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Abstract 

Recent critical embedded systems become more and more complex and usually react to their environment that 
requires to amend their behaviors by applying run-time reconfiguration scenarios. A system is defined in this paper 
as a set of networked devices where each of which has its own OS (Operating System), a processor to execute 
related periodic software tasks, and a local battery. A reconfiguration is any operation allowing the addition-
removal-update of tasks to adapt the device and the whole system to its environment. It may be a reaction to a 
fault or even optimization of the system functional behavior. Nevertheless, such a scenario can cause the violation 
of real-time or energy constraints, which is considered a critical run-time problem. We propose a multi-agent 
adaptive architecture to handle dynamic reconfigurations and ensure the correct execution of the concurrent real-
time distributed tasks under energy constraints. The proposed architecture integrates a centralized scheduler 
agent (ScA) which is the common decision making element for the scheduling problem. It is able to carry out the 
required run-time solutions based on operation research techniques and mathematical tools for the system 19s 
feasibility. This architecture assigns also a reconfiguration agent (RAp) to each device p to control and handle the 
local reconfiguration scenarios under the instructions of ScA. A token-based protocol is defined in this case for the 
coordination between the different distributed agents in order to guarantee the whole system 19s feasibility under 
energy constraints. 
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ABSTRACT Recent critical embedded systems become more and more complex and usually react to

their environment that requires to amend their behaviors by applying run-time reconfiguration scenarios.

A system is defined in this paper as a set of networked devices where each of which has its own

OS (Operating System), a processor to execute related periodic software tasks, and a local battery. A

reconfiguration is any operation allowing the addition-removal-update of tasks to adapt the device and the

whole system to its environment. It may be a reaction to a fault or even optimization of the system functional

behavior. Nevertheless, such a scenario can cause the violation of real-time or energy constraints, which is

considered a critical run-time problem. We propose a multi-agent adaptive architecture to handle dynamic

reconfigurations and ensure the correct execution of the concurrent real-time distributed tasks under energy

constraints. The proposed architecture integrates a centralized scheduler agent (ScA) which is the common

decision making element for the scheduling problem. It is able to carry out the required run-time solutions

based on operation research techniques and mathematical tools for the system’s feasibility. This architecture

assigns also a reconfiguration agent (RAp) to each device p to control and handle the local reconfiguration

scenarios under the instructions of ScA. A token-based protocol is defined in this case for the coordination

between the different distributed agents in order to guarantee the whole system’s feasibility under energy

constraints.

INDEX TERMS Embedded system, Integer programming, Low power consumption, Multi-agent

architecture, Multi-processor reconfiguration, Real-time scheduling.

NOMENCLATURE

T Set of periodic tasks
n Number of tasks in the system
Ti i-th periodic task, i = 1 . . . n
m Number of processors in a system
nbf Available scaling factors for each processor
ri Release time of task Ti

di Absolute deadline of task Ti

Cip Effective computational time of task Ti

Uip Utilization factor of task Ti on processor Pp

tip Start time of task Ti on processor Pp

Utot Total utilization in all processors
Umax Largest utilization of any task in any processor
C Constant related to the processor type

V np Normalized voltage of processor Pp

Fnp Normalized frequency of processor Pp

Fip Frequency of processor Pp when executing task Ti

Vip Voltage of processor Pp when executing task Ti

Pp p-th processor
ηk k-th available scaling factor of a processor
P Power consumption
Cnip Computational time of task Ti at normalized processor

frequency
Xipk Variable describing the assignment of task Ti to processor

Pp with scaling factor k
CM Content message
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fti Finish time of task Ti

ndi New deadline of task Ti

ICM Information content message
RCM Result content message
SA Simulated annealing
MIP Mixed integer program
DVFS Dynamic voltage and frequency scaling
EDF Earliest deadline first policy
RTSJ Real-time specification for java
RT-
MED

Implemented real-time middleware

WCET Worst case execution time
IP Integer programming
Msgk k-th communication message
Bc

p Related battery capacity from Devicep
Devicep p-th device
S Sender
R Receiver
Pip Power consumption of task Ti when executed in processor Pp

Eip Energy consumption of task Ti when executed in processor Pp

Utot Total utilization in all processors
Umaxc Largest utilization of any task in any processor
ICM Information content message
RCM Result content message
SA Simulated annealing
DVFS Dynamic voltage and frequency scaling
WCET Worst case execution time
IP Integer programming
Msgk k-th communication message
Devicep p-th device

I. INTRODUCTION

A
N embedded system (ES) is a device dedicated to spe-

cific functions. It includes hardware and software parts

which are designed to operate without human intervention.

They run usually under real-time constraints that determine

their reliability and accuracy [1]. A real-time embedded

system is any system whose correctness depends on both

functional and temporal aspects [2], [3].

Embedded real-time systems can be integrated into mo-

bile equipments such as automobiles, airplanes, and smart-

phones which allow them to perform time sensitive and

specific applications under functional and extra-functional

constraints [2], [4]. Reconfigurable real-time systems aim

to combine the benefits of flexibility by using a distributed

architecture [5]–[7]. Many of these systems are often safety-

critical and may be characterized by diverse degrees of time-

liness constraints [8]. A reconfiguration scenario is techni-

cally defined as any operation allowing the addition-removal-

update of OS software tasks to adapt the system architecture

to its environment [9], [10]. The reconfiguration may be

a reaction to a fault or even optimization of the system

behavior. Nevertheless, it can cause the violation of real-time

or energy constraints which is a critical run-time problem.

The real-time reconfigurable embedded systems require

new flexible and adaptive solutions for a true real-time sched-

ule under power constraints [11]–[13]. However, the develop-

ment and design of a scheduling architecture with high qual-

ity for real-time environment is difficult and complex. The

recent advanced technologies that enable communication and

coordination in a computing system provide the perfect way

to implement real-time based software solutions.

This paper deals with a scheduling problem of real-time

tasks in distributed architectures supporting the dynamic

voltage and frequency scaling (DVFS) capabilities [2]. The

DVFS technique is considered in the modeling phase to dy-

namically supervise the supply voltage and clock frequency

of the processors. These processors support different power

consumption profiles and processing speeds. Depending on

the system workload, the proposed model tries to scale up

or down the supply voltage and clock frequency in order to

save power when keeping all operational constraints of the

system.

In the current study, we are interested in the control

of reconfigurable discrete-event systems. Their evolution is

governed by the occurrence of asynchronous discrete events.

