935 research outputs found

    Global Stabilization of Triangular Systems with Time-Delayed Dynamic Input Perturbations

    Full text link
    A control design approach is developed for a general class of uncertain strict-feedback-like nonlinear systems with dynamic uncertain input nonlinearities with time delays. The system structure considered in this paper includes a nominal uncertain strict-feedback-like subsystem, the input signal to which is generated by an uncertain nonlinear input unmodeled dynamics that is driven by the entire system state (including unmeasured state variables) and is also allowed to depend on time delayed versions of the system state variable and control input signals. The system also includes additive uncertain nonlinear functions, coupled nonlinear appended dynamics, and uncertain dynamic input nonlinearities with time-varying uncertain time delays. The proposed control design approach provides a globally stabilizing delay-independent robust adaptive output-feedback dynamic controller based on a dual dynamic high-gain scaling based structure.Comment: 2017 IEEE International Carpathian Control Conference (ICCC

    Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems

    Full text link
    A robust controller is developed for uncertain, second-order nonlinear systems subject to simultaneous unknown, time-varying state delays and known, time-varying input delays in addition to additive, sufficiently smooth disturbances. An integral term composed of previous control values facilitates a delay-free open-loop error system and the development of the feedback control structure. A stability analysis based on Lyapunov-Krasovskii (LK) functionals guarantees uniformly ultimately bounded tracking under the assumption that the delays are bounded and slowly varying

    Decentralised delay-dependent static output feedback variable structure control

    Get PDF
    In this paper, an output feedback stabilisation problem is considered for a class of large scale interconnected time delay systems with uncertainties. The uncertainties appear in both isolated subsystems and interconnections. The bounds on the uncertainties are nonlinear and time delayed. It is not required that either the known interconnections or the uncertain interconnections are matched. Then, a decentralised delay-dependant static output feedback variable structure control is synthesised to stabilise the system globally uniformly asymptotically using the Lyapunov Razumikhin approach. A case study relating to a river pollution control problem is presented to illustrate the proposed approach

    A Survey of Decentralized Adaptive Control

    Get PDF

    H∞ Control of Nonlinear Systems: A Class of Controllers

    Get PDF
    The standard state space solutions to the H∞ control problem for linear time invariant systems are generalized to nonlinear time-invariant systems. A class of nonlinear H∞-controllers are parameterized as nonlinear fractional transformations on contractive, stable free nonlinear parameters. As in the linear case, the H∞ control problem is solved by its reduction to four simpler special state space problems, together with a separation argument. Another byproduct of this approach is that the sufficient conditions for H∞ control problem to be solved are also derived with this machinery. The solvability for nonlinear H∞-control problem requires positive definite solutions to two parallel decoupled Hamilton-Jacobi inequalities and these two solutions satisfy an additional coupling condition. An illustrative example, which deals with a passive plant, is given at the end

    Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes

    Get PDF
    International audiencePartitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design a feedforward control term for improving the tracking accuracy of the desired references. In addition, consideration of actuator dynamics is important for a robot with high-velocity movement and highly varying loads. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. Three actuator control modes are considered in this study: (i) a torque control mode in which the armature current is well controlled by a current servo amplifier and the motor torque/current constant is known, (ii) a current control mode in which the torque/current constant is unknown, and (iii) a voltage control mode with no current servo control being available. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Two case studies are used to prove the validity of the proposed controller: a two-link manipulator and a six-link biped robot

    Two dimensional agonistic control

    Get PDF
    The conventional method of precise multiple-axis motion control entails use of a multiple axis positioning system with each axis carrying not only the workpiece but also the positioning system of the remaining axes. The resultant structure is heavy, sluggish, and expensive. An alternative positioning technique is being investigated in which the motion of the workpiece is controlled by pulling it with tendons, each of which has its own actuator. Since the actuators can be mounted on the base of the structure instead of being carried by motion system of the other axes, they can be relatively large and powerful without the need for a massive structure such as is found in a conventional motion control system. This method of control is given the appellation agonistic, based on the usages of the word suggesting tension or a contest. Agonistic control system can be used for low cost accurate positioning of workpiece. The control task can be moving the workpiece from one point to another point and kept there or tracking a given trajectory. While the workpiece moves, the tendons should be always kept in tension. In this thesis, the model of two dimensional agonistic control (in the case of tendons of infinite elastic modulus) is established. It leads to a nonlinear multi-variable control problem. Based on this nonlinear model, a full-state feedback control law is synthesized. It is composed of two parts. The first part is a feedforward control to cancel the nonlinear dynamics. The second part is a PD control term which requires velocity information. In the practice, velocity measurement may be contaminated by noise. In order of only using position measurement in the control law, a nonlinear observer is designed to provide the velocity information. Numerical simulation is performed to verify the ability of the proposed control law. In reality, the tendon has some elasticity. This finite elasticity, if not accounted for, can render the closed-loop system unstable. The investigation shows that the effect of elastic tendons can be compensated for by appropriately modifying the control law designed for inelastic tendons. In particular, the control law is synthesized using the singular perturbation method. It consists of a fast control and a slow control. The fast control is used to stablize the oscillations incurred by the finite elasticity of the tendon. The slow control drives the system to track the desired trajectory. Robustness of the controller is enhanced by using sliding mode control. In the chapter 4, the design of observer in the elastic case is addressed. Linear uncertain system theory is used. The observer is globally stable. The use of decentralized control scheme makes very simple the controller design and reduces the computational complexity. It is very useful for real time agonistic control. A design approach is presented for the decentralized control scheme. A simple linear second order model is used instead of complex nonlinear model used in centralized version. In this approach, the tension in each tendon is treated as disturbance, estimated by an observer, to be compensated

    On Nonlinear Control Perspectives of a Challenging Benchmark

    Get PDF

    A Survey of Decentralized Adaptive Control

    Get PDF
    Systems with multi inputs and multi outputs are in common controlled by centralized controllers, multivariable controllers or by a set of single input and single output controllers. The decentralized systems dominated in industry and can be found in a broad spectrum of applications ranging from robotics to civil engineering. Approaches to decentralized control design differ from each other in the assumptions ? kind of interaction, the model of the system, the model of information exchange and the control design. One of the useful approaches to decentralized control problems was the parametrization. During last years it was proven that it seems to be perspective to combine predictive and decentralized control, for example unconstrained decentralized model predictive control or adaptive decentralized control using recurrent fuzzy neural networks. Another task is to use automatic decentralized control structure selection. Adaptive control enlarges the area of usage at decentralized controllers. AdaptiveZ(MSM7088352101
    corecore