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Abstract— The paper discusses stabilization of nonlinear
discrete-time dynamics in feedforward form. First it is shown
how to define a Lyapunov function for the uncontrolled dy-
namics via the construction of a suitable cross-term. Then,
stabilization is achieved in terms of u-average passivity. Several
constructive cases are analyzed.

Index Terms— Lyapunov Methods; Stability of nonlinear
systems; Algebraic/geometric methods

I. INTRODUCTION

Nonlinear discrete-time control theory has been attracting
a growing interest in the control community because of its
impact into the sampled-data, or more generally hybrid con-
text. Although important works bridge the gap between the
continuous-time and discrete-time domains through different
methodologies (e. g., [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10]), hard difficulties still represent obstacles in extending
results that are well-known and elegant in continuous time.
These are essentially concerned with the generic nonlinearity
in the control variable of the dynamics and the difficulty to
settle the geometric structure underlying the evolutions.

As a first attempt to characterize accessibility properties of
nonlinear discrete-time dynamics, an alternative differential-
difference state-space representation (or (F0,G)-form) was
introduced in [11]. In this context, a discrete-time dynamics
over Rn is described by two coupled differential-difference
equations as

x+ = F(x), x+ := x+(0) (1a)
∂x+(u)

∂u
= G(x+(u),u). (1b)

Denoting by x+(u) a curve in Rn parametrized by u ∈
R, (1a) models the free evolution described by a smooth
mapping F(·) while (1b) models the variational effect of
the control by a vector field G(·,u), parameterized by u
and assumed complete. Further exploiting this differential
geometric framework, structural properties (e.g., invariance,
decoupling [12]) have been characterized up to introducing
the concept of u-average passivity [13]. This latter notion
enables to relax the necessity of a direct throughput as
usually required when defining passivity for discrete-time
systems. Recently, u-average passivity based feedback design
(or control Lyapunov design at large) has been introduced in
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[14] and is exploited in the present paper with reference to
stabilization of cascade dynamics.

More precisely, asymptotic stabilization of cascade
discrete-time dynamics exhibiting an upper-triangular (or
feedforward) form is addressed. Discrete-time forwarding
design was firstly addressed in [15] via the construction of a
bounded solution to a suitable control-dependent inequality.
Arguing so, the difficulty of solving the nonlinear algebraic
equation which implicitly defines the feedback solution is
overcome. In [16], a discrete-time forwarding design is
proposed by exploiting the framework of Immersion and
Invariance so relaxing the a-priori knowledge of a Lyapunov
function for the first part of the cascade dynamics. In the
present paper, we propose a two steps procedure based on
control Lyapunov design and feedback average passivation
so reminding of the continuous-time forwarding technique
([17], [18]). Preliminarily considering a two block cascade
dynamics with nonlinear coupling mapping, a Lyapunov
function is firstly constructed for the uncontrolled stable
system via the computation of a suitable cross-term. Then,
asymptotic stabilization is achieved in terms of u-average
passivity. Constructive solutions are discussed based on spec-
ifications of the interconnection term. As a particular case,
one recovers the case of dynamics in strict-feedforward form
studied in [19] where the construction of a cross term reduces
to the one of a coordinates transformation rendering the
overall dynamics driftless. Finally, it is shown how similar
cascade connected forms are recovered when representing
input-delayed dynamics through dynamical extension. It fol-
lows that the proposed forwarding design procedure may
represent an original control Lyapunov design for discrete-
time input delayed dynamics.

The paper is organized as follows: in Section II, the
existence of a cross-term is proven for the uncontrolled
dynamics. It is employed in while in Section III for sta-
bilizing feedforward dynamics through u-average passivity.
In Section IV, case studies specifying the connection term
structure are discussed. In Section V conclusions are set.

