508 research outputs found

    INTELLIGENT MODELLING OF GRADIENT FLEXIBLE PLATE STRUCTURE UTILISING HYBRID EVOLUTIONARY ALGORITHM

    Get PDF
    The gradient flexible plate structure has been widely used in engineering industries. However, the gradient flexible plate is susceptible to vibrational disturbances and affecting its durability and performance over time. Hence, the unwanted vibration needs to be controlled and can be accomplished by developing an accurate model. Despite that, the accurate model is hard to be obtained especially in estimating the model parameters. Thus, the research presents the development of dynamic modelling for gradient flexible plate structure (GFPS). A slanted GFPS with orientation angle of 30° and all edges clamped was developed and fabricated to represent the actual dynamics of the system. Then, data acquisition and instrumentation system were integrated to the rig to collect the input-output vibration data. The research utilised parametric system identification based on autoregressive with exogenous input (ARX) model structure. First, evolutionary algorithms, namely particle swarm optimisation (PSO) and grey wolf optimisation (GWO) were used in developing GFPS dynamic model and their performances were compared. It was discovered that GWO model outperformed PSO model. However, the computational time of GWO is slower compared to PSO. Thus, a hybrid of grey wolf and particle swarm optimisation (GWO-PSO) were proposed to further improve the system modelling. It was found out that the hybrid GWO-PSO model outperformed PSO and GWO models by achieving the lowest mean squared error, correlation up to 95 % confidence level, and good stability. The obtained GWO-PSO models which is model order 2 and model order 4 were verified by using proportional-integral-derivative (PID) based controller. Their performances were measured in terms of model robustness based on vibration suppression. The final result confirmed that model order 2 of GWO-PSO is the optimum model to represent GFPS system modelling with 71.08% vibration attenuation

    Integrated Immunity-based Methodology for UAV Monitoring and Control

    Get PDF
    A general integrated and comprehensive health management framework based on the artificial immune system (AIS) paradigm is formulated and an automated system is developed and tested through simulation for the detection, identification, evaluation, and accommodation (DIEA) of abnormal conditions (ACs) on an unmanned aerial vehicle (UAV). The proposed methodology involves the establishment of a body of data to represent the function of the vehicle under nominal conditions, called the self, and differentiating this operation from that of the vehicle under an abnormal condition, referred to as the non-self. Data collected from simulations of the selected UAV autonomously flying a set of prescribed trajectories were used to develop and test novel schemes that are capable of addressing the AC-DIEA of sensor and actuator faults on a UAV. While the specific dynamic system used here is a UAV, the proposed framework and methodology is general enough to be adapted and applied to any complex dynamic system. The ACs considered within this effort included aerodynamic control surface locks and damage and angular rate sensor biases. The general framework for the comprehensive health management system comprises a novel complete integration of the AC-DIEA process with focus on the transition between the four different phases. The hierarchical multiself (HMS) strategy is used in conjunction with several biomimetic mechanisms to address the various steps in each phase. The partition of the universe approach is used as the basis of the AIS generation and the binary detection phase. The HMS approach is augmented by a mechanism inspired by the antigen presenting cells of the adaptive immune system for performing AC identification. The evaluation and accommodation phases are the most challenging phases of the AC-DIEA process due to the complexity and diversity of the ACs and the multidimensionality of the AIS. Therefore, the evaluation phase is divided into three separate steps: the qualitative evaluation, direct quantitative evaluation, and the indirect quantitative evaluation, where the type, severity, and effects of the AC are determined, respectively. The integration of the accommodation phase is based on a modular process, namely the strategic decision making, tactical decision marking, and execution modules. These modules are designed by the testing of several approaches for integrating the accommodation phase, which are specialized based on the type of AC being addressed. These approaches include redefining of the mission, adjustment or shifting of the control laws, or adjusting the sensor outputs. Adjustments of the mission include redefining of the trajectory to remove maneuvers which are no longer possible, while adjusting of the control laws includes modifying gains involved in determination of commanded control surface deflections. Analysis of the transition between phases includes a discussion of results for integrated example cases where the proposed AC-DIEA process is applied. The cases considered show the validity of the integrated AC-DIEA system and specific accommodation approaches by an improvement in flight performance through metrics that capture trajectory tracking errors and control activity differences between nominal, abnormal, and accommodated cases

    An Application of Modified T2FHC Algorithm in Two-Link Robot Controller

    Get PDF
    Parallel robotic systems have shown their advantages over the traditional serial robots such as high payload capacity, high speed, and high precision. Their applications are widespread from transportation to manufacturing fields. Therefore, most of the recent studies in parallel robots focus on finding the best method to improve the system accuracy. Enhancing this metric, however, is still the biggest challenge in controlling a parallel robot owing to the complex mathematical model of the system. In this paper, we present a novel solution to this problem with a Type 2 Fuzzy Coherent Controller Network (T2FHC), which is composed of a Type 2 Cerebellar Model Coupling Controller (CMAC) with its fast convergence ability and a Brain Emotional Learning Controller (BELC) using the Lyaponov-based weight updating rule. In addition, the T2FHC is combined with a surface generator to increase the system flexibility. To evaluate its applicability in real life, the proposed controller was tested on a Quanser 2-DOF robot system in three case studies: no load, 180 g load and 360 g load, respectively. The results showed that the proposed structure achieved superior performance compared to those of available algorithms such as CMAC and Novel Self-Organizing Fuzzy CMAC (NSOF CMAC). The Root Mean Square Error (RMSE) index of the system that was 2.20E-06 for angle A and 2.26E-06 for angle B and the tracking error that was -6.42E-04 for angle A and 2.27E-04 for angle B demonstrate the good stability and high accuracy of the proposed T2FHC. With this outstanding achievement, the proposed method is promising to be applied to many applications using nonlinear systems

