6 research outputs found

    Global Transition-based Non-projective Dependency Parsing

    Get PDF
    Shi, Huang, and Lee (2017) obtained state-of-the-art results for English and Chinese dependency parsing by combining dynamic-programming implementations of transition-based dependency parsers with a minimal set of bidirectional LSTM features. However, their results were limited to projective parsing. In this paper, we extend their approach to support non-projectivity by providing the first practical implementation of the MH_4 algorithm, an O(n4)O(n^4) mildly nonprojective dynamic-programming parser with very high coverage on non-projective treebanks. To make MH_4 compatible with minimal transition-based feature sets, we introduce a transition-based interpretation of it in which parser items are mapped to sequences of transitions. We thus obtain the first implementation of global decoding for non-projective transition-based parsing, and demonstrate empirically that it is more effective than its projective counterpart in parsing a number of highly non-projective languagesComment: Proceedings of ACL 2018. 13 page

    Performance analysis of low dimensional word embeddings to support green computing

    Get PDF
    It has become increasingly important to pay attention how much energy we use to operate various Artificial Intelligence (AI) and Machine Learning (ML) systems. In order to implement environmentally responsible solutions we need to reconsider our used storage resources and computational power. Training a natural language model is a time and energy demanding process. In recent years the language models are becoming extremely large and the trend is growing. The building process of these models are consuming an extremely large amount of computational power hence these demands huge amounts of energy. In our research we trained and evaluated low dimensional word2vec embedding models and analyzed their performance on building transition based dependency parsers to show that low dimensional models are still competitive and in many use cases may be sufficient

    Järjestettyjen verkkojen siirtymäpohjainen koodaus ja formaalien kielten teoria

    Get PDF
    The ISBN of the host publication can be found on the web site of the conference (https://wwwtcs.inf.tu-dresden.de/fsmnlp2019/accepted_papers/).Transition-based parsing of natural language uses transition systems to build directed annotation graphs (digraphs) for sentences. In this paper, we define, for an arbitrary ordered digraph, a unique decomposition and a corresponding linear encoding that are associated bijectively with each other via a new transition system. These results give us an efficient and succinct representation for digraphs and sets of digraphs. Based on the system and our analysis of its syntactic properties, we give structural bounds under which the set of encoded digraphs is restricted and becomes a context-free or a regular string language. The context-free restriction is essentially a superset of the encodings used previously to characterize properties of noncrossing digraphs and to solve maximal subgraphs problems. The regular restriction with a tight bound is shown to capture the Universal Dependencies v2.4 treebanks in linguistics.Transition-based parsing of natural language uses transition systems to build directed annotation graphs (digraphs) for sentences. In this paper, we define, for an arbitrary ordered digraph, a unique decomposition and a corresponding linear encoding that are associated bijectively with each other via a new transition system. These results give us an efficient and succinct representation for digraphs and sets of digraphs. Based on the system and our analysis of its syntactic properties, we give structural bounds under which the set of encoded digraphs is restricted and becomes a context-free or a regular string language. The context-free restriction is essentially a superset of the encodings used previously to characterise properties of noncrossing digraphs and to solve maximal subgraphs problems. The regular restriction with a tight bound is shown to capture the Universal Dependencies v2.4 treebanks in linguistics.Peer reviewe

    On the Use of Parsing for Named Entity Recognition

    Get PDF
    [Abstract] Parsing is a core natural language processing technique that can be used to obtain the structure underlying sentences in human languages. Named entity recognition (NER) is the task of identifying the entities that appear in a text. NER is a challenging natural language processing task that is essential to extract knowledge from texts in multiple domains, ranging from financial to medical. It is intuitive that the structure of a text can be helpful to determine whether or not a certain portion of it is an entity and if so, to establish its concrete limits. However, parsing has been a relatively little-used technique in NER systems, since most of them have chosen to consider shallow approaches to deal with text. In this work, we study the characteristics of NER, a task that is far from being solved despite its long history; we analyze the latest advances in parsing that make its use advisable in NER settings; we review the different approaches to NER that make use of syntactic information; and we propose a new way of using parsing in NER based on casting parsing itself as a sequence labeling task.Xunta de Galicia; ED431C 2020/11Xunta de Galicia; ED431G 2019/01This work has been funded by MINECO, AEI and FEDER of UE through the ANSWER-ASAP project (TIN2017-85160-C2-1-R); and by Xunta de Galicia through a Competitive Reference Group grant (ED431C 2020/11). CITIC, as Research Center of the Galician University System, is funded by the Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF/FEDER) with 80%, the Galicia ERDF 2014-20 Operational Programme, and the remaining 20% from the Secretaría Xeral de Universidades (Ref. ED431G 2019/01). Carlos Gómez-Rodríguez has also received funding from the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, Grant No. 714150)