II. LYAPUNOV CROSS TERM FOR CASCADE DYNAMICS

Consider a two block cascade dynamics of the form

zk+1 = f (zk)+ϕ(zk,ξk), ξk+1 = a(ξk). (2)

with ξ ∈ Rnξ , z ∈ Rnz ; f , ϕ and a are continuous functions
in their arguments and (z,ξ ) = (0,0) is an equilibrium state.
We note that the dynamics (2) is uncontrolled with nonlinear
connecting map ϕ(z,ξ ). The following standing assumptions
are introduced.
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A.1 zk+1 = f (zk) has a Globally Stable (GS) equilibrium at
the origin with continuously differentiable, positive definite,
radially unbounded Lyapunov function W : Rnz → R≥0 such
that W ( f (z))−W (z)≤ 0;

A.2 ξk+1 = a(ξk) has a Globally Asymptotically Stable
(GAS) and Locally Exponentially Stable (LES) equilibrium
at the origin with continuously differentiable, positive defi-
nite, radially unbounded Lyapunov function U : Rnξ → R≥0
such that U(a(ξ ))−U(ξ )< 0 for ξ 6= 0.

Assumptions A.1 and A.2 are not enough to deduce GS of
the origin for the complete cascade. For this purpose, further
assumptions are needed.

A.3 the function ϕ(z,ξ ) satisfies the linear growth as-
sumption; i.e. there exist K -functions1 γ1(·),γ2(·) such that

‖ϕ(z,ξ )‖ ≤ γ1(‖ξ‖)‖z‖+ γ2(‖ξ‖);

A.4 the function W (z) verifies :
• given any s(·) : Rnz →: Rnz and d(·, ·) : Rnz×Rnξ →Rnz

|W (s(z)+d(z,ξ ))−W (s(z))| ≤
∣∣∣∂W

∂ z
d(z,ξ )

∣∣∣;
• there exist c,M ∈ R>0 such that for ‖z‖> M

‖∂W
∂ z
‖‖z‖ ≤ cW (z).

The above assumptions imply the possibility of construct-
ing a Lyapunov function V0(·) for the complete dynamics
starting from the respective ones W (·) and U(·). Setting

V0(z,ξ ) =W (z)+U(ξ )+Ψ(z,ξ ) (3)

we aim at defining an additional continuous cross term
Ψ(z,ξ ) :Rnz×Rnξ →R to dominate the part with not definite
sign when computing the difference

∆kV0(z,ξ ) =V0(zk+1,ξk+1)−V0(zk,ξk).

It is a matter of computations to verify that

∆kV0(z,ξ ) =∆kU(ξ )+W ( f (zk))−W (zk)

+W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))+∆kΨ(z,ξ )

with ∆kU(ξ )< 0 and W ( f (zk))−W (zk)≤ 0. It turns out that,
for ensuring ∆kV0(z,ξ ) ≤ 0, the cross term Ψ(z,ξ ) can be
chosen to satisfy

∆kΨ(z,ξ ) =−W ( f (zk)+ϕ(zk,ξk))+W ( f (zk)) (4)

where the right hand side represents the part in ∆kV0 whose
sign is not definite. As a consequence, Ψ(z,ξ ) is defined as

Ψ(z,ξ ) =
∞

∑
k=0

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk)) (5)

along the trajectories (zk,ξk) = (z̃(k,z,ξ ), ξ̃ (k,ξ )) of (2)
starting at (z0,ξ0) = (z,ξ ). The stability of the whole system
follows from the existence of such function V0.

Theorem 2.1: Under assumptions A.1 to A.4

1A function ρ is said of class K if its continuous, strictly increasing and
ρ(0) = 0. It is said of class K∞ if it is K and it is unbounded.

(i) Ψ : Rnz ×Rnξ → R exists and is continuous;
(ii) V0 : Rnz ×Rnξ → R in (3) is positive-definite and

radially unbounded.
As a consequence the origin is a GS equilibrium of (2).

A. Some particular cases

Some constructive cases are discussed below in relation
with the connection term ϕ(z,ξ ).

