3,121 research outputs found

    Global Stabilization of Triangular Systems with Time-Delayed Dynamic Input Perturbations

    Full text link
    A control design approach is developed for a general class of uncertain strict-feedback-like nonlinear systems with dynamic uncertain input nonlinearities with time delays. The system structure considered in this paper includes a nominal uncertain strict-feedback-like subsystem, the input signal to which is generated by an uncertain nonlinear input unmodeled dynamics that is driven by the entire system state (including unmeasured state variables) and is also allowed to depend on time delayed versions of the system state variable and control input signals. The system also includes additive uncertain nonlinear functions, coupled nonlinear appended dynamics, and uncertain dynamic input nonlinearities with time-varying uncertain time delays. The proposed control design approach provides a globally stabilizing delay-independent robust adaptive output-feedback dynamic controller based on a dual dynamic high-gain scaling based structure.Comment: 2017 IEEE International Carpathian Control Conference (ICCC

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility

    A nonparametric learning framework for nonlinear robust output regulation

    Full text link
    This paper proposes a nonparametric learning solution framework for a generic internal model design of nonlinear robust output regulation. The global robust output regulation problem for a class of nonlinear systems with output feedback subject to a nonlinear exosystem can be tackled by constructing a linear generic internal model, provided that a continuous nonlinear mapping exists. An explicit continuous nonlinear mapping was constructed recently in [1] under the assumption that the steady-state generator is linear in the exogenous signal. We further relax such an assumption to a relaxed assumption that the steady-state generator is polynomial in the exogenous signal. A nonparametric learning framework is proposed to solve a linear time-varying equation to make the nonlinear continuous mapping always exist. With the help of the proposed framework, the nonlinear robust output regulation problem can be converted into a robust non-adaptive stabilization problem for the augmented system with integral Input-to-State Stable (iISS) inverse dynamics. Moreover, a dynamic gain approach can adaptively raise the gain to a sufficiently large constant to achieve stabilization without requiring any a priori knowledge of the uncertainties appearing in the dynamics of the exosystem and the system. We further apply the nonparametric learning framework to globally reconstruct and estimate multiple sinusoidal signals with unknown frequencies without using adaptive techniques. An explicit nonlinear mapping can directly provide the estimated parameters, which will exponentially converge to the unknown frequencies. As a result, a feedforward control design is proposed to solve the output regulation using our nonparametric learning framework.Comment: 15 pages; Nonlinear control; iISS stability; output regulation; parameter estimation; Non-adaptive contro

    Time-Varying Input and State Delay Compensation for Uncertain Nonlinear Systems

    Full text link
    A robust controller is developed for uncertain, second-order nonlinear systems subject to simultaneous unknown, time-varying state delays and known, time-varying input delays in addition to additive, sufficiently smooth disturbances. An integral term composed of previous control values facilitates a delay-free open-loop error system and the development of the feedback control structure. A stability analysis based on Lyapunov-Krasovskii (LK) functionals guarantees uniformly ultimately bounded tracking under the assumption that the delays are bounded and slowly varying

    A passivity based control methodology for flexible joint robots with application to a simplified shuttle RMS arm

    Get PDF
    The main goal is to develop a general theory for the control of flexible robots, including flexible joint robots, flexible link robots, rigid bodies with flexible appendages, etc. As part of the validation, the theory is applied to the control law development for a test example which consists of a three-link arm modeled after the shoulder yaw joint of the space shuttle remote manipulator system (RMS). The performance of the closed loop control system is then compared with the performance of the existing RMS controller to demonstrate the effectiveness of the proposed approach. The theoretical foundation of this new approach to the control of flexible robots is presented and its efficacy is demonstrated through simulation results on the three-link test arm

    Lyapunov stabilization of discrete-time feedforward dynamics

    Get PDF
    The paper discusses stabilization of nonlinear discrete-time dynamics in feedforward form. First it is shown how to define a Lyapunov function for the uncontrolled dynamics via the construction of a suitable cross-term. Then, stabilization is achieved in terms of u-average passivity. Several constructive cases are analyzed
    corecore