    Knowledge-enhanced neural grammar Induction

    Get PDF
    Natural language is usually presented as a word sequence, but the inherent structure of language is not necessarily sequential. Automatic grammar induction for natural language is a long-standing research topic in the field of computational linguistics and still remains an open problem today. From the perspective of cognitive science, the goal of a grammar induction system is to mimic children: learning a grammar that can generalize to infinitely many utterances by only consuming finite data. With regard to computational linguistics, an automatic grammar induction system could be beneficial for a wide variety of natural language processing (NLP) applications: providing syntactic analysis explicitly for a pipeline or a joint learning system; injecting structural bias implicitly into an end-to-end model. Typically, approaches to grammar induction only have access to raw text. Due to the huge search space of trees as well as data sparsity and ambiguity issues, grammar induction is a difficult problem. Thanks to the rapid development of neural networks and their capacity of over-parameterization and continuous representation learning, neural models have been recently introduced to grammar induction. Given its large capacity, introducing external knowledge into a neural system is an effective approach in practice, especially for an unsupervised problem. This thesis explores how to incorporate external knowledge into neural grammar induction models. We develop several approaches to combine different types of knowledge with neural grammar induction models on two grammar formalisms — constituency and dependency grammar. We first investigate how to inject symbolic knowledge, universal linguistic rules, into unsupervised dependency parsing. In contrast to previous state-of-the-art models that utilize time-consuming global inference, we propose a neural transition-based parser using variational inference. Our parser is able to employ rich features and supports inference in linear time for both training and testing. The core component in our parser is posterior regularization, where the posterior distribution of the dependency trees is constrained by the universal linguistic rules. The resulting parser outperforms previous unsupervised transition-based dependency parsers and achieves performance comparable to global inference-based models. Our parser also substantially increases parsing speed over global inference-based models. Recently, tree structures have been considered as latent variables that are learned through downstream NLP tasks, such as language modeling and natural language inference. More specifically, auxiliary syntax-aware components are embedded into the neural networks and are trained end-to-end on the downstream tasks. However, such latent tree models either struggle to produce linguistically plausible tree structures, or require an external biased parser to obtain good parsing performance. In the second part of this thesis, we focus on constituency structure and propose to use imitation learning to couple two heterogeneous latent tree models: we transfer the knowledge learned from a continuous latent tree model trained using language modeling to a discrete one, and further fine-tune the discrete model using a natural language inference objective. Through this two-stage training scheme, the discrete latent tree model achieves stateof-the-art unsupervised parsing performance. The transformer is a newly proposed neural model for NLP. Transformer-based pre-trained language models (PLMs) like BERT have achieved remarkable success on various NLP tasks by training on an enormous corpus using word prediction tasks. Recent studies show that PLMs can learn considerable syntactical knowledge in a syntaxagnostic manner. In the third part of this thesis, we leverage PLMs as a source of external knowledge. We propose a parameter-free approach to select syntax-sensitive self-attention heads from PLMs and perform chart-based unsupervised constituency parsing. In contrast to previous approaches, our head-selection approach only relies on raw text without any annotated development data. Experimental results on both English and eight other languages show that our approach achieves competitive performance