1) Strict-feedforward dynamics: Consider strict-
feedforward dynamics described by

zk+1 = Fzk +ϕ(ξk), ξk+1 = a(ξk) (6)

with ϕ(0) = 0 and F>F = I. Assumption A.1 is satisfied
with W (z) = z>z and A.4 is obviated. Specifying (4) for (6),
one gets that the cross term Ψ(z,ξ ) must satisfy

∆kΨ(z,ξ ) =−2z>k F>ϕ(ξk)−ϕ
>(ξk)ϕ(ξk). (7)

As a consequence ∆kΨ(z,ξ ) = −∆kW (z) and, according to
(5), one sets

Ψ(z,ξ ) =
∞

∑
k=0

[
z>k+1(z,ξ )zk+1(z,ξ )− z>k (z,ξ )zk(z,ξ )

]
=(z>k (z,ξ )zk(z,ξ ))∞− z>z

where (z>k (z,ξ )zk(z,ξ ))∞ = limk→∞ z>k (z,ξ )zk(z,ξ ) and
zk(z,ξ ) denotes the z-trajectory at time k starting at (z,ξ ).
According to (3), a Lyapunov function for (6) is thus

V0(z,ξ ) =U(ξ )+(z>k (z,ξ )zk(z,ξ ))∞. (8)

More in detail, the dynamics (6) possess two invariant sets: a
stable set where the evolutions are described by ξk+1 = a(ξk);
a center set where the evolutions are described by zk+1 =Fzk.
It is a matter of computations to verify that the projection
of the trajectories of (6) onto the center set are described by
the map

φ(ξ ) =−
∞

∑
τ=k0

Fk0−1−τ
ϕ(ξτ) (9)

verifying the invariance equality

φ(ξk+1) = Fφ(ξk)+ϕ(ξk). (10)

Thus, under the coordinates change ζ = z− φ(ξ ), (6) is
transformed into the decoupled dynamics

ζk+1 =Fζk, ξk+1 = a(ξk). (11)

Hence, a Lyapunov function for the cascade is given by
Ṽ0(ζ ,ξ ) = U(ξ ) + ζ>ζ . Exploiting the strict-feedforward
form, one easily verifies that the two Lyapunov functions
Ṽ0 and Ṽ coincide up to a coordinates change.

Proposition 2.1: Consider the strict-feedforward dynam-
ics (6). Then, one has V0(z,ξ ) = Ṽ0(z+φ(ξ ),ξ ) with φ(ξ ) :
Rnξ → Rnz described in (9). As a consequence, the cross-
term takes the form

Ψ(z,ξ ) = (ζ −φ(ξ ))>(ζ −φ(ξ ))− z>z. (12)



Proof: First, rewrite ζ>ζ for k0 = 0 as

(z+
∞

∑
τ=0

F−1−τ
ϕ(ξτ))

>(Fk)>Fk(z+
∞

∑
τ=0

F−1−τ
ϕ(ξτ))

= ‖zk(z,ξ )+
∞

∑
τ=0

Fk−τ−1
ϕ(ξτ)−

k−1

∑
τ=0

Fk−τ−1
ϕ(ξτ)‖2.

Because (Fk)>Fk = I and

zk(z,ξ ) = Fk−k0z+
k−1

∑
τ=k0

Fk−τ−1
ϕ(ξτ)

then, letting k→ ∞, one gets

ζ
>

ζ = (z>k (z,ξ ))(zk(z,ξ ))∞.

Setting Ψ(z,ξ )= (z−φ(ξ ))>(z−φ(ξ ))−z>z, the cross term
verifies (7) because of (10).

Remark 2.1: The cross-term in (8) depends on ‖zk(z,ξ )‖2

that admits a limit for k→ ∞. This is not so in general for
the solution zk(z,ξ ), except in the particular case of nz = 1.
V0(z,ξ ) can be thus computed even if a decoupling change
of coordinates does not exist.