We consider a system composed of a set of networked

devices with limited hardware resources [14]. Each device

has its own OS, a processor to execute the local tasks and a

battery as a local power source. The considered tasks are non-

preemptive, synchronous and independent [15]. The proces-

sors are assumed to be uniform with DVFS capabilities. Each

task is characterized by a period, a deadline, a first release

date, and a normalized duration since the actual duration de-

pends on the voltage scaling factor. In this work, we consider

a non-preemptive scheduling since we use limited hardware

resources. In fact, the context switching during preemption

may cause a delay and subsequently an additional calculation

time. Therefore, the non-preemption allows to deploy non-

expensive and non-heavy platforms in terms of calculations.

The challenge is to achieve a real-time distributed system

which is reliable and accurate [16], [17]. Nevertheless, the

difficulty lies in the development and integration of an adap-

tive distributed architecture supporting these characteristics.

Many problems raise in this case such as how to manage and

control the feasibility in each device to ensure the functional

aspects and how to guarantee a better coherence through

a required coordination between the different devices. The

main purpose of setting up such an architecture is to ensure

the feasibility in the various devices that make up the system.

Each device can undergo a reconfiguration scenario that may

affect the overall system feasibility. The charge of executing

the tasks can also exceed the CPU capacity. Each device

has its appropriate battery which may not have the necessary

load to operate the processor. Since the system is composed

of multiple devices, a synchronization must be established

through the communication between them.

The communication between the different components in

the proposed architecture is based on a set of self-ruling intel-

ligent software entities called agents [5], [18]. This architec-

ture presents the way in which the roles and the relationships

between agents are defined. An agent can take the role of

controlling, reasoning and making decision according to the

environment reaction. Moreover, the agents can cooperate

and coordinate by communication.

This architecture integrates two active agents which are:

Reconfiguration agent (RAp) assigned to Devicep (p =

1...m) and scheduler agent (ScA). These intelligent agents

cooperate and communicate to ensure the operating con-
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straints and to control the stability of the system. The data

transmission between the different devices is ensured by a

token that takes the form of a data frame and is circulated

continuously between the devices. A device should grab the

token and use it as a vehicle for transmitting the information.

The reconfiguration agent (RAp) is a software component

assigned to each device in order to dynamically perform

local run-time reconfigurations according to functional or

environment requirements. The scheduler agent (ScA) is

considered as the common decision making element for

the scheduling problem. It has the autonomy to perform its

functions which are constructed by a number of behaviors

and communications triggered as a set of modules.

The proposed solution is able to operate in dynamic envi-

ronment in which the system behavior continuously changes.

This new solution produces a coherent communication be-

tween the different components through the related agents.

All the proposed solutions are compared according to a

set of metrics such as energy, execution time, and makespan.

Various tests were carried out with different instances. IP

and SA are compared to different related solutions such

as memetic algorithm (MA) reported in [48], tabu search

(TS) and simulated annealing (SA) reported in [47]. The

proposed approaches have been compared with the energy-

efficient adaptive scheduling algorithm (HVSA) and rolling-

horizon (RH-VHVSA ) reported in [38]. Furthermore, an-

other comparison is made with the approaches reported in

[46] integrating hybrid genetic algorithm (GA), simulated

annealing algorithm (SA), and LINGO software.

To evaluate the proposed architecture, we have selected a

set of metrics such as the energy consumption, response time

and the number of transmitted messages between ScA and

RAp. The comparison is considered in the worst and best

cases of the reconfiguration scenarios that may occur in the

system.

Experimental results show also the required coordination

between the system components through intelligent agents.

This is reflected in the number of received error messages

compared with the total exchanged messages after any re-

configuration. The performance of this solution is also seen

through a gain in terms of execution time of the distributed

system compared with the centralized one despite the large

number of synchronization messages. The energy gain also

approves the performance and efficiency of the proposed so-

lution. The token has allowed to valorize the synchronization

between the different components in the system by reducing

the total number of exchanged messages. This also ensures

the accuracy of the information transmitted by each agent.

The originality of this paper can be summarized as fol-

lows.

• We develop an adaptive architecture based on a set of

cooperative software agents to ensure feasible recon-

figuration scenarios under real-time and energy con-

straints. The proposed architecture aims to centralize the

decision in order to avoid errors. The data transmission

between the different devices is ensured by a token-

based communication protocol to control the traffic by

avoiding any point to point communication.

• The decision making modules of the scheduling agent

are implemented by using operation research techniques

and mathematical tools. A multi-objective mathematical

model is formulated for this reason. The asset of the pro-

posed model consists in the possibility of adaptation by

adding constraints and tuning on the objective functions

to solve analogous problems. The considered optimiza-

tion approach seeks to produce a sub-optimal solution

by optimizing the calculation time, the makespan and

the energy consumption in the whole system.

• An implementation of the proposed solution is devoted

to schedule and evaluate the performance of the multi-

agent architecture. The implementation is based on Java

technology supported by Real-Time Specification for

Java (RTSJ).

The remainder of this paper is organized as follows:

We discuss in Section 2 the originality of this paper by

studying the state of the art. In Section 3, we expose the

formalization of the problem, and we present the proposed

architecture in Section 4. In Section 5, we detail the integer

programming formulation and heuristics for reconfigurable

distributed embedded systems. Finally, we present a UML-

based approach to explain the communication between the

different agents and, we detail the experimental simulations

and comparisons to showcase and evaluate the performance

of the proposed solution.

II. STATE OF THE ART

Different approaches are proposed under a reconfigurable

architecture to resolve the scheduling problem by using the

DVFS technique [2]. These combinatorial optimization ap-

proaches are based on integer programming and heuristics.

The work reported in [19] exposes an integer program-

ming model and a heuristic strategy which try to act to the

processor speed during the execution of the OS tasks. A

mixed integer program (MIP) is formulated in [20] for the

scheduling of concurrent real-time tasks. The work reported

in [21] exhibits a real-time scheduling middleware called RT-

MED.

In [22], [23], the authors present a multi-agent system

that maximizes the power production of local distributed

generators and optimizes the power exchange. Here, the

authors take care just for the energy constraint to minimize

the operational cost.

The work reported in [24] presents a study that describes

a real-time middleware for distributed service-based applica-

tions. The work reported in [25] presents an approach to time

bounded reconfiguration in distributed real-time settings. It

exhibits a real-time running algorithm divided into a well-

bounded set of reconfiguration phases.

