4,018 research outputs found

    New block-based motion estimation for sequences with brightness variation and its application to static sprite generation for video compression

    Get PDF
    Author name used in this publication: Dagan FengCentre for Multimedia Signal Processing, Department of Electronic and Information Engineering2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Automatic facial analysis for objective assessment of facial paralysis

    Get PDF
    Facial Paralysis is a condition causing decreased movement on one side of the face. A quantitative, objective and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents an approach based on the automatic analysis of patient video data. Facial feature localization and facial movement detection methods are discussed. An algorithm is presented to process the optical flow data to obtain the motion features in the relevant facial regions. Three classification methods are applied to provide quantitative evaluations of regional facial nerve function and the overall facial nerve function based on the House-Brackmann Scale. Experiments show the Radial Basis Function (RBF) Neural Network to have superior performance

    A novel illumination compensation scheme for sprite coding

    Get PDF
    Author name used in this publication: Dagan FengCentre for Multimedia Signal Processing, Department of Electronic and Information EngineeringRefereed conference paper2004-2005 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    DeepSUM: Deep Neural Network for Super-Resolution of Unregistered Multitemporal Images

    Get PDF
    Recently, convolutional neural networks (CNNs) have been successfully applied to many remote sensing problems. However, deep learning techniques for multi-image super-resolution (SR) from multitemporal unregistered imagery have received little attention so far. This article proposes a novel CNN-based technique that exploits both spatial and temporal correlations to combine multiple images. This novel framework integrates the spatial registration task directly inside the CNN, and allows one to exploit the representation learning capabilities of the network to enhance registration accuracy. The entire SR process relies on a single CNN with three main stages: shared 2-D convolutions to extract high-dimensional features from the input images; a subnetwork proposing registration filters derived from the high-dimensional feature representations; 3-D convolutions for slow fusion of the features from multiple images. The whole network can be trained end-to-end to recover a single high-resolution image from multiple unregistered low-resolution images. The method presented in this article is the winner of the PROBA-V SR challenge issued by the European Space Agency (ESA)

    Luma/Chroma Component Wise Weighted Pixel Inter Prediction

    Get PDF
    After obtaining a prediction for a current block using inter-prediction, block adaptive local weighted prediction (BAWP) can be used to adjust the prediction based on luminance (i.e., brightness) and/or chroma (i.e., color) differences between the current block and its reference block therewith improving the prediction quality and reducing the differences, which in turn can reduce the prediction residuals that are encoded. Techniques that reduce the signaling costs associated with signaling BAWP for the luminance and chrominance components are described

    Fully-automatic inverse tone mapping algorithm based on dynamic mid-level tone mapping

    Get PDF
    High Dynamic Range (HDR) displays can show images with higher color contrast levels and peak luminosities than the common Low Dynamic Range (LDR) displays. However, most existing video content is recorded and/or graded in LDR format. To show LDR content on HDR displays, it needs to be up-scaled using a so-called inverse tone mapping algorithm. Several techniques for inverse tone mapping have been proposed in the last years, going from simple approaches based on global and local operators to more advanced algorithms such as neural networks. Some of the drawbacks of existing techniques for inverse tone mapping are the need for human intervention, the high computation time for more advanced algorithms, limited low peak brightness, and the lack of the preservation of the artistic intentions. In this paper, we propose a fully-automatic inverse tone mapping operator based on mid-level mapping capable of real-time video processing. Our proposed algorithm allows expanding LDR images into HDR images with peak brightness over 1000 nits, preserving the artistic intentions inherent to the HDR domain. We assessed our results using the full-reference objective quality metrics HDR-VDP-2.2 and DRIM, and carrying out a subjective pair-wise comparison experiment. We compared our results with those obtained with the most recent methods found in the literature. Experimental results demonstrate that our proposed method outperforms the current state-of-the-art of simple inverse tone mapping methods and its performance is similar to other more complex and time-consuming advanced techniques

    Study of information transfer optimization for communication satellites

    Get PDF
    The results are presented of a study of source coding, modulation/channel coding, and systems techniques for application to teleconferencing over high data rate digital communication satellite links. Simultaneous transmission of video, voice, data, and/or graphics is possible in various teleconferencing modes and one-way, two-way, and broadcast modes are considered. A satellite channel model including filters, limiter, a TWT, detectors, and an optimized equalizer is treated in detail. A complete analysis is presented for one set of system assumptions which exclude nonlinear gain and phase distortion in the TWT. Modulation, demodulation, and channel coding are considered, based on an additive white Gaussian noise channel model which is an idealization of an equalized channel. Source coding with emphasis on video data compression is reviewed, and the experimental facility utilized to test promising techniques is fully described
    • 

    corecore