2) W ( f (z))≡W (z): Here, (4) specifies as

∆kΨ(z,ξ ) =−W ( f (zk)+ϕ(zk,ξk))+W (zk) =−∆kW (z)

so that the cross term takes the form

Ψ(z,ξ ) =
∞

∑
k=0

[
W (zk+1)−W (zk)

]
=W∞(z,ξ )−W (z)

with W∞(z,ξ ) := limk→∞ W (zk(z,ξ )). Consequently, one gets

V0(z,ξ ) =U(ξ )+W∞(z,ξ ).

3) f (z) = z: In such a case, one computes

z∞(z,ξ ) = z+ lim
N→∞

N

∑
k=0

ϕ(zk,ξk)

and thus W∞(z,ξ ) = W (z∞(z,ξ )). Accordingly, the map
(z,ξ ) 7→ (z∞,ξ ) defines a local coordinates change since

∂ z∞

∂ z
= I + lim

N→∞

N

∑
k=0

∂ϕ

∂ z
(zk,ξk)

and the sum vanishes at ξ = 0. When the connection term
ϕ(ξ ,z) does not depend on z, the above coordinates change
is globally defined as one recovers a strict-feedforward form.

4) Particular structures of ϕ(ξ ): When the connection
function ϕ(ξ ) is a finite polynomial of degree p, the cross
term is quadratic of degree 2p; the following example
illustrates the case.

Example: Given

zk+1 = zk +
3
4

ξ
2
k , ξk+1 =

1
2

ξk.

which verifies Assumptions A.1 to A.4 with U(ξ ) = ξ 2 and
W (z) = z2. Assuming the connection term ϕ(·) to be a finite

polynomial of degree 2, we set the cross term as a polyno-
mial of degree 4, Ψ(z,ξ ) = a1zξ 2 +a2ξ 4. Accordingly, one
computes a1,a2 ∈ R to solve (7) that specialises as

a1

2
(z+

3
4

ξ
2)ξ 2 +

a2

16
ξ

4−a1zξ
2−a2ξ

4

=
1

16
ξ

4 +
1
2

ξ
2(z+

3
4

ξ
2)−ξ

4−2zξ
2.

III. STABILIZATION OF EXTENDED CASCADE DYNAMICS

The so built Lyapunov function V0(z,ξ ) is now exploited
to show u-average passivity of the extended controlled cas-
cade and to compute the corresponding stabilizing feedback.
Without loss of generality, the problem is set in the (F0,G)
formalism (1).

A. Feedforward dynamics

Consider the two block controlled feedforward dynamics

z+ = f (z)+ϕ(z,ξ ), z+ := z+(0) (13a)
∂ z+(u)

∂u
=Gz(z+(u),ξ+(u),u) (13b)

ξ
+ =a(ξ ), ξ

+ := ξ
+(0) (13c)

∂ξ+(u)
∂u

=Bξ (ξ
+(u),u) (13d)

with uncontrolled part defined in (2) and controlled vector
fields Gz(·, ·,u) and Bξ (·,u). In a more compact way, one
writes over Rnz ×Rnξ

x+ = F(x), ,
∂x+(u)

∂u
= G(x+(u),u), x+ := x+(0)

with x = col(z,ξ ), F(x) = col( f (z) + ϕ(z,ξ ),a(ξ )) and
G(x+(u),u) = col(Gz(z+(u),Bξ (ξ

+(u)),u).

For any triplet (zk,ξk,uk), by integrating (13b)-(13d) over
[0,uk[ with initial condition (13a)-(13c), one recovers a
feedforward dynamics in the form of a map

zk+1 = f (zk)+ϕ(zk,ξk)+g(zk,ξk,uk)

ξk+1 =a(ξk)+b(ξk,uk)

where (zk+1,ξk+1) = (z+(uk),ξ
+(uk)) and

∂g(z,ξ ,u)
∂u

:=Gz(z+(u),ξ+(u),u)

∂b(ξ ,u)
∂u

:=Bξ (ξ
+(u),u).

