19,698 research outputs found

    Fine-To-Coarse Global Registration of RGB-D Scans

    Full text link
    RGB-D scanning of indoor environments is important for many applications, including real estate, interior design, and virtual reality. However, it is still challenging to register RGB-D images from a hand-held camera over a long video sequence into a globally consistent 3D model. Current methods often can lose tracking or drift and thus fail to reconstruct salient structures in large environments (e.g., parallel walls in different rooms). To address this problem, we propose a "fine-to-coarse" global registration algorithm that leverages robust registrations at finer scales to seed detection and enforcement of new correspondence and structural constraints at coarser scales. To test global registration algorithms, we provide a benchmark with 10,401 manually-clicked point correspondences in 25 scenes from the SUN3D dataset. During experiments with this benchmark, we find that our fine-to-coarse algorithm registers long RGB-D sequences better than previous methods

    Consistent ICP for the registration of sparse and inhomogeneous point clouds

    Get PDF
    In this paper, we derive a novel iterative closest point (ICP) technique that performs point cloud alignment in a robust and consistent way. Traditional ICP techniques minimize the point-to-point distances, which are successful when point clouds contain no noise or clutter and moreover are dense and more or less uniformly sampled. In the other case, it is better to employ point-to-plane or other metrics to locally approximate the surface of the objects. However, the point-to-plane metric does not yield a symmetric solution, i.e. the estimated transformation of point cloud p to point cloud q is not necessarily equal to the inverse transformation of point cloud q to point cloud p. In order to improve ICP, we will enforce such symmetry constraints as prior knowledge and make it also robust to noise and clutter. Experimental results show that our method is indeed much more consistent and accurate in presence of noise and clutter compared to existing ICP algorithms

    Towards online mobile mapping using inhomogeneous lidar data

    Get PDF
    In this paper we present a novel approach to quickly obtain detailed 3D reconstructions of large scale environments. The method is based on the consecutive registration of 3D point clouds generated by modern lidar scanners such as the Velodyne HDL-32e or HDL-64e. The main contribution of this work is that the proposed system specifically deals with the problem of sparsity and inhomogeneity of the point clouds typically produced by these scanners. More specifically, we combine the simplicity of the traditional iterative closest point (ICP) algorithm with the analysis of the underlying surface of each point in a local neighbourhood. The algorithm was evaluated on our own collected dataset captured with accurate ground truth. The experiments demonstrate that the system is producing highly detailed 3D maps at the speed of 10 sensor frames per second

    Fast, Autonomous Flight in GPS-Denied and Cluttered Environments

    Full text link
    One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a-priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe the system design and software architecture of our proposed solution, and showcase how all the distinct components can be integrated to enable smooth robot operation. We provide critical insight on hardware and software component selection and development, and present results from extensive experimental testing in real-world warehouse environments. Experimental testing reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation in cluttered, GPS-denied environments.Comment: Pre-peer reviewed version of the article accepted in Journal of Field Robotic

    3D modeling of indoor environments by a mobile platform with a laser scanner and panoramic camera

    Get PDF
    One major challenge of 3DTV is content acquisition. Here, we present a method to acquire a realistic, visually convincing D model of indoor environments based on a mobile platform that is equipped with a laser range scanner and a panoramic camera. The data of the 2D laser scans are used to solve the simultaneous lo- calization and mapping problem and to extract walls. Textures for walls and floor are built from the images of a calibrated panoramic camera. Multiresolution blending is used to hide seams in the gen- erated textures. The scene is further enriched by 3D-geometry cal- culated from a graph cut stereo technique. We present experimental results from a moderately large real environment.
    • …
    corecore