    Study and Development of Mechatronic Devices and Machine Learning Schemes for Industrial Applications

    Get PDF
    Obiettivo del presente progetto di dottorato è lo studio e sviluppo di sistemi meccatronici e di modelli machine learning per macchine operatrici e celle robotizzate al fine di incrementarne le prestazioni operative e gestionali. Le pressanti esigenze del mercato hanno imposto lavorazioni con livelli di accuratezza sempre più elevati, tempi di risposta e di produzione ridotti e a costi contenuti. In questo contesto nasce il progetto di dottorato, focalizzato su applicazioni di lavorazioni meccaniche (e.g. fresatura), che includono sistemi complessi quali, ad esempio, macchine a 5 assi e, tipicamente, robot industriali, il cui utilizzo varia a seconda dell’impiego. Oltre alle specifiche problematiche delle lavorazioni, si deve anche considerare l’interazione macchina-robot per permettere un’efficiente capacità e gestione dell’intero impianto. La complessità di questo scenario può evidenziare sia specifiche problematiche inerenti alle lavorazioni (e.g. vibrazioni) sia inefficienze più generali che riguardano l’impianto produttivo (e.g. asservimento delle macchine con robot, consumo energetico). Vista la vastità della tematica, il progetto si è suddiviso in due parti, lo studio e sviluppo di due specifici dispositivi meccatronici, basati sull’impiego di attuatori piezoelettrici, che puntano principalmente alla compensazione di vibrazioni indotte dal processo di lavorazione, e l’integrazione di robot per l’asservimento di macchine utensili in celle robotizzate, impiegando modelli di machine learning per definire le traiettorie ed i punti di raggiungibilità del robot, al fine di migliorarne l’accuratezza del posizionamento del pezzo in diverse condizioni. In conclusione, la presente tesi vuole proporre soluzioni meccatroniche e di machine learning per incrementare le prestazioni di macchine e sistemi robotizzati convenzionali. I sistemi studiati possono essere integrati in celle robotizzate, focalizzandosi sia su problematiche specifiche delle lavorazioni in macchine operatrici sia su problematiche a livello di impianto robot-macchina. Le ricerche hanno riguardato un’approfondita valutazione dello stato dell’arte, la definizione dei modelli teorici, la progettazione funzionale e l’identificazione delle criticità del design dei prototipi, la realizzazione delle simulazioni e delle prove sperimentali e l’analisi dei risultati.The aim of this Ph.D. project is the study and development of mechatronic systems and machine learning models for machine tools and robotic applications to improve their performances. The industrial demands have imposed an ever-increasing accuracy and efficiency requirement whilst constraining the cost. In this context, this project focuses on machining processes (e.g. milling) that include complex systems such as 5-axes machine tool and industrial robots, employed for various applications. Beside the issues related to the machining process itself, the interaction between the machining centre and the robot must be considered for the complete industrial plant’s improvement. This scenario´s complexity depicts both specific machining problematics (e.g. vibrations) and more general issues related to the complete plant, such as machine tending with an industrial robot and energy consumption. Regarding the immensity of this area, this project is divided in two parts, the study and development of two mechatronic devices, based on piezoelectric stack actuators, for the active vibration control during the machining process, and the robot machine tending within the robotic cell, employing machine learning schemes for the trajectory definition and robot reachability to improve the corresponding positioning accuracy. In conclusion, this thesis aims to provide a set of solutions, based on mechatronic devices and machine learning schemes, to improve the conventional machining centre and the robotic systems performances. The studied systems can be integrated within a robotic cell, focusing on issues related to the specific machining process and to the interaction between robot-machining centre. This research required a thorough study of the state-of-the-art, the formulation of theoretical models, the functional design development, the identification of the critical aspects in the prototype designs, the simulation and experimental campaigns, and the analysis of the obtained results

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    A Comparative Study of Vehicle Platoon with Limited Output Information in Directed Topologies

    Get PDF
    This paper aims to study and compare the effect of limited-output information in various directed topology to the performance of vehicle platoon. Two distributed controllers based on limited-output information will be compared to cooperative state variable feedback control which designed based on full-state information. The comparison will be conducted for four common directed topologies in the vehicle platoon application. Simulation analysis is performed in three scenarios, namely under normal operations, when the leader moves with constant acceleration and when the platoon is subjected to constant communication delay. Performances comparison will be observed from inter-vehicular distance response in each follower and the results will be displayed with respect to the follower vehicle index in the platoon configuration. Finally, the behavior of each control scheme in various topologies will be summarized

    Stabilization of Physical Systems via Saturated Controllers With Partial State Measurements

    Get PDF
    This article provides a constructive passivity-based control (PBC) approach to solve the set-point regulation problem for input-affine continuous nonlinear systems while considering bounded inputs. As customary in PBC, the methodology consists of two steps: energy shaping and damping injection. In terms of applicability, the proposed controllers have two advantages concerning other PBC techniques: 1) the energy shaping is carried out without solving partial differential equations and 2) the damping injection is performed without measuring the passive output. As a result, the proposed methodology is suitable to control a broad range of physical systems, e.g., mechanical, electrical, and electromechanical systems, with saturated control signals. We illustrate the applicability of the technique by designing controllers for systems in different physical domains, where we validate the analytical results via simulations and experiments
    • …
    corecore