Property 3.1: Given any C1-function S : Rnz ×Rnξ → R,
one can rewrite

S(xk+1) = S(F(xk))+
∫ uk

0
LG(·,v)S(x

+(v))dv

where LG(·,v)S(x), denotes the usual Lie derivative of the
function S(·) along G(·,v); i.e., LG(·,v)S(x) := ∂S

∂x G(x,v).
Furthermore, one has∫ uk

0
LG(·,v)S(x

+(v))dv = uk

∫ 1

0
LG(·,θuk)S(x

+(θuk))dθ .



B. u-average passivity and PBC design

GAS of the equilibrium can now be achieved through u-
average passivity-based control as introduced in [14]. The
following definitions are recalled.

Definition 3.1 (u-average passivity): The dynamics (13),
with output y = H(x,u) is u-average passive with positive
definite storage function S(·) if the following inequality holds
for any u ∈ R

S(x+(u))−S(x)≤
∫ u

0
H(x+(v),v)dv. (14)

Definition 3.2 (ZSD): Given (13) with output H(x,u), let
Z ⊂ Rnz ×Rnξ be the largest positively invariant set con-
tained in {x ∈ Rnz × Rnξ | H(x,0) = 0}. (13) is Zero-
State-Detectable (ZSD) if x = 0 is asymptotically stable
conditionally to Z.

Theorem 3.1: Consider (13) under A.1 to A.4, then:
• (13) is u-average passive with respect to the output

H(z,ξ ,u) = LG(·,u)V0(z,ξ ) (15)

and storage function V0(z,ξ );
• if, furthermore, (13) with output H(z,ξ ,0) is ZSD, the

feedback ud solving the equality

ud =− 1
ud

∫ ud

0
LG(·,v)V0(z+(v),ξ+(v),v)dv (16)

achieves GAS of the equilibrium (z,ξ ) = (0,0);
• if the linear approximation of (13) is stabilizable then

(16) ensures LES of the closed-loop.
Proof: Computing ∆kV0(z,ξ ) = V0(zk+1,ξk+1) −

V0(zk,ξk) along the dynamics (13) one gets (dropping the
k-index in the right hand side)

∆kV0(z,ξ ) =U(a(ξ ))−U(ξ )+
∫ u

0
LBξ (·,v)U(ξ+(v))dv

+W ( f (z)+ϕ(z,ξ ))−W (z)+
∫ u

0
LGz(·,ξ+(v),v)W (z+(v))dv

+Ψ(F(z,ξ ))−Ψ(z,ξ )+
∫ u

0
LG(·,v)Ψ(z+(v),ξ+(v))dv.

By construction of Ψ(·) for u = 0, one concludes u-
average passivity with respect to the dummy output H(·,u) =
LG(·,u)V0 and storage function V0(·); i.e.

∆kV0(z,ξ )≤
∫ u

0
LG(·,v)V0(z+(v),ξ+(v))dv. (17)

Accordingly, the control u solution to (16) achieves GAS of
the equilibrium whenever (13) is ZSD with respect to H(·,0).
LES follows from u-average passivity plus the stabilizability
of the linear approximation of (13) at the origin.

Remark 3.1: The damping controller ud solution of the
equality (16) can equivalently be rewritten as the solution of

ud =−
∫ 1

0
LG(·,θud)V0(x+(θud))dθ . (18)

To avoid the difficult problem of solving implicit equalities,
approximate solutions can be computed. In [16], the authors
provide an explicit and exactly computable expression of the

feedback u which preserves u-average passivity and stability.
The consequent solution is bounded by a positive constant
µ ∈ R and is defined as

udap(x) =−K(x)LG(·,0)V0(x+(0))

for a suitable gain K(·)> 0.
Example: Consider the discrete-time cascade dynamics