In [26], the authors propose a hybrid model to evaluate

the response time of real-time system under non-preemptive

fixed priority scheduling and reduced the upper bound of

network calculus for a multi-hop network. In [27], the authors

VOLUME 6, 2018 3
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propose a cloud system for real-time monitoring of multi-

drone systems used from the tracking of moving objects.

However, reconfiguration was not considered in this system.

The real-time online verification of target system config-

urations is performed in [28]. A predictable cloud computing

system in which some tasks should meet temporal constraints

is reported in [29].

The work reported in [30] exposes a real-time distributed

system in the domain of avionics by using data distribution

services over partitioned and virtualized systems.

The authors in [31] present an adaptive bandwidth based

group scheduling mechanism that supports the reconfigura-

tion of components in compositional software architectures.

However, the software scheduler shows inefficacy in terms of

utilization in a multi-core environment.

The work reported in [32] proposes a multi-agent simula-

tion model which is inspired by the ant colony approach. This

research presents some limitations such as the disturbance

events which are not considered, and the arrival date which is

ignored.

In [33], the authors present a decentralized multi-agent

system to perform optimal supply and demand matching of

the local resources and flexible appliances.

The authors presents in [34] a real-time implementation

of a multi-agent-based game theory reverse auction model

for microgrid market operations.

The research works reported in [35], [36] deal with

the implementation of distributed controllers on networked

cyber-physical systems. They expose self-triggered control

where agents communicate and make promises between them

about their future states.

The constraint satisfaction problem of efficiently allocat-

ing virtual machines (VM) resources to physical machines

with the aim of minimizing the energy consumption is ad-

dressed in [37].

Each of the related works has benefits and limits. Some

related works do not address the context of reconfigurable

systems and cannot be generalized as the number of tasks in-

creases. A few of the proposed multi-agent architectures pro-

duce too many messages between agents which increases the

computational cost. Furthermore, the problem of switching

processors between different modes of power consumption

and scaling the CPU speed according to the workload in a

multi-agent system has not been explicitly addressed. Thus,

the works supporting all of these criteria provide specific

models that remain linked to an explicit application frame-

work, well-defined input parameters and pre-determined

environmental constraints which make its update difficult.

Therefore, we try to solve the problems mentioned above

by proposing a multi-agent architecture that aims to model

the communication between all the system components and

determine the operational measures while minimizing the

energy consumption. The proposed architecture aims to cen-

tralize the decision in order to avoid errors.

III. FORMALIZATION OF THE SYSTEM AND RELATED

CONSTRAINTS

We formalize a reconfigurable system composed of real-

time tasks under energy constraints to be distributed on

networked devices. In this section, we present the notation

used for the tasks and energy modeling.

We consider a set of n real-time tasks T =
{T1, T2, . . . , Tn} to be executed upon a distributed platform.

The tasks are periodic, independent and non-preemptive [38].

The deadlines are equal to periods and the multi-processing

is authorized. We define a hardware platform to be composed

of m identical processors where each one has nbf available

scaling factors. Each task Ti can be assigned to at most one

processor Pp (p = 1 . . .m) and is characterized by the

following parameters [1]: (i) Release time ri, i.e., Ti cannot

start before time ri on each processor, (ii) Absolute deadline

di, i.e., Ti must finish execution before deadline di, and (iii)

Computation time at normalized processor frequency Cnip.

We define for each task Ti its utilization factor on p-th

processor by Uip (i = 1 . . . n, p = 1 . . .m). The utilization

is the ratio of execution requirement to its period in processor

Pp, i.e.,

Uip =
Cip

di
(1)

We define the total utilization Utot to be the sum of the all

tasks utilization in each processor, i.e.,

Utot =
m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Uip.Xipk (2)

where Xipk is a binary variable defined in equation (2).

We also define the maximum utilization Umax of the tasks

to be the largest utilization of any task in any processor.

We respectively denote by Fnp and V np the normalized

frequency and voltage of processor Pp (p = 1...m). We

assume that they are proportional.

We suppose that Ti is executed at frequency Fip and

voltage Vip in processor Pp. Let ηk be the k-th available

scaling factor of voltage on processor Pp. We have

Vip =
V np

ηk
(i = 1 . . . n, p = 1 . . .m) (3)

Thus, we obtain

Cip = Cnip.ηk (4)

When the system is running at frequency Fnp and voltage

V np, the power consumption is given by

P = C.V np
2.Fnp (5)

where C is a constant that depends on the hardware circuit

[1]. The power Pip consumed by task Ti on processor Pp is

given by

Pip = C.Vip
2.Fip = C.

V np.Fnp

ηk3
(6)

4 VOLUME 6, 2018
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TABLE 1: Classification of the related works.

Real-time systems [1], [2], [3], [8], [9], [10], [20], [21]

Reconfigurable systems [5], [6], [7], [12], [13], [14], [15], [23]

DVFS capabilities [2], [3], [13], [14], [15]

Distributed systems [4], [5] [8], [9], [12], [18], [19], [22], [25], [28], [29], [30], [31], [38], [39], [40]

Multi-agent systems [16], [17], [24], [25], [26], [27], [28]

Middleware [18], [21], [15]

Consequently, the energy Eip consumed by task Ti on pro-

cessor Pp is expressed by

Eip = Pip.Cip = C.
Vn.fn.Cnip

ηk2
= R.

Cnip

ηk2
(7)

where constant R = C.V np.Fnp. The total energy consump-

tion in the system is presented by

E =
m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Eip.Xipk = R

m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Cnip.Xipk

ηk2

(8)

where

Xipk =







1 if task Ti is assigned to processor Pp

with scaling factor k

0 otherwise

(9)

The feasibility of the system represents the starting point

to the scheduling problem. It must fulfill the schedulability

analysis of all tasks on the different processors while keeping

an eye on the energy reserve for the battery of each device.

The schedulability analysis presents a crucial phase in the

resolution process. For a distributed platform, it consists in

the aptness to plan the execution of the different tasks in the

system on the processors without exceeding their capabilities

while guaranteeing all deadlines.

