9,802 research outputs found

    Sim2Real View Invariant Visual Servoing by Recurrent Control

    Full text link
    Humans are remarkably proficient at controlling their limbs and tools from a wide range of viewpoints and angles, even in the presence of optical distortions. In robotics, this ability is referred to as visual servoing: moving a tool or end-point to a desired location using primarily visual feedback. In this paper, we study how viewpoint-invariant visual servoing skills can be learned automatically in a robotic manipulation scenario. To this end, we train a deep recurrent controller that can automatically determine which actions move the end-point of a robotic arm to a desired object. The problem that must be solved by this controller is fundamentally ambiguous: under severe variation in viewpoint, it may be impossible to determine the actions in a single feedforward operation. Instead, our visual servoing system must use its memory of past movements to understand how the actions affect the robot motion from the current viewpoint, correcting mistakes and gradually moving closer to the target. This ability is in stark contrast to most visual servoing methods, which either assume known dynamics or require a calibration phase. We show how we can learn this recurrent controller using simulated data and a reinforcement learning objective. We then describe how the resulting model can be transferred to a real-world robot by disentangling perception from control and only adapting the visual layers. The adapted model can servo to previously unseen objects from novel viewpoints on a real-world Kuka IIWA robotic arm. For supplementary videos, see: https://fsadeghi.github.io/Sim2RealViewInvariantServoComment: Supplementary video: https://fsadeghi.github.io/Sim2RealViewInvariantServ

    Exploring Convolutional Networks for End-to-End Visual Servoing

    Full text link
    Present image based visual servoing approaches rely on extracting hand crafted visual features from an image. Choosing the right set of features is important as it directly affects the performance of any approach. Motivated by recent breakthroughs in performance of data driven methods on recognition and localization tasks, we aim to learn visual feature representations suitable for servoing tasks in unstructured and unknown environments. In this paper, we present an end-to-end learning based approach for visual servoing in diverse scenes where the knowledge of camera parameters and scene geometry is not available a priori. This is achieved by training a convolutional neural network over color images with synchronised camera poses. Through experiments performed in simulation and on a quadrotor, we demonstrate the efficacy and robustness of our approach for a wide range of camera poses in both indoor as well as outdoor environments.Comment: IEEE ICRA 201

    Digital image correlation techniques applied to LANDSAT multispectral imagery

    Get PDF
    The author has identified the following significant results. Automatic image registration and resampling techniques applied to LANDSAT data achieved accuracies, resulting in mean radial displacement errors of less than 0.2 pixel. The process method utilized recursive computational techniques and line-by-line updating on the basis of feedback error signals. Goodness of local feature matching was evaluated through the implementation of a correlation algorithm. An automatic restart allowed the system to derive control point coordinates over a portion of the image and to restart the process, utilizing this new control point information as initial estimates

    Positioning and trajectory following tasks in microsystems using model free visual servoing

    Get PDF
    In this paper, we explore model free visual servoing algorithms by experimentally evaluating their performances for various tasks performed on a microassembly workstation developed in our lab. Model free or so called uncalibrated visual servoing does not need the system calibration (microscope-camera-micromanipulator) and the model of the observed scene. It is robust to parameter changes and disturbances. We tested its performance in point-to-point positioning and various trajectory following tasks. Experimental results validate the utility of model free visual servoing in microassembly tasks

    Unfalsified visual servoing for simultaneous object recognition and pose tracking

    Get PDF
    In a complex environment, simultaneous object recognition and tracking has been one of the challenging topics in computer vision and robotics. Current approaches are usually fragile due to spurious feature matching and local convergence for pose determination. Once a failure happens, these approaches lack a mechanism to recover automatically. In this paper, data-driven unfalsified control is proposed for solving this problem in visual servoing. It recognizes a target through matching image features with a 3-D model and then tracks them through dynamic visual servoing. The features can be falsified or unfalsified by a supervisory mechanism according to their tracking performance. Supervisory visual servoing is repeated until a consensus between the model and the selected features is reached, so that model recognition and object tracking are accomplished. Experiments show the effectiveness and robustness of the proposed algorithm to deal with matching and tracking failures caused by various disturbances, such as fast motion, occlusions, and illumination variation

    An integrated Rotorcraft Avionics/Controls Architecture to support advanced controls and low-altitude guidance flight research

    Get PDF
    Salient design features of a new NASA/Army research rotorcraft--the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these programs together with other critical constraints on the design of the research system. Research program schedules demand a phased development approach, wherein specific research capability milestones are met and flight research projects are flown throughout the complete development cycle of the RASCAL. This development approach is summarized, and selected features of the research system are described. The research system includes a real-time obstacle detection and avoidance system which will generate low-altitude guidance commands to the pilot on a wide field-of-view, color helmet-mounted display and a full-authority, programmable, fault-tolerant/fail-safe, fly-by-wire flight control system

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas
    corecore