z+ = z+ξ , ξ
+ = ξ

∂ z+(u)
∂u

=
1
2
− (ξ+(u))2,

∂ξ+(u)
∂u

= 1

or, equivalently,

zk+1 =z+ξ +u(
1
2
−ξ

2)−u2
ξ − 1

3
u3, ξk+1 = ξ +u

which verifies Assumption A.1 with W (z) = 1
2 z2 and As-

sumption A.2 with preliminary feedback u = − 2
3 ξ and

U(ξ ) = 1
2 ξ 2. The cross term Ψ(z,ξ ) = 1

2 (z+ξ + ξ 3

3 )2− 1
2 z2

verifies ∆kV0(z,ξ ) = ∆kU(ξ ) =− 4
9 ξ 2

k . Finally, the u-average
output and the consequent control are provided by

H(z,ξ ,u) = 4ξ +
3
2

z+
13
8

u+
1
2

ξ
3

u =−4
7

z− 32
21

ξ − 4
21

ξ
3.

IV. SOME CASES OF STUDY

A. The case of strict-feedforward dynamics

Consider the controlled strict-feedforward dynamics

z+ = Fz+ϕ(ξ ),
∂ z+(u)

∂u
= G(ξ+(u),u) (19a)

ξ
+ = a(ξ ),

∂ξ+(u)
∂u

= B(ξ+(u),u) (19b)

or equivalently

zk+1 =Fzk +ϕ(ξk)+g(ξk,uk), ξk+1 = a(ξk)+b(ξk,uk)

with uncontrolled part (6) and by definition

g(ξk,uk) :=
∫ uk

0
G(ξ+(v),v)dv

b(ξk,uk) :=
∫ uk

0
B(ξ+(v),v)dv

with g(·,0) = 0 and b(·,0). As already detailed, when u ≡
0, the coordinates change ζ = z− φ(ξ ) in (9) transforms
the system into a decoupled dynamics of the form (11).
Specyfying to (19), one gets

ζ
+ =Fζk,

∂ζ+(u)
∂u

= Gζ (ξ
+(u),u) (20a)

ξ
+ =a(ξk),

∂ξ+(u)
∂u

= B(ξ+(v),v)dv (20b)

where

Gζ (ξ
+(u),u) = G(ξ+(u),u)−LB(·,u)φ(ξ

+(u)).

As a consequence, Theorem 3.1 holds with output

Y1(ζ ,ξ ,u) = LGζ (·,u)Ṽ0(ζ ,ξ ). (21)



Remark 4.1: When F = I and nz = 1, the coordinates
change ζ = z− φ(ξ ) makes the ζ -dynamics driftless. Ac-
cordingly, one recovers the result in [19] proposed when
assuming directly in (19), ξk+1 = uk and nz = 1.

Remark 4.2: In [16], the strict-feedforward stabilization
is set in the Immersion and Invariance (I&I) framework,
[20] when nz = 1. Assuming A.2, a stable set over which
the closed loop ξ -dynamics evolves is exhibited. The design
aims at driving the off-stable set state components ζ to zero
while ensuring boundedness of the full state trajectories.
I&I is less demanding since the knowledge of a Lyapunov
function U(ξ ) for the ξ -system is not necessary. On the other
hand, the cross term approach covers a wider range of cases.

B. Stabilization of input-delayed dynamics

The result is now applied to design u-average passivity-based
controllers for discrete-time dynamics affected by input delay
of the form

zk+1 = f (zk)+ϕ(zk,uk−1). (22)

Setting the usual extension ξk = uk−1, (22) rewrites as

zk+1 = f (zk)+ϕ(zk,ξk), ξk+1 = uk (23)

that clearly takes the form of (13) with g(z,ξ ,u) = 0 and
a(ξ ) = 0. Assuming GS the origin of the dynamics zk+1 =
f (zk) with C1 and radially unbounded Lyapunov function
W (z) and setting U(ξ ) = ξ 2, the Lyapunov function V0(z,ξ )
for (23) takes the form V0(z,ξ ) = ξ 2 +W (z)+Ψ(z,ξ ) with
cross term solution of

∆kΨ(z,ξ )
∣∣
u≡0 =−W ( f (z)+ϕ(z,ξ ))+W ( f (z)).

