2,237 research outputs found

    Oscillations in I/O monotone systems under negative feedback

    Full text link
    Oscillatory behavior is a key property of many biological systems. The Small-Gain Theorem (SGT) for input/output monotone systems provides a sufficient condition for global asymptotic stability of an equilibrium and hence its violation is a necessary condition for the existence of periodic solutions. One advantage of the use of the monotone SGT technique is its robustness with respect to all perturbations that preserve monotonicity and stability properties of a very low-dimensional (in many interesting examples, just one-dimensional) model reduction. This robustness makes the technique useful in the analysis of molecular biological models in which there is large uncertainty regarding the values of kinetic and other parameters. However, verifying the conditions needed in order to apply the SGT is not always easy. This paper provides an approach to the verification of the needed properties, and illustrates the approach through an application to a classical model of circadian oscillations, as a nontrivial ``case study,'' and also provides a theorem in the converse direction of predicting oscillations when the SGT conditions fail.Comment: Related work can be retrieved from second author's websit

    Asymptotic behaviour for a class of non-monotone delay differential systems with applications

    Get PDF
    The paper concerns a class of nn-dimensional non-autonomous delay differential equations obtained by adding a non-monotone delayed perturbation to a linear homogeneous cooperative system of ordinary differential equations. This family covers a wide set of models used in structured population dynamics. By exploiting the stability and the monotone character of the linear ODE, we establish sufficient conditions for both the extinction of all the populations and the permanence of the system. In the case of DDEs with autonomous coefficients (but possible time-varying delays), sharp results are obtained, even in the case of a reducible community matrix. As a sub-product, our results improve some criteria for autonomous systems published in recent literature. As an important illustration, the extinction, persistence and permanence of a non-autonomous Nicholson system with patch structure and multiple time-dependent delays are analysed.Comment: 26 pages, J Dyn Diff Equat (2017

    Dichotomy results for delay differential equations with negative Schwarzian

    Full text link
    We gain further insight into the use of the Schwarzian derivative to obtain new results for a family of functional differential equations including the famous Wright's equation and the Mackey-Glass type delay differential equations. We present some dichotomy results, which allow us to get easily computable bounds of the global attractor. We also discuss related conjectures, and formulate new open problems.Comment: 16 pages, submitted to Chaos,Solitons,Fractal

    Selected topics on reaction-diffusion-advection models from spatial ecology

    Full text link
    We discuss the effects of movement and spatial heterogeneity on population dynamics via reaction-diffusion-advection models, focusing on the persistence, competition, and evolution of organisms in spatially heterogeneous environments. Topics include Lokta-Volterra competition models, river models, evolution of biased movement, phytoplankton growth, and spatial spread of epidemic disease. Open problems and conjectures are presented
    corecore