    Online learning of latent linguistic structure with approximate search

    Get PDF
    Automatic analysis of natural language data is a frequently occurring application of machine learning systems. These analyses often revolve around some linguistic structure, for instance a syntactic analysis of a sentence by means of a tree. Machine learning models that carry out structured prediction, as opposed to simpler machine learning tasks such as classification or regression, have therefore received considerable attention in the language processing literature. As an additional twist, the sought linguistic structures are sometimes not directly modeled themselves. Rather, prediction takes place in a different space where the same linguistic structure can be represented in more than one way. However, in a standard supervised learning setting, these prediction structures are not available in the training data, but only the linguistic structure. Since multiple prediction structures may correspond to the same linguistic structure, it is thus unclear which prediction structure to use for learning. One option is to treat the prediction structure as latent and let the machine learning algorithm guide this selection. In this dissertation we present an abstract framework for structured prediction. This framework supports latent structures and is agnostic of the particular language processing task. It defines a set of hyperparameters and task-specific functions which a user must implement in order to apply it to a new task. The advantage of this modularization is that it permits comparisons and reuse across tasks in a common framework. The framework we devise is based on the structured perceptron for learning. The perceptron is an online learning algorithm which considers one training instance at a time, makes a prediction, and carries out an update if the prediction was wrong. We couple the structured perceptron with beam search, which is a general purpose search algorithm. Beam search is, however, only approximate, meaning that there is no guarantee that it will find the optimal structure in a large search space. Therefore special attention is required to handle search errors during training. This has led to the development of special update methods such as early and max-violation updates. The contributions of this dissertation sit at the intersection of machine learning and natural language processing. With regard to language processing, we consider three tasks: Coreference resolution, dependency parsing, and joint sentence segmentation and dependency parsing. For coreference resolution, we start from an existing latent tree model and extend it to accommodate non-local features drawn from a greater structural context. This requires us to sacrifice exact for approximate search, but we show that, assuming sufficiently advanced update methods are used for the structured perceptron, then the richer scope of features yields a stronger coreference model. We take a transition-based approach to dependency parsing, where dependency trees are constructed incrementally by transition system. Latent structures for transition-based parsing have previously not received enough attention, partly because the characterization of the prediction space is non-trivial. We provide a thorough analysis of this space with regard to the ArcStandard with Swap transition system. This characterization enables us to evaluate the role of latent structures in transition-based dependency parsing. Empirically we find that the utility of latent structures depend on the choice of approximate search -- for greedy search they improve performance, whereas with beam search they are on par, or sometimes slightly ahead of, previous approaches. We then go on to extend this transition system to do joint sentence segmentation and dependency parsing. We develop a transition system capable of handling this task and evaluate it on noisy, non-edited texts. With a set of carefully selected baselines and data sets we employ this system to measure the effectiveness of syntactic information for sentence segmentation. We show that, in the absence of obvious orthographic clues such as punctuation and capitalization, syntactic information can be used to improve sentence segmentation. With regard to machine learning, our contributions of course include the framework itself. The task-specific evaluations, however, allow us to probe the learning machinery along certain boundary points and draw more general conclusions. A recurring observation is that some of the standard update methods for the structured perceptron with approximate search -- e.g., early and max-violation updates -- are inadequate when the predicted structure reaches a certain size. We show that the primary problem with these updates is that they may discard training data and that this effect increases as the structure size increases. This problem can be handled by using more advanced update methods that commit to using all the available training data. Here, we propose a new update method, DLaSO, which consistently outperforms all other update methods we compare to. Moreover, while this problem potentially could be handled by an increased beam size, we also show that this cannot fully compensate for the structure size and that the more advanced methods indeed are required.Bei der automatisierten Analyse natürlicher Sprache werden in der Regel maschinelle Lernverfahren eingesetzt, um verschiedenste linguistische Information wie beispielsweise syntaktische Strukturen vorherzusagen. Structured Prediction (dt. etwa Strukturvorhersage), also der Zweig des maschinellen Lernens, der sich mit der Vorhersage komplexer Strukturen wie formalen Bäumen oder Graphen beschäftigt, hat deshalb erhebliche Beachtung