According to the research work reported in [39], the

utilization guarantee for EDF or any other static-priority

multi-processor scheduling algorithm cannot be higher than
m+1
2 for an m-processors platform. The research work re-

ported in [40] proves that it is possible to schedule on m

processors, any system of n independent periodic tasks with

maximum individual utilization Umax and a total utilization

Utot < mk+1
k+1 , where k = 1

Umax

. When Umax = 1, the

guaranteed utilization bound is m+1
2 . Since each device has

its appropriate battery reserve, each battery will have the cor-

respondant capacity which is presented by Bc
p, (p = 1 . . .m).

The energy consumption in each device does not exceed the

battery capacity; otherwise the feasibility will be lost and the

system will fail.

IV. MULTI-AGENT ARCHITECTURE FOR DISTRIBUTED

RECONFIGURABLE EMBEDDED SYSTEMS

After formalizing the problem by using the integer pro-

gramming approach, we come to a mathematical model that

brings together the objective function and a set of constraints

such as schedulability, time and energy cost to pattern the

system. The proposed model is responsible for the optimal

allocation of all tasks to the processors for execution. It is

able to determine for each task the execution speed, start

time, finish time and effective execution duration on the

target processor.

We are now looking to embed the developed solution in

a distributed architecture to implement a functional real-time

system. However, the development of such an architecture

with a high quality of communication and coordination be-

tween all the components is difficult and complex. Indeed, it

demands several requests such as the system implementation,

validation and optimization.

We present in this section an overview of the proposed

multi-agent architecture that meets the real-time standards.

This architecture attempts to centralize the decision in order

to avoid errors. We present the structure of the overall archi-

tecture followed by a description of the modules that ensure

the coordination and communication between the different

agents across a communication protocol.

This architecture integrates two active agents which are:

Scheduler Agent (ScA) and Reconfiguration Agent (RAp).

The objective of these agents is to ensure the operating

constraints and to control the stability of the system. These

intelligent agents cooperate and communicate on time to

perform this challenge. Fig. 1 describes the interactions of

these agents in the proposed architecture and outlines the

principle functionalities.

Reconfiguration Agent (RAp): The role of the recon-

figuration agent consists in locally applying the addition-

removal-update of real-time tasks to adapt the related device

and the whole system to its environment. However, these

functional reconfiguration scenarios may not respond to the

time and power requirements and can push the system to

an infeasible state. In this case, the RAp coordinates and

requests a help from the scheduler agent which proposes

the required solutions by using advanced operation research

techniques. RAp applies them in the related local device.

Scheduler Agent (ScA): It is considered as the common

decision making element for the scheduling problem. The

scheduler has the autonomy to perform its functions which

are constructed by a number of behaviors and communica-

tions triggered as a set of modules. The computation is cen-

tralized in this agent to avoid any error. The decision making

modules of the scheduler are implemented using operation

research techniques and mathematical tools. Once a request

is received from RAp, the scheduler triggers proactively

the coordination module and the solver which is based on

mathematical programming and heuristics. It uses advanced

operation research techniques in decision making modules to

produce an optimal solution [19], [20], [41]. It is responsible

VOLUME 6, 2018 5
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FIGURE 1: Multi-agent architecture overview.

for (i) the management of the consumed energy in the system,

(ii) ensuring the calculation of the solution, (iii) sending

statistics on the current state, (iv) updating a non feasible

solution, and (v) communicating the solution to each RAp.

ScA is capable to carry out the necessary calculation

to produce a solution which supports the system’s demand

to ensure the feasibility. It includes (i) An executive, and

(ii) CPLEX equations to deal with calculations. CPLEX1

is a commercial optimization software package to handle

mathematical programming problems [42]. It presents a de-

cision analytical tool that enables the rapid development and

deployment of optimization models by using mathematical

and constraints programming.

Token: The access to different devices is supported by a

dedicated token which ensures the regular passage through

each one to exchange the messages and the related informa-

tion. The token is used to minimize the traffic of messages

between all entities by avoiding the point to point com-

munication. In fact, token ring adapts the unbalanced loads

which are common in heavy traffic. However, TDMA (Time

Division Multiple Access) adaptation is required to support

unbalanced loads which will increase the overhead relative

to token ring.

Communication Protocol: The proposed architecture

requires a specification of how the responsibilities of the

1ILOG CPLEX. http://www.ilog.com/products/cplex/, October 2003.

system will be distributed among its agents. Such a speci-

fication enhances how the related agents will interact with

each other to reach their requested liability. The system is

composed of m different networked devices. If a point-to-

point communication between the devices is considered, then

the number of messages will be large and can produce a

congested traffic especially when the number of devices is

multiplied [43]. This can slow down the communication and

eventually the operating services in the system.

To avoid this problem, we propose a token ring topology

where a token is used to minimize the exchanges of messages

among all entities. A set of communication rules will be

necessary to control the interactions of the different agents

and the information exchange. This architecture requires a

specific communication protocol that determines the possi-

ble relationships among all agents. This protocol assumes

that the communication among agents takes the form of

messages routed from a particular agent to another. This

communication allows to share the status and circulate the

information between the agents in order to achieve a solution

and facilitate the decision-making. For example, a message

from RAp to ScA allows to exchange information about

the device where the reconfiguration occurs, the processor

utilization, the assigned tasks and the new parameters after

reconfiguration. After calculating solutions, ScA re-sends

the new parameters to be applied in each device to reach a
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feasible system.

The protocol imposes particular constraints on agent mes-

sages to manage the agent communication and negotiation.

The constraints specify the set of allowed message types,

message contents and the correct order of messages during

the conversation between agents. The message structure is

specified to abstractly represent the message content. A

message is structured with three parts: The sender, the re-

ceiver and the content. The message is formulated by Msg

(S,R,CM), where the sender is S, the receiver is R, and the

content message is CM . When a reconfiguration is requested

in Devicep (p ∈ [1 . . .m]), RAp tries to apply it. If it has a

local problem about temporal or power constraints, it sends a

message Msgk to inform ScA in order to resolve the detected

problem.

The content message (CM) has two different types. The

first is called an information content message when the

sender is RAp (p = 1...m) and the receiver is ScA. It can be

formally presented by ICM (Devicep, AT p, Up, Ep) which

includes the appropriate information (assigned tasks, CPU

utilization, energy, etc) of each related Devicep at time t.

Each RAp puts the information about the device status in

the token to be delivered to ScA. Each line in the table

corresponds to the information inserted by each RAp. Table 2

exhibits an example of a message instance.

