36,421 research outputs found

    RBF approximation of large datasets by partition of unity and local stabilization

    Get PDF
    We present an algorithm to approximate large dataset by Radial Basis Function (RBF) techniques. The method couples a fast domain decomposition procedure with a localized stabilization method. The resulting algorithm can efficiently deal with large problems and it is robust with respect to the typical instability of kernel methods

    Deaf, Dumb, and Chatting Robots, Enabling Distributed Computation and Fault-Tolerance Among Stigmergic Robot

    Get PDF
    We investigate ways for the exchange of information (explicit communication) among deaf and dumb mobile robots scattered in the plane. We introduce the use of movement-signals (analogously to flight signals and bees waggle) as a mean to transfer messages, enabling the use of distributed algorithms among the robots. We propose one-to-one deterministic movement protocols that implement explicit communication. We first present protocols for synchronous robots. We begin with a very simple coding protocol for two robots. Based on on this protocol, we provide one-to-one communication for any system of n \geq 2 robots equipped with observable IDs that agree on a common direction (sense of direction). We then propose two solutions enabling one-to-one communication among anonymous robots. Since the robots are devoid of observable IDs, both protocols build recognition mechanisms using the (weak) capabilities offered to the robots. The first protocol assumes that the robots agree on a common direction and a common handedness (chirality), while the second protocol assumes chirality only. Next, we show how the movements of robots can provide implicit acknowledgments in asynchronous systems. We use this result to design asynchronous one-to-one communication with two robots only. Finally, we combine this solution with the schemes developed in synchronous settings to fit the general case of asynchronous one-to-one communication among any number of robots. Our protocols enable the use of distributing algorithms based on message exchanges among swarms of Stigmergic robots. Furthermore, they provides robots equipped with means of communication to overcome faults of their communication device

    Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing

    Full text link
    Within the context of autonomous driving a model-based reinforcement learning algorithm is proposed for the design of neural network-parameterized controllers. Classical model-based control methods, which include sampling- and lattice-based algorithms and model predictive control, suffer from the trade-off between model complexity and computational burden required for the online solution of expensive optimization or search problems at every short sampling time. To circumvent this trade-off, a 2-step procedure is motivated: first learning of a controller during offline training based on an arbitrarily complicated mathematical system model, before online fast feedforward evaluation of the trained controller. The contribution of this paper is the proposition of a simple gradient-free and model-based algorithm for deep reinforcement learning using task separation with hill climbing (TSHC). In particular, (i) simultaneous training on separate deterministic tasks with the purpose of encoding many motion primitives in a neural network, and (ii) the employment of maximally sparse rewards in combination with virtual velocity constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl

    Ambient vibration re-testing and operational modal analysis of the Humber Bridge

    Get PDF
    An ambient vibration survey of the Humber Bridge was carried out in July 2008 by a combined team from the UK, Portugal and Hong Kong. The exercise had several purposes that included the evaluation of the current technology for instrumentation and system identification and the generation of an experimental dataset of modal properties to be used for validation and updating of finite element models for scenario simulation and structural health monitoring. The exercise was conducted as part of a project aimed at developing online diagnosis capabilities for three landmark European suspension bridges. Ten stand-alone tri-axial acceleration recorders were deployed at locations along all three spans and in all four pylons during five days of consecutive one-hour recordings. Time series segments from the recorders were merged, and several operational modal analysis techniques were used to analyse these data and assemble modal models representing the global behaviour of the bridge in all three dimensions for all components of the structure. The paper describes the equipment and procedures used for the exercise, compares the operational modal analysis (OMA) technology used for system identification and presents modal parameters for key vibration modes of the complete structure. The results obtained using three techniques, natural excitation technique/eigensystem realisation algorithm, stochastic subspace identification and poly-Least Squares Frequency Domain method, are compared among themselves and with those obtained from a 1985 test of the bridge, showing few significant modal parameter changes over 23 years in cases where direct comparison is possible. The measurement system and the much more sophisticated OMA technology used in the present test show clear advantages necessary due to the compressed timescales compared to the earlier exercise. Even so, the parameter estimates exhibit significant variability between different methods and variations of the same method, while also varying in time and having inherent variability. (C) 2010 Elsevier Ltd. All rights reserved
    • …
    corecore