Under the assumptions in Theorem 3.1, one specifies the
output map Hdel(z,ξ ) =

∂V0
∂ξ

(z,ξ ) with respect to which (23)
is u-average passive so satisfying the inequality

V0( f (z)+ϕ(z,ξ ),u)−V0(z,ξ )≤
∫ u

0

∂V0

∂ξ
( f (z)+ϕ(z,ξ ),v)dv.

Accordingly, the control udel solution of the equality

udel =−
1

udel

∫ udel

0

∂V0

∂ξ
( f (z)+ϕ(z,ξ ),v)dv

stabilizes the equilibrium provided the ZSD property holds.
This comment can be generalized to multiple input delays

and to a z-dynamics explicitly depending on u as well. This
is of peculiar interest when the problem of stabilizing a
continuous-time time-delay system is set in the sampled-data
context and reformulated as a discrete-time stabilizing one
over an extended state space [21].

V. CONCLUSIONS

Stabilization of discrete-time dynamics in feedforward
form via Lyapunov-based and passivity-based methodologies
has been addressed. The study is detailed for the case of
two interconnected dynamics by constructing a Lyapunov
function through the definition of a suitable cross-term.
When considering dynamics issued from sampling, a similar
approach has been developed in [22], taking advantage of

the primitive continuous-time properties. Work is progressing
regarding multi-block cascade dynamics and analyzing the
variety of control problems involving these structures.
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APPENDIX

Let us first prove (i). Being the equilibrium of the dy-
namics ξk+1 = a(ξk) LES, there exist a real constant |α|< 1
and a function γ(·) ∈ K so that ξ̃ (s,ξ ) ≤ γ(‖ξ‖)|α|s for
any s≥ 0. Then, because of Assumption A.4, the following
inequality holds

W ( f (zk)+ϕ(zk,ξk))−W (zk)≤ (24)

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))≤
∣∣∂W

∂ z
ϕ(zk,ξk)

∣∣≤
‖∂W

∂ z
‖(γ(‖ξ‖))|α|k + γ(‖ξ‖))|α|k‖zk‖)≤ cγ(‖ξ‖)|α|kW (zk).

Accordingly, W (z) is not decreasing along the trajectories of
(2) and ‖zk‖ and ‖ ∂W

∂ z (zk)‖ are bounded on [0,∞) (because
W (z) is radially unbounded). Consequently, one can write

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))≤ γ1(‖(z,ξ )‖)αk (25)

so getting that W ( f (zk)+ϕ(zk,ξk))−W ( f (zk)) is summable
over [0,∞) and (5) exists and is bounded for all (z,ξ ).

Continuity of Ψ(·) in (5) comes from the fact that it is the
composition and the sum of continuous functions on [0,∞).

As far as (ii) is concerned, positive definiteness of V0(·)
is obtained by exploiting the radial unboundedness of W (z).

W (zk) =W (z)+
k−1

∑
t=0

[
W ( f (zt)+ϕ(zt ,ξt))−W (zt)

]
=W (z)+

k−1

∑
t=0

[
W ( f (zt)+ϕ(zt ,ξt))−W ( f (zt))

]
+

k−1

∑
t=0

[
W ( f (zt))−W (zt)

]
where the term W ( f (zt))−W (zt) is non-increasing for any
t ≥ 0. By substracting both sides of the last equality by
W ( f (zt))−W (zt) and taking the limit for k→ ∞ one gets

W∞(z)−
∞

∑
t=0

[
W ( f (zt))−W (zt)

]
=

W (z)+
∞

∑
t=0

[
W ( f (zt)+ϕ(zt ,ξt))−W ( f (zt))

]
where W∞(z)= limk→∞ W (zk) and Ψ(z,ξ )=∑

∞
t=0
[
W ( f (zt)+

ϕ(zt ,ξt))−W ( f (zt))
]
. Hence, one gets that V0(z,ξ ) rewrites

as

V0(z,ξ ) =W∞(z)−
∞

∑
t=0

[
W ( f (zt))−W (zt)

]
+U(ξ )≥ 0.