ScA receives Msgk from RAp and sends a request to

collect the required information from all devices. Once the

information is collected, it triggers the calculation modules

to make a decision about the current situation. When the

solution is ready, ScA delivers the content message (CM) to

all devices. The second message is called result content mes-

sage when the sender is ScA. This message can be presented

by RCM (Ti, Pp, Cnip, ti, fti, di, ndi, Cip, ηk). It includes

the resulting solution calculated by the scheduler agent and

describes the tasks assignment and the new operational pa-

rameters such as the start, finish time and the deadline of

each task (Table 3). The reliability of the system requires

various entities and programs that must work together to

achieve the global feasibility. The whole system should react

in such a way that all the entities are closely coordinated. A

number of intelligent agents have been applied and developed

to achieve the objectives. The purpose of these intelligent

agents is to achieve faster decision control. This architecture

is able to quickly adapt to system changes. It specifies the

distribution of the responsibilities among all agents. This new

solution produces a coherent communication between the

different components through the related agents. It provides

good quality both in terms of execution time and energy

consumption.

V. OPTIMIZATION-BASED APPROACH FOR

INTELLIGENT SCHEDULER AGENT

We are interested in this section in the approaches han-

dled by the ScA agent. This method generates the functional

parameters of the feasible system. The correspondent mod-

ules attempt to (i) modify the different processors speeds if

necessary, and (ii) adjust the basic settings of the system.

Here, we introduce two distinct approaches for the online

modification of processor’s speeds and tasks periods: Integer

programming (IP) and simulated annealing (SA).

A. INTEGER PROGRAMMING APPROACH

The integer programming model includes task’s param-

eters, constraints to be met throughout execution and the

objective function. A set of modules will be called to support

this need such as Change processor speed (), feasibility test

(), and Determine start_finish time().

1) Assignment Constraints

The main challenge of the scheduling problems upon

distributed platforms is to assign tasks to the processors

and determine their execution sequences with the corre-

sponding frequencies [44]. We suppose that each processor

has a set of nbf available scaling factors. To model the

assignment constraint between the tasks, processors and fre-

quency scaling factors, we propose a binary variable X =
(Xipk), where i = 1 . . . n, p = 1 . . .m, k = 1 . . . nbf ,

and

Xipk =







1 if task Ti is allocated to processor Pp

with the scaling factor k

0 otherwise

(10)

In the system, each task must be executed with one and only

one frequency. This constraint is given by

nbf
∑

k=1

Xipk = 1; i = 1 . . . n; p = 1 . . .m. (11)

In the same way each task must be allocated to only one

processor, which is represented by

m
∑

p=1

Xipk = 1; i = 1 . . . n; k = 1 . . . nbf. (12)

2) Non-preemption Constraints

In this work, we consider a non-preemptive scheduling

policy in order to reduce the number of context switching.

Let tip be the effective starting time of task Ti on processor

Pp. The starting time of each task must have a positive value,

i.e.,

tip ≥ 0; i = 1 . . . n; p = 1 . . .m. (13)

Since the treated scheduling problem is non-preemptive, task

Tj cannot be started before Ti ends its execution, which

means that the difference between the starting times of Ti

and Tj is necessarily greater than the execution time of

Ti or in reverse if Tj starts before Ti. To ensure a single

executed task at any particular time, we should have either

tjp − tip − Cip ≥ 0 or tip − tjp − Cjp ≥ 0 for every pair of
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TABLE 2: Information content delivered to ScA

Reconfiguration agent Device Assigned tasks CPU Utilization Energy

RA1 Device1 {T5, T6, T1} U1 E1

RA2 Device2 {T3, T9, T7, T1} U2 E2

RA3 Device3 {T8, T2} U3 E3

. . . . .

. . . . .

RAm Devicem {...} Um Em

TABLE 3: Result content of ScA

Task CPU WCET Start time Finish

time

Last dead-

line

New dead-

line

New

WCET

scaling

factor

T1 P1 Cn11 t1 ft1 d1 nd1 C11 η1

T2 P2 Cn22 t2 ft2 d2 nd2 C22 η2

T3 P3 Cn33 t3 ft3 d3 nd3 C33 η3

. . . . . . . . .

. . . . . . . . .

Tn Pm Cnnm tn ftn dn ndn Cnm ηn

tasks Ti and Tj . We add a binary variable αij to ensure both

inequalities at the same time, i.e.,

αij ∈ {0, 1}; i 6= j; i, j = 1 . . . n. (14)

αij = 1 means that Ti is executed before Tj . To guarantee

the respect of constraints (2.5) and (2.6), the starting time of

each task should be less or equal to the big constant M , i.e.,

tip ≤ M ; i = 1 . . . n; p = 1 . . .m. (15)

αij = 1 means that Tj is executed before Ti. Such a formula

means that, if task Ti starts before task Tj on processor

Pp, then task Tj cannot start execution on processor Pp

before task Ti finishes execution. By adding the assignment

constraints, we ensure only one active task at any time on

each processor. The related constraints are given by

tip − tjp ≥ Cnjp.ηk.Xjpk −M.αij ; i 6= j; i = 1 . . . n;

p = 1 . . .m; k = 1 . . . nbf.
(16)

tjp − tip ≥ Cnip.ηk.Xipk −M(1− αij); i 6= j; i = 1 . . . n;

p = 1 . . .m; k = 1 . . . nbf.
(17)

ηk ≥ 0; p = 1 . . .m; k = 1 . . . nbf. (18)

3) Temporel Constraints

The temporal constraints are assigned when the accuracy

of the system is determined by the dates on which the

execution results are available.

1) The deadline of each task should be respected in a

way that each starting task should finish its execution

without violating its deadline, i.e.,

tip + Cnip.ηk.Xipk ≤ di; i = 1 . . . n; p = 1 . . .m;

k = 1 . . . nbf.
(19)

2) Each task should start execution after its release time,

i.e.,

tip ≥ ri; i = 1 . . . n; p = 1 . . .m. (20)

4) Power Constraints

Embedded systems are increasingly incorporating more

functionalities that require significant computing power.

However, the operation of such systems relies on batteries.

The minimization of the energy consumed by the system

becomes a very important criterion. Several solutions based

on DVFS technology have been performed. These solutions

aim to minimize the system energy consumption by adjusting

the working voltages and frequencies of the processor. Ac-

cording to the considered architecture of a system, the energy

Eip consumed by task Ti on processor Pp is modeled by

Eip = Pip.Cip = C
Vn.Fn.Cnip

ηk2
= R.