in der Forschung zur automatischen Sprachverarbeitung gefunden. In manchen Fällen ist es vorteilhaft, die gesuchte linguistische Struktur nicht direkt zu modellieren und stattdessen interne Repräsentationen zu lernen, aus denen dann die gewünschte linguistische Information abgeleitet werden kann. Da die internen Repräsentationen allerdings selten direkt in Trainingsdaten verfügbar sind, sondern erst aus der linguistischen Annotation inferiert werden müssen, kann es vorkommen, dass dabei mehrere äquivalente Strukturen in Frage kommen. Anstatt nun vor dem Lernen eine Struktur beliebig auszuwählen, kann man diese Entscheidung dem Lernverfahren selbst überlassen, welches dann selbständig die für das Modell am besten passende auszuwählen lernt. Unter diesen Umständen bezeichnet man die interne, nicht a priori bekannte Repräsentation für eine gesuchte Zielstruktur als latent. Diese Dissertation stellt ein Structured Prediction Framework vor, mit dem man den Vorteil latenter Repräsentationen nutzen kann und welches gleichzeitig von konkreten Anwendungsfällen abstrahiert. Diese Modularisierung ermöglicht die Wiederverwendbarkeit und den Vergleich über mehrere Aufgaben und Aufgabenklassen hinweg. Um das Framework auf ein reales Problem anzuwenden, müssen nur einige Hyperparameter definiert und einige problemspezifische Funktionen implementiert werden. Das vorgestellte Framework basiert auf dem Structured Perceptron. Der Perceptron-Algorithmus ist ein inkrementelles Lernverfahren (eng. online learning), bei dem während des Trainings einzelne Trainingsinstanzen nacheinander betrachtet werden. In jedem Schritt wird mit dem aktuellen Modell eine Vorhersage gemacht. Stimmt die Vorhersage nicht mit dem vorgegebenen Ergebnis überein, wird das Modell durch ein entsprechendes Update angepasst und mit der nächsten Trainingsinstanz fortgefahren. Der Structured Perceptron wird im vorgestellten Framework mit Beam Search kombiniert. Beam Search ist ein approximatives Suchverfahren, welches auch in sehr großen Suchräumen effizientes Suchen erlaubt. Es kann aus diesem Grund aber keine Garantie dafür bieten, dass das gefundene Ergebnis auch das optimale ist. Das Training eines Perceptrons mit Beam Search erfordert deshalb besondere Update-Methoden, z.B. Early- oder Max-Violation-Updates, um mögliche Vorhersagefehler, die auf den Suchalgorithmus zurückgehen, auszugleichen. Diese Dissertation ist an der Schnittstelle zwischen maschinellem Lernen und maschineller Sprachverarbeitung angesiedelt. Im Bereich Sprachverarbeitung beschäftigt sie sich mit drei Aufgaben: Koreferenzresolution, Dependenzparsing und Dependenzparsing mit gleichzeitiger Satzsegmentierung. Das vorgestellte Modell zur Koreferenzresolution ist eine Erweiterung eines existierenden Modells, welches Koreferenz mit Hilfe latenter Baumstrukturen repräsentiert. Dieses Modell wird um Features erweitert, mit denen nicht-lokale Abhängigkeiten innerhalb eines größeren strukturellen Kontexts modelliert werden. Die Modellierung nicht-lokaler Abhängigkeiten macht durch die kombinatorische Explosion der Features die Verwendung eines approximativen Suchverfahrens notwendig. Es zeigt sich aber, dass das so entstandene Koreferenzmodell trotz der approximativen Suche dem Modell ohne nicht-lokale Features überlegen ist, sofern hinreichend gute Update-Verfahren beim Lernen verwendet werden. Für das Dependenzparsing verwenden wir ein transitionsbasiertes Verfahren, bei dem Dependenzbäume inkrementell durch Transitionen zwischen definierten Zuständen konstruiert werden. Im ersten Schritt erarbeiten wir eine umfassende Analyse des latenten Strukturraums eines bekannten Transitionssystems, nämlich ArcStandard mit Swap. Diese Analyse erlaubt es uns, die Rolle der latenten Strukturen in einem transitionsbasierten Dependenzparser zu evaluieren. Wir zeigen dann empirisch, dass die Nützlichkeit latenter Strukturen von der Wahl des Suchverfahrens abhängt -- in Kombination mit Greedy-Search verbessern sich die Ergebnisse, in Kombination mit Beam-Search bleiben sie gleich oder verbessern sich leicht gegenüber vergleichbaren Modellen. Für die dritte Aufgabe wird der Parser noch einmal erweitert: wir entwickeln das Transitionssystem so weiter, dass es neben syntaktischer Struktur auch Satzgrenzen vorhersagt und testen das System auf verrauschten und unredigierten Textdaten. Mit Hilfe sorgfältig ausgewählter Baselinemodelle und Testdaten messen wir den Einfluss syntaktischer Information auf die Vorhersagequalität von Satzgrenzen und zeigen, dass sich in Abwesenheit orthographischer Information wie Interpunktion und Groß- und Kleinschreibung das Ergebnis durch syntaktische Information verbessert. Zu den wissenschaftlichen Beiträgen der Arbeit gehört einerseits das Framework selbst. Unsere problemspezifischen Experimente ermöglichen es uns darüber hinaus, die Lernverfahren zu untersuchen und allgemeinere Schlußfolgerungen zu ziehen. So finden wir z.B. in mehreren Experimenten, dass die etablierten Update-Methoden, also Early- oder Max-Violation-Update, nicht mehr gut funktionieren, sobald die vorhergesagte Struktur eine gewisse Größe überschreitet. Es zeigt sich, dass das Hauptproblem dieser Methoden das Auslassen von Trainingsdaten ist, und dass sie desto mehr Daten auslassen, je größer die vorhergesagte Struktur wird. Dieses Problem kann durch bessere Update-Methoden vermieden werden, bei denen stets alle Trainingsdaten verwendet werden. Wir stellen eine neue Methode vor, DLaSO, und zeigen, dass diese Methode konsequent bessere Ergebnisse liefert als alle Vergleichsmethoden. Überdies zeigen wir, dass eine erhöhte Beamgröße beim Suchen das Problem der ausgelassenen Trainingsdaten nicht kompensieren kann und daher keine Alternative zu besseren Update-Methoden darstellt
    corecore