5 research outputs found

    Evaluations of Push Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline Sporadic Task Systems (Artifact)

    Get PDF
    This artifact provides the experimental details and implementations of all the facilitated schedulability tests used in the reported acceptance ratio based evaluations as documented in the related paper "Push Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline Sporadic Task Systems"

    Push Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline Sporadic Task Systems

    Get PDF
    The sporadic task model is often used to analyze recurrent execution of tasks in real-time systems. A sporadic task defines an infinite sequence of task instances, also called jobs, that arrive under the minimum inter-arrival time constraint. To ensure the system safety, timeliness has to be guaranteed in addition to functional correctness, i.e., all jobs of all tasks have to be finished before the job deadlines. We focus on analyzing arbitrary-deadline task sets on a homogeneous (identical) multiprocessor system under any given global fixed-priority scheduling approach and provide a series of schedulability tests with different tradeoffs between their time complexity and their accuracy. Under the arbitrary-deadline setting, the relative deadline of a task can be longer than the minimum inter-arrival time of the jobs of the task. We show that global deadline-monotonic (DM) scheduling has a speedup bound of 3-1/M against any optimal scheduling algorithms, where M is the number of identical processors, and prove that this bound is asymptotically tight

    Adding multiprocessor and mode change support to the Ada real-time framework

    Full text link
    © ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Ada Letters, April 2013, Volume XXXIII, Number 1. http://doi.acm.org/10.1145/2492312.2492324[EN] Based on a previous proposal of an Ada 2005 framework of real-time utilities, this paper deals with the extension of that framework to include support for multiprocessor platforms and multiple operating modes and mode changes. The design of the proposed framework is also intended to be amenable to automatic code generation.This work is partly funded by the Vicerrectorado de Investigacion of Universitat Politècnica de València under grant PAID-06-10-2397 and the Europan Commission’s OVERSEE project (FP7-ICT-2009-4, Project ID 248333).Sáez Barona, S.; Real Sáez, JV.; Crespo Lorente, A. (2013). Adding multiprocessor and mode change support to the Ada real-time framework. Ada Letters. 33(1):116-127. https://doi.org/10.1145/2492312.2492324S11612733

    Multi-agent Adaptive Architecture for Flexible Distributed Real-time Systems

    Get PDF
    Recent critical embedded systems become more and more complex and usually react to their environment that requires to amend their behaviors by applying run-time reconfiguration scenarios. A system is defined in this paper as a set of networked devices, where each of which has its own operating system, a processor to execute related periodic software tasks, and a local battery. A reconfiguration is any operation allowing the addition-removal-update of tasks to adapt the device and the whole system to its environment. It may be a reaction to a fault or even optimization of the system functional behavior. Nevertheless, such scenario can cause the violation of real-time or energy constraints, which is considered as a critical run-time problem. We propose a multi-agent adaptive architecture to handle dynamic reconfigurations and ensure the correct execution of the concurrent real-time distributed tasks under energy constraints. The proposed architecture integrates a centralized scheduler agent (ScA) which is the common decision making element for the scheduling problem. It is able to carry out the required run-time solutions based on operation research techniques and mathematical tools for the system's feasibility. This architecture assigns also a reconfiguration agent (RA p ) to each device p to control and handle the local reconfiguration scenarios under the instructions of ScA. A token-based protocol is defined in this case for the coordination between the different distributed agents in order to guarantee the whole system's feasibility under energy constraints.info:eu-repo/semantics/publishedVersio
    corecore