Cnip

ηk2
; i = 1 . . . n;

p = 1 . . .m; k = 1 . . . nbf
(21)

where constant R = CVnFn. Then, the total energy con-

sumption in the system is

E =
m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Eip.Xipk = R.

m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Cnip.Xipk

ηk2
.

(22)

The aim is to fulfill the schedulability analysis of all tasks

on the different processors while keeping an eye on the

energy reserve for each device battery. Since each device

has its appropriate battery reserve, each battery will have the

correspondent capacity which is presented by Bc
p. The energy

consumption in each Devicep does not exceed the battery

capacity. For this reason, we add the following constraint,

i.e.,

R

m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Cnip.Xipk

ηk2
≤ Bc

p (23)

In this paper, we suppose that the reconfiguration scenarios

are not as frequent as the execution frequency of tasks.

Therefore, we are not interested in the energy consumed by

each reconfiguration.
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5) Problem Modelling

After the modeling of assignment, temporal and power

constraints related to the present system, we illustrate the

basic linear program Prob: The objective is to minimize the

energy consumption while respecting the previous defined

constraints. This model Prob can be extended to adjust the

periods whenever no solution exists even for the highest

voltages. We add the variable θi to represent the increasing

factor of the period of task Ti. To confirm the drawing of the

period, we propose the following constraint, i.e.,

θi ≥ 1; i = 1 . . . n. (24)

We add the constant λ which represents a trade-off weight

between the increasing factor θi and the energy.

The considered objective function becomes

Minimize λ

n
∑

i=1

θi +R

m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Cnip.Xipk

ηk2
(25)

By incorporating the periods adjustment constraint, we guar-

antee that each task finishes execution before its related

deadline. Constraint (12) becomes

tip + Cnip.ηk.Xipk ≤ θi.pi ; i = 1 . . . n; p = 1 . . .m;

k = 1 . . . nbf.
(26)

To control the adjustment of any period pi when the system

needs this service, we define two parameters pmin and pmax

to represent respectively the lower and upper bounds of

period pi.

We add equation (20) in the mathematical program EProb.

pmin ≤ θi.pi ≤ pmax ; i = 1 . . . n. (27)

The mathematical model is multi-objective and combines

a set of performance measurement criteria such as compu-

tational time and makespan in addition to the minimization

of the energy consumption in the whole system. The com-

putation based on the mathematical programing allows to

produce all the functional parameters to achieve a feasible

system. This model allows not only to provide an operational

solution but also a sub-optimal one. A strength point which

characterizes this model is that it is extensible and adaptable

to several ranges of real-time systems.

B. HEURISTIC APPROACH

Since these problems are NP-hard [45], it is a common

idea to use a heuristic approach to achieve optimal solutions.

The simulated annealing (SA) [19] has been implemented in

order to compare it to integer programming. The simulated

annealing is based on neighborhood search (Fig. 2). It starts

with a random solution to improve it over iterations. Such

heuristics always move from a solution to the best neighbor-

ing one. In order to escape local minima, SA allows different

movements in a controlled manner where in each step it

generates a perturbation. If the objective function decreases,

then the generated solution is accepted. Otherwise, the new

state is accepted with a probability related to the increase.

The initial starting temperature and the stop criteria should

be ensured.

FIGURE 2: Heuristic flowchart

Initial Solution:

The initial solution can be computed by the following

way: Among 100 random combinations, we choose the

combination which gives the best objective function as the

start point. The selected combination should only respect the

deadlines of all tasks.

Objective Function:

The objective function consists in minimizing the sum

of the total energy consumption, the makespan and the total

execution time.

Neighborhood Structure:

By defining the neighborhood of a configuration in the

set of solutions that can be reached from the current one. In

practice, a neighbor solution is built by either swapping the

allocation order of two tasks randomly selected, or by acting

in the execution frequency of a task randomly chosen.

Simulated Annealing Parameters:

The main parameters of the simulated annealing method

are the initial temperature, the temperature length, the cool-

ing ratio and the stopping criteria.

• Initial Temperature: The temperature parameter plays

an important role for accepting or rejecting objective

VOLUME 6, 2018 9
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Minimize R

m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Cnip.Xipk

ηk2

tip − tjp ≥ Cnjp.ηk.Xjpk −M.αij i 6= j; i, j = 1 . . . n; p = 1 . . .m; k = 1 . . . nbf (16)
tjp − tip ≥ Cnip.ηk.Xipk −M(1− αij) i 6= j; i, j = 1 . . . n; p = 1 . . .m; k = 1 . . . nbf (17)
tip + Cnip.ηk.Xipk ≤ di i = 1 . . . n; p = 1 . . .m; k = 1 . . . nbf (19)

R

m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Cnip.Xipk

ηk2
≤ B

c
p i = 1 . . . n; p = 1 . . .m; k = 1 . . . nbf (23)

m
∑

p=1

Xipk = 1 i = 1 . . . n; k = 1 . . . nbf (12)

nbf
∑

k=1

Xipk = 1 i = 1 . . . n; p = 1 . . .m; (11)

tip ≤ M i = 1 . . . n; p = 1 . . .m (15)
tip ≥ 0 i = 1 . . . n; p = 1 . . .m (13)
tip ≥ ri i = 1 . . . n; p = 1 . . .m (20)
ηk ≥ 0 k = 1 . . . nbf (18)
αij ∈ {0, 1} i 6= j; i, j = 1 . . . n; (14)
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Minimize λ

n
∑

i=1

θi +R

m
∑

p=1

n
∑

i=1

nbf
∑

k=1

CnipXipk

ηk2

tip − tjp ≥ Cnjp.ηk.Xjpk −M.αij i 6= j; i, j = 1 . . . n; p = 1 . . .m; k = 1 . . . nbf (16)
tjp − tip ≥ Cnip.ηk.Xipk −M(1− αij) i 6= j; i, j = 1 . . . n; p = 1 . . .m; k = 1 . . . nbf (17)
tip + Cnip.ηk.Xipk ≤ θi.pi i = 1 . . . n; p = 1 . . .m; k = 1 . . . nbf (26)
θi ≥ 1 i = 1 . . . n; (24)
pmin ≤ θi.pi ≤ pmax i = 1 . . . n (27)

