decomposition 19.80 15.82 25.92 6.96 31.50

Table 3 Percentage feasibility of solutions under Gamma
distributed travel time uncertainty (shape = 9) and 3% de-
mand uncertainty

The model takes longer to solve than the traditional ap-

proaches but the solutions are more robust when com-
pared with respect to multiple metrics. Because the de-
composition approach captures higher quantiles of time,

4 shipments are schedule infeasible in solutions 2 and 3
(reported in column 3 of Table 1).

Traditional approaches result in a set of paths and

point schedules, however, the paths flows output in the
solution have more flexibility in their movements. Our
decomposition recognizes the existence of time windows

for a given feasible set of movements, computes the time
windows and exploits the existence of such time win-
dows to capture the extent of schedule flexibility and

arrive at robust solutions.

If instead of a higher quantile of protection, the
mean travel time were used in the decomposition ap-
proach and the (1) - (4) were used instead of CRTW-

UU-MP, the decomposition approach gives solutions
with the same objective as the decomposition approach,
empirically confirming the correctness of our approach.

Tables 2 and 3 compare the performance of solutions
from traditional and decomposition frameworks with
respect to feasibility metrics of delivery times, and need

for deadline extensions. The solutions from the decom-
position approach (solutions 2 and 3) are more robust in
that they need fewer extensions (both in quantity and

degree) on delivery deadlines. This is because the de-
composition approach protects against both travel time
and demand uncertainty. The number of scenarios in

which decomposition approach solutions need deadline
extensions are fewer than those required by solutions
from traditional approaches. The solutions from the ro-

bust decomposition approach also exhibit less infeasi-
bility, where infeasibility is defined as the inability to
deliver shipments more than 60 minutes after the dead-

line.

The solution quality differences in the traditional
and decomposition approaches are due to the follow-
ing. To deal with demand uncertainty, compared with

a traditional model, the ECCP formulation embedded
within the decomposition approach (CRTW-UU-MP)
distributes loads more equitably among vehicles. The

traditional model may couple together several shipments
on one vehicle and when higher demands are realized,
this may lead to infeasibility. Because of the objective

function of maximizing protection levels, the ECCP-

based decomposition model distributes loads more evenly

across vehicles, allowing for possible extra capacity if
demand is higher than expected. The higher quantiles of
protection applied to specific paths in the solutions also

allows for greater slack in the schedule, thus decreasing
the probability of connections breaking for shipments
and delivery times exceeding deadlines.

5 Other Applications

Our decomposition approach also allows further flex-
ibility in modeling. We illustrate this with the exam-

ple of priority shipment scheduling and dynamic airline
scheduling.

5.1 Priority Shipment Scheduling

In specific instances, carriers would like to be able to
guarantee service for some shipments even in the worst-

case of uncertainty. For the priority network (or sub-
network) of the carrier the question might be: how many
shipments or trailers can be served even in the worst-

case?

In such cases, a worst-case-based approach might
be useful. If the bounds of uncertainty of travel time

are known (or assumed), then, such uncertainty can be
modeled in the decomposition approach by making the
following changes. While performing forward propaga-

tion in the scheduling sub-problem, the most optimistic
(smallest) value of travel time is considered; and when
performing backward propagation, the most pessimistic

(largest) value of travel time is used. This will generate
time-windows that are feasible under all realizations of
travel times within the bounds assumed, and provide

a more conservative estimate for the number of ship-
ments that can be served; at the same time, allowing a
high service level for all shipments that are served.

5.2 Dynamic Airline Scheduling

Dynamic airline scheduling (Jiang and Barnhart 2009)

addresses the problem of demand stochasticity faced by
airlines. Because airlines determine their flight sched-
ules a year to six months in advance, when demand

forecasts are highly uncertain, they face the issue of
matching capacity to demand during operations. De-
mand forecasts for flights become more accurate as the

date of flight approaches, giving the airline an opportu-
nity to match capacity to demand better by adopting
a dynamic scheduling approach. In this context, de-

mand uncertainty is typically addressed not through
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fleet/aircraft size adjustments, but by re-scheduling of

flights, using the same aircraft, in a small (typically
15-minute) time window so as to capture as much de-
mand as possible. The decision to be made is how much

re-timing to perform for each flight in order to maxi-
mize the capture of demand (which is uncertain). This
was first proposed by Jiang and Barnhart Jiang and

Barnhart (2009), who proposed an integer program-
ming based approach for this problem.

Our decomposition approach can be applied to this

setting by creating static networks for aircraft move-
ments, and finding the revenue-maximizing assignments
in the FlowMaster Problem (Marla and Barnhart 2011).

The Scheduling Sub-problem traces passenger itineraries
and if some are found infeasible, indicates to the Flow
Master Problem that time-expanded networks be cre-

ated for those specific itineraries. We present the de-
tailed model, the formulation of the Master Problem
and the Scheduling Sub-Problem, in Marla (2007). We

also present in Marla (2007) computational experiments
in the case of a medium-sized US airline, compare the
performance of the traditional integer programming ap-
proach and the decomposition approach, and demon-

strate tractability improvements.

6 Summary

We described a new decomposition modeling approach

for commodity routing with time windows under un-
certainty (CRTW-UU). At the core of this approach is
our new Extended Chance-Constrained Programming

(ECCP) approach, that maximizes constraint protec-
tion under a budget. The CRTW-UU problem is decom-
posed into routing and scheduling modules and solved

by iterating repeatedly between them. In spite of mul-
tiple iterations being required, the model is tractable
because of the Scheduling Sub-Problem consisting of

simple labeling and propagation algorithms and being
polynomial in complexity. The algorithm is also made
more efficient due to Pre-processing and eliminating a

large set of infeasible solutions. Our decomposition ap-
proach is flexible in modeling different types of uncer-
tainty as well as in modeling uncertainty using par-

tial knowledge of the underlying uncertainty distribu-
tion in the form of quantiles. We model uncertainty in
vehicle capacities and shipment demands in the rout-

ing module using the ECCP and uncertainty in travel
or service times in the scheduling module by using a
priori chosen higher quantiles of travel times. Compu-

tational results on routing and scheduling for a large
ground carrier indicate that the output of our decom-
position algorithm generates results that are more ro-

bust with respect to several metrics, and under uncer-

tainty in both demands and travel times. Our model

distributes shipments among vehicles in such a way as
to maximize spare capacity, and allocates routes that
include buffers in shipment paths to allow for trans-

fers and increased travel time realizations. Moreover,
our approach recognizes that movements or flows have
associated time-windows of feasibility, and not simply

point schedules. Our approach provides a way to ef-
ficiently compute these time-windows, which indicate
sensitivity of the solution, and to exploit the existence

of time-windows to generate robust solutions.
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