226,534 research outputs found

    Starve Cancer Cells of Glutamine: Break the Spell or Make a Hungry Monster?

    Get PDF
    Distinct from normal differentiated tissues, cancer cells reprogram nutrient uptake and utilization to accommodate their elevated demands for biosynthesis and energy production. A hallmark of these types of reprogramming is the increased utilization of, and dependency on glutamine, a nonessential amino acid, for cancer cell growth and survival. It is well-accepted that glutamine is a versatile biosynthetic substrate in cancer cells beyond its role as a proteinogenic amino acid. In addition, accumulating evidence suggests that glutamine metabolism is regulated by many factors, including tumor origin, oncogene/tumor suppressor status, epigenetic alternations and tumor microenvironment. However, despite the emerging understanding of why cancer cells depend on glutamine for growth and survival, the contribution of glutamine metabolism to tumor progression under physiological conditions is still under investigation, partially because the level of glutamine in the tumor environment is often found low. Since targeting glutamine acquisition and utilization has been proposed to be a new therapeutic strategy in cancer, it is central to understand how tumor cells respond and adapt to glutamine starvation for optimized therapeutic intervention. In this review, we first summarize the diverse usage of glutamine to support cancer cell growth and survival, and then focus our discussion on the influence of other nutrients on cancer cell adaptation to glutamine starvation as well as its implication in cancer therapy

    Parenteral glutamine in critical illness : just what the gut needs

    Get PDF
    The role of glutamine as a metabolic fuel for the starving intestines, its capacity to limit bacterial translocation, lung sepsis and a pro-inflammatory cytokine response are reviewed in the context of uncertainities regarding current recommendations for glutamine supplementation in parenterally-fed critically ill patients. Weaknesses in the evidence-base showing benefit of intravenous glutamine supplementation are discussed together with aspects of glutamine supplementation via the enteral route.peer-reviewe

    Astrocyte glutamine synthetase : pivotal in health and disease

    Get PDF
    The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease

    Effect of the nitrogen source on glutamine and alanine biosynthesis in Neurospora crassa. An in vivo 15N nuclear magnetic resonance study

    Get PDF
    The influences of different nitrogen sources on the relative rates of biosynthesis of glutamine and alanine have been studied by 15N nuclear magnetic resonance spectroscopy of intact Neurospora crassa mycelia suspensions. The rate of glutamine synthesis was fastest after growth in media deficient in free ammonium ion, whereas it was slowest following growth in media containing both glutamic acid and glutamine. The reverse trend was observed for the biosynthesis of alanine. A competition between the two biosynthetic pathways for the same substrate, glutamic acid, was found to limit the rate of alanine synthesis when glutamine synthesis was rapid. The observed in vivo rates of these reactions are compared to the reported specific activities of the enzymes catalyzing the reactions, and implications of these results for nitrogen regulation of these pathways under various physiological conditions are discussed

    Randomised trial of glutamine and selenium supplemented parenteral nutrition for critically ill patients

    Get PDF
    Background: Mortality rates in the Intensive Care Unit and subsequent hospital mortality rates in the UK remain high. Infections in Intensive Care are associated with a 2–3 times increased risk of death. It is thought that under conditions of severe metabolic stress glutamine becomes "conditionally essential". Selenium is an essential trace element that has antioxidant and anti-inflammatory properties. Approximately 23% of patients in Intensive Care require parenteral nutrition and glutamine and selenium are either absent or present in low amounts. Both glutamine and selenium have the potential to influence the immune system through independent biochemical pathways. Systematic reviews suggest that supplementing parenteral nutrition in critical illness with glutamine or selenium may reduce infections and mortality. Pilot data has shown that more than 50% of participants developed infections, typically resistant organisms. We are powered to show definitively whether supplementation of PN with either glutamine or selenium is effective at reducing new infections in critically ill patients. Methods/design: 2 × 2 factorial, pragmatic, multicentre, double-blind, randomised controlled trial. The trial has an enrolment target of 500 patients. Inclusion criteria include: expected to be in critical care for at least 48 hours, aged 16 years or over, patients who require parenteral nutrition and are expected to have at least half their daily nutritional requirements given by that route. Allocation is to one of four iso-caloric, iso-nitrogenous groups: glutamine, selenium, both glutamine & selenium or no additional glutamine or selenium. Trial supplementation is given for up to seven days on the Intensive Care Unit and subsequent wards if practicable. The primary outcomes are episodes of infection in the 14 days after starting trial nutrition and mortality. Secondary outcomes include antibiotic usage, length of hospital stay, quality of life and cost-effectiveness. Discussion: To date more than 285 patients have been recruited to the trial from 10 sites in Scotland. Recruitment is due to finish in August 2008 with a further six months follow up. We expect to report the results of the trial in summer 2009. Trial registration: This trial is registered with the International Standard Randomised Controlled Trial Number system. ISRCTN87144826Not peer reviewedPublisher PD

    Glutamate biosynthesis in Bacillus azotofixans. 15N NMR and enzymatic studies

    Get PDF
    Pathways of ammonia assimilation into glutamic acid in Bacillus azotofixans, a recently characterized nitrogen-fixing species of Bacillus, were investigated through observation by NMR spectroscopy of in vivo incorporation of 15N into glutamine and glutamic acid in the absence and presence of inhibitors of ammonia-assimilating enzymes, in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthase, and alanine dehydrogenase. In ammonia-grown cells, both the glutamine synthetase/glutamate synthase and the glutamate dehydrogenase pathways contribute to the assimilation of ammonia into glutamic acid. In nitrate-grown and nitrogen-fixing cells, the glutamine synthetase/glutamate synthase pathway was found to be predominant. NADPH-dependent glutamate dehydrogenase activity was detectable at low levels only in ammonia-grown and glutamate-grown cells. Thus, B. azotofixans differs from Bacillus polymyxa and Bacillus macerans, but resembles other N2-fixing prokaryotes studied previously, as to the pathway of ammonia assimilation during ammonia limitation. Implications of the results for an emerging pattern of ammonia assimilation by alternative pathways among nitrogen-fixing prokaryotes are discussed, as well as the utility of 15N NMR for measuring in vivo glutamate synthase activity in the cell

    Ammonia assimilation in Bacillus polymyxa. 15N NMR and enzymatic studies

    Get PDF
    Pathways of ammonia assimilation into glutamic acid and alanine in Bacillus polymyxa were investigated by 15N NMR spectroscopy in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthetase, alanine dehydrogenase, and glutamic-alanine transaminase. Ammonia was found to be assimilated into glutamic acid predominantly by NADPH-dependent glutamate dehydrogenase with a Km of 2.9 mM for NH4+ not only in ammonia-grown cells but also in nitrate-grown and nitrogen-fixing cells in which the intracellular NH4+ concentrations were 11.2, 1.04, and 1.5 mM, respectively. In ammonia-grown cells, the specific activity of alanine dehydrogenase was higher than that of glutamic-alanine transaminase, but the glutamate dehydrogenase/glutamic-alanine transaminase pathway was found to be the major pathway of 15NH4+ assimilation into [15N]alanine. The in vitro specific activities of glutamate dehydrogenase and glutamine synthetase, which represent the rates of synthesis of glutamic acid and glutamine, respectively, in the presence of enzyme-saturating concentrations of substrates and coenzymes are compared with the in vivo rates of biosynthesis of [15N]glutamic acid and [alpha,gamma-15N]glutamine observed by NMR, and implications of the results for factors limiting the rates of their biosynthesis in ammonia- and nitrate-grown cells are discussed
    corecore