R

m
∑

p=1

n
∑

i=1

nbf
∑

k=1

Cnip.Xipk

ηk2
≤ B

c
p i = 1 . . . n; p = 1 . . .m; k = 1 . . . nbf (23)

m
∑

p=1

Xipk = 1 i = 1 . . . n; k = 1 . . . nbf (12)

nbf
∑

k=1

Xipk = 1 i = 1 . . . n; p = 1 . . .m; (11)

tip ≤ M i = 1 . . . n; p = 1 . . .m (15)
tip ≥ 0 i = 1 . . . n; p = 1 . . .m (13)
tip ≥ ri i = 1 . . . n; p = 1 . . .m (20)
ηk ≥ 0 k = 1 . . . nbf (18)
αij ∈ {0, 1} i 6= j; i, j = 1 . . . n; (14)

functions. The initial temperature is fixed to 95. It must

be high enough such that the final solution is indepen-

dent from the starting one. It determines the probability

of deterioration,

• Temperature Length: The temperature length (40) is the

number of iterations at a given temperature. However

the temperature length may vary from temperature to

temperature and is important to spend a long time at

lower temperatures,

• Rate of Temperature Decrease: For less probability of

accepting unfavorable solutions, the temperature should

be decreased. The cooling ratio is the rate at which the

temperature is reduced. In this paper, it is preferred to

be fixed to µ = 0.9,

• Stop Criteria: In our simulation, the simulated anneal-

ing stops when the minimum value of the temperature

reaches (5) or a certain number of iterations has been

passed without improvement or when a number of 1000
iterations has been reached.

VI. EXPERIMENTATION

This part is devoted to explain the communication be-

tween the different agents by using a UML-based approach.

Furthermore, experimental simulations and comparisons are

depicted to evaluate the performance of the proposed solu-

tion.

A. DESIGN OF THE PROPOSED MULTI-AGENT

RECONFIGURABLE ARCHITECTURE

The classes diagram presents the various entities that can

act in the execution phase. The “Device” class represents

an instance of the devices that make up the system. Each

device contains an operating system (Fig. 3) that ensures

the management and execution of a set of tasks that repre-

sent functional requirements. It includes also a processor to

execute the assigned tasks and a battery. Each OS handles

the coordination with related RAp. The agent RAp has a

“Listener” that takes the role of an event controller, and

its objective is to apply the reconfiguration scenario in the

10 VOLUME 6, 2018
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device.

The “Scheduler” class is composed of a set of modules

to recover the functional parameters and find solutions that

stabilize the system. These modules are based on the “in-

teger programming” and “heuristic” approaches. The class

“Reconfiguration Scenario” presents the reconfiguration that

any device can sustain. It includes the following modules:

(i) Receive status() to confirm the reception of the status

according to the standard required, (ii) Update solutions() to

re-calculate a new solution according to the current system

situation, (iii) Change processor speed() to change the pro-

cessor speed and to ensure the execution of all tasks while

minimizing the energy consumption, (iv) Adjust periods() to

change the basic tasks parameters such as periods in order

to provide a new parallelism that guarantees the system

feasibility, (v) Feasibility test() to measure the feasibility

of the system at run-time, (vi) Display results() to take

care of the dynamic display which describes the flow of

execution and finds results, (vii) CPLEX Java() to use the

modules CPLEX Java responsible to execute mathematical

programming models and recovery results, (viii) Calculate

new periods() to calculate new tasks parameters after modifi-

cation, and (ix) Determine Start_finish time() to produce the

execution sequence of tasks (start and finish time) for each

solution.

Each reconfiguration agent RAp is responsible of ap-

plying reconfigurations in each device and some of related

implemented modules are: (i) Solution Request(): To request

a solution from ScA when a local problem appears, (ii)

Apply Reconfiguration(): To apply a reconfiguration scenario

in the Devicep, and (iii) Receive Solution(): To confirm the

reception of the sent solution.

The intermediary through which the different agents com-

municate is represented by the class “Protocol”. Some of

important implemented modules are presented as follow: (i)

Fix Sender(): Determines the sender of the related message,

(ii) Fix Receiver(): Determines the receiver of the related

message, (iii) Resolve Error Message(): Detects and resolves

the error messages, and (iv) Ensure Message Receipt(): En-

sures the reception of all transmitted messages. The sequence

diagram presents an order of events and communications

between the agents as shown in Fig. 4. The objective is

to achieve the requisite outputs and provide the best solu-

tion that maintains the system in correct conditions. The

reconfiguration agent (RA) stays available and listening to

any reconfiguration that can be raised in the related device.

Once it spots a reconfiguration, it sends a request to the

scheduler agent (ScA) to solve the problem. ScA examines

the system feasibility and try to achieve a solution by using

optimization approaches which act on the processor speed.

Once the solution is accomplished, RA will apply the new

reconfiguration in the related system’s device.

A reconfiguration agent (RA) is assigned to each device

to apply required reconfiguration scenarios at run-time and

under well-defined conditions described in user requirements

to adapt the device and the whole system to its environment.

It is not a reconfigurable agent that undergoes reconfigura-

tions. Indeed, the reconfiguration agent is a software compo-

nent responsible for dynamically applying reconfigurations

in each system’s device. A reconfiguration scenario is any

run-time operation allowing the addition-removal or update

of system software tasks. When the related temporal and

power constraints are not satisfied after any scenario, RA

changes the tasks’ WCETs provided by the scheduler agent

by dynamically changing the processor speed.

B. APPLICATION: FORMAL CASE STUDY

We present a case study in this section to explain the

interactions of the different agents through this architecture.

We consider a multi-agent distributed platform composed of

three devices and the set of tasks presented in Table 4.

TABLE 4: Information content of RA2

Device Assigned tasks CPU Utilization Energy

Device1 {T1, T2, T4} 0.815 1680
Device2 {T3} 0.433 936
Device3 {T5} 0.32 768

Table 5 below describes the tasks parameters before ap-

plying the reconfiguration scenario.

TABLE 5: Task parameters before reconfiguration

Tasks Release time WCET deadline period

T1 0 20 70 70
T2 0 22 80 80
T3 0 39 90 90
T4 0 28 110 110
T5 0 32 100 100

According to the feasibility test (Section III), we have
1

Umax

= 90
39 = 2.307.

The system is feasible since the total utilization

Utot = 1.568 ≤ (3∗2.307+1)
2.307+1 = 2.395.

The energy is equal to 3384 Joules.