(26)

From the radially unboundedness of W (·) and U(·) one has
that if V0(z,ξ ) = 0 then ξ = 0. By construction, V0(z,0) =
W (z) so concluding that V0(z,ξ ) = 0 implies (z,ξ ) = (0,0).
This last inequality proves that V0(·) is positive-definite.

To prove its radial unboundedness we first point out that
V0(z,ξ )→ ∞ as ‖ξ‖→ ∞ for any z because of (26). Hence,
one has to show that

lim
‖z‖→+∞

[
W∞(z)−

∞

∑
t=0

(
W ( f (zt))−W (zt)

)]
=+∞. (27)

This is achieved by lower bounding (27) by means of a
radially unbounded function deduced from W (z). For, fix ξ

so that γ(‖ξ‖) in (24) is a constant C. Accordingly, for any
k ≥ 0, we write

|W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))| ≤

‖∂W
∂ z
‖(C|α|k +C|α|k‖zk‖).

It follows that

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))≥
−|W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))| ≥

−2‖∂W
∂ z
‖C|α|k‖zk‖−C(1−‖zk‖)‖

∂W
∂ z
‖|α|k.

When 1−‖zk‖ > 0, the term −C(1−‖zk‖) ∂W
∂ z ‖|α|

k can be
discarded without affecting the inequality. On the other hand,
when 1−‖zk‖ ≤ 0, it is bounded by K2|α|k so that

W ( f (zk)+ϕ(zk,ξk))−W ( f (zk))≥

−2‖∂W
∂ z
‖C|α|k‖zk‖−K2|α|k.

Using A.4 we obtain

W ( f (zk)+ϕ(zk,ξk))−W (zk)≥ (28){
−K|α|kW (zk)−K2|α|k +W ( f (zk))−W (zk), ‖z‖> r
−K1|α|kW (zk)−K2|α|k +W ( f (zk))−W (zk), ‖z‖ ≤ r

with r≥ 1 and real K,K1,K2.From (28) one gets the follow-
ing lower bounds on W (zk).

When ‖z‖> r and k ∈ [0, t)

W (zk)≥ φ(k,0)W (z)+
k−1

∑
t=0

φ(k−1, t)
[
−K2|α1|t+

W ( f (zt))−W (zt)
]

When ‖z‖ ≤ r and k ∈ [0, t)

W (zk)≥W (z)+
k−1

∑
t=0

[
−K1|α|t −K2|α|t +W ( f (zt))−W (zt)

]
with φ(k, t) =∏

k
j=t(1−K|α| j). Accordingly, by mixing both

the bounds, one gets

W (zk)≥ φ(k,0)W (z)+
k−1

∑
t=0

(−K1|α|t −K2|α|t +W ( f (zt))−W (zt))

so that for all k ≥ 0, φ(k,0) admits a lower bound K3 and

W (zk)≥ K3W (z)+
k−1

∑
t=0

[
W ( f (zt))−W (zt)

]
+ rk

with rk :=∑
k−1
t=0

[
−K1|α|t−K2|α|t

]
converging to a bounded

solution r∗ over [0,∞). Taking the limit as k→∞, one obtains

W∞(z,ξ )−
k−1

∑
t=0

[
W ( f (zt))−W (zt)

]
≥ K3W (z)+ r∗.

We note that r∗ and K3 may depend on ξ but are
independent of z so that (27) holds. Finally, by con-
struction V0(zk+1,ξk+1)−V0(zk,ξk)) = W ( f (zk))−W (zk) +
U(a(ξk))−U(ξk)≤ 0 so concluding the proof.


