19,960 research outputs found

    Equilibrium of Heterogeneous Congestion Control: Optimality and Stability

    Get PDF
    When heterogeneous congestion control protocols that react to different pricing signals share the same network, the current theory based on utility maximization fails to predict the network behavior. The pricing signals can be different types of signals such as packet loss, queueing delay, etc, or different values of the same type of signal such as different ECN marking values based on the same actual link congestion level. Unlike in a homogeneous network, the bandwidth allocation now depends on router parameters and flow arrival patterns. It can be non-unique, suboptimal and unstable. In Tang et al. (“Equilibrium of heterogeneous congestion control: Existence and uniqueness,” IEEE/ACM Trans. Netw., vol. 15, no. 4, pp. 824–837, Aug. 2007), existence and uniqueness of equilibrium of heterogeneous protocols are investigated. This paper extends the study with two objectives: analyzing the optimality and stability of such networks and designing control schemes to improve those properties. First, we demonstrate the intricate behavior of a heterogeneous network through simulations and present a framework to help understand its equilibrium properties. Second, we propose a simple source-based algorithm to decouple bandwidth allocation from router parameters and flow arrival patterns by only updating a linear parameter in the sources’ algorithms on a slow timescale. It steers a network to the unique optimal equilibrium. The scheme can be deployed incrementally as the existing protocol needs no change and only new protocols need to adopt the slow timescale adaptation

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    D2D-Based Grouped Random Access to Mitigate Mobile Access Congestion in 5G Sensor Networks

    Full text link
    The Fifth Generation (5G) wireless service of sensor networks involves significant challenges when dealing with the coordination of ever-increasing number of devices accessing shared resources. This has drawn major interest from the research community as many existing works focus on the radio access network congestion control to efficiently manage resources in the context of device-to-device (D2D) interaction in huge sensor networks. In this context, this paper pioneers a study on the impact of D2D link reliability in group-assisted random access protocols, by shedding the light on beneficial performance and potential limitations of approaches of this kind against tunable parameters such as group size, number of sensors and reliability of D2D links. Additionally, we leverage on the association with a Geolocation Database (GDB) capability to assist the grouping decisions by drawing parallels with recent regulatory-driven initiatives around GDBs and arguing benefits of the suggested proposal. Finally, the proposed method is approved to significantly reduce the delay over random access channels, by means of an exhaustive simulation campaign.Comment: First submission to IEEE Communications Magazine on Oct.28.2017. Accepted on Aug.18.2019. This is the camera-ready versio

    Heterogeneous Congestion Control: Efficiency, Fairness and Design

    Get PDF
    When heterogeneous congestion control protocols that react to different pricing signals (e.g. packet loss, queueing delay, ECN marking etc.) share the same network, the current theory based on utility maximization fails to predict the network behavior. Unlike in a homogeneous network, the bandwidth allocation now depends on router parameters and flow arrival patterns. It can be non-unique, inefficient and unfair. This paper has two objectives. First, we demonstrate the intricate behaviors of a heterogeneous network through simulations and present a rigorous framework to help understand its equilibrium efficiency and fairness properties. By identifying an optimization problem associated with every equilibrium, we show that every equilibrium is Pareto efficient and provide an upper bound on efficiency loss due to pricing heterogeneity. On fairness, we show that intra-protocol fairness is still decided by a utility maximization problem while inter-protocol fairness is the part over which we don¿t have control. However it is shown that we can achieve any desirable inter-protocol fairness by properly choosing protocol parameters. Second, we propose a simple slow timescale source-based algorithm to decouple bandwidth allocation from router parameters and flow arrival patterns and prove its feasibility. The scheme needs only local information
    • …
    corecore