We assume a run-time reconfiguration scenario in

Device2 to add three new tasks under environment require-

ments shown in Table 6. Table 7 describes the parameters of

TABLE 6: Information content transmitted from RA2

Device Assigned tasks CPU Utilization Energy

Device1 {T1, T2, T4} 0.815 1680
Device2 {T3, T6, T7, T8} 2.474 5616
Device3 {T5} 0.32 768

the global tasks system after the reconfiguration scenario.

TABLE 7: Tasks parameters after reconfiguration

Tasks Release time WCET deadline period

T1 0 20 70 70
T2 0 22 80 80
T3 0 39 90 90
T4 0 28 110 110
T5 0 32 100 100
T6 0 50 85 85
T7 0 65 94 94
T8 0 80 105 105
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FIGURE 3: Class diagram.

According to the new system parameters after reconfig-

uration, ScA analyses the feasibility. The total utilization

Utot = 3.610 ≥ (3∗1.235+1)
1.235+1 = 2.105. The new system

becomes infeasible since the timing constraints cannot be met

and the energy consumption increases to 8064. The related

RA2 automatically sends an information message to ScA

which takes the present format: Msgk( RA2, ScA, ICM).

The message ICM is presented by Table 6.

ScA requests the information from all devices where

each one puts the corresponding information across the token

(Table 4). The token will gather the information and deliver

it to ScA which should now ensure the feasibility of all tasks

while consuming no more energy. It calls its specific modules

based on the optimization approaches to calculate a solution

according to the given information.

Once a solution is ready, ScA sends a resulting message to

all RAp. The message contains the following informations:

Msgk (ScA, RA2, RCM) where the scheduler agent ScA

represents the sender, the reconfiguration agent RA2 repre-

sents the receiver and the result content message RCM in-

cludes the resulting solution calculated by ScA. The message

RCM is described in Table 9. ScA computes for each task

the start time, finish time, and the new WCET after changing

the scaling factor of the processor speed. This result presents

the output of the module which is dedicated to calculate

the system feasibility. The new reconfiguration that will be

applied in the system as a solution is shown in Table 8.
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FIGURE 4: Sequence diagram of a reconfiguration scenario.

TABLE 8: Information content transmitted to RA2

Device Assigned tasks CPU Utilization Energy

Device1 {T4, T8} 0.86 2188
Device2 {T1, T2, T7} 0.36 715
Device3 {T5, T6, T3} 0.74 1588

C. PERFORMANCE EVALUATION

We have used ILOG CPLEX 11.1 solver to execute the

integer programming model on a mono-processor core 2

duo, 1.2 Mhz and 1 Giga RAM. CPLEX2 is a commercial

optimization software package to handle mathematical pro-

gramming problems [42]. It presents a decision analytical

tool that enables the rapid development and deployment of

optimization models by using mathematical and constraints

programming.

In the conducted experimentation, we have randomly

generated different task sets with 50 to 400 tasks. In Tables

10 and 11, the first column shows the size of the problem

(number of tasks). The sub-column labeled “Time” indicates

the computational time in milliseconds for each approach.

The sub-column labeled “Energy” gives the total energy

consumption. The sub-column labeled “Makespan” gives the

maximum execution time from all tasks in the system. The

2ILOG CPLEX. http://www.ilog.com/products/cplex/, October 2003.

methods faced a common objective and identical constraints.

Table 11 shows that the energy consumption of the applied

integer program is lower than that of the heuristic. However

for the large size instances, the heuristic is still much faster.

Moreover, the two approaches guarantee that all constraints

are respected.

Figs. 5, 6, 7 and 8 describe the evolution of the energy,

execution time and makespan for an instance of 200 tasks

executed upon different multi-processor platforms (4CPU,

8CPU, 16CPU). According to the energy consumption, the

integer programming (IP) is more effective than simulated

annealing (SA) for almost different instances from 50 to

400 tasks and platforms (Figs. 5 and 6). In fact, it allows

to more explore the search space and gives a fairly optimal

solution. The SA approach allows to achieve sub-optimal
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FIGURE 5: Energy evolution with different tasks sets.
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FIGURE 6: Energy evolution with different numbers of processors.

results in a reasonable time. It proves its efficiency in terms

of computational time and shows a large difference with the
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TABLE 9: Result Content provided by ScA

Task CPU Release
time

WCET Start
time

Finish
time

Deadline New
WCET

Scaling
factor

T1 P2 0.00 20.00 0.00 4.00 70.00 8.00 0.40
T2 P2 0.00 22.00 8.00 16.80 80.00 8.80 0.40
T3 P3 0.00 39.00 12.80 36.20 90.00 23.40 0.60
T4 P1 0.00 28.00 0.00 11.20 110.00 11.20 0.20
T5 P3 0.00 32.00 0.00 12.80 100.00 12.80 0.40
T6 P3 0.00 50.00 36.20 66.20 85.00 30.00 0.60
T7 P2 0.00 65.00 16.80 68.80 94.00 13.00 0.80
T8 P1 0.00 80.00 11.20 91.20 105.00 80.00 1.00

TABLE 10: Applied integer programming results with different number of processors

Integer Programming (IP)
4 CPU 8 CPU 16 CPU

Tasks Time Energy Makespan Time Energy Makespan Time Energy Makespan
50 601.21 868.15 311.14 899.15 791.36 94.00 766.44 719.22 36.80
100 937.98 1301.45 479.62 789.76 1120.37 111.60 1038.30 1067.22 69.95
200 1053.03 1689.55 665.20 1153.54 1422.61 222.43 1274.22 1263.20 103.20
300 1234.14 1809.84 788.43 1405.62 1589.05 289.54 1592.11 1409.45 184.60
400 1351.57 2137.49 919.39 1608.63 1744.25 318.77 1802.44 1522.85 265.40

TABLE 11: Applied simulated annealing results with different number of processors

Simulated Annealing (SA)
4 CPU 8 CPU 16 CPU

Task Time Energy Makespan Time Energy Makespan Time Energy Makespan
50 101.25 946.24 295.40 243.57 763.19 315.30 309.22 721.00 294.30
100 242.50 1389.56 485,60 413,52 977.91 440.80 489.03 825.13 356.46
200 422.96 1733 710.20 529.09 1306.04 488.60 624.99 1132.00 385.10
300 833.12 1945.55 855.68 969.15 1645.17 590.80 833,50 1384.76 440.00
400 1012.66 2388.71 956.10 1244.70 1933,18 660.20 1377.03 1652.09 525.30

especially large-size task sets and processors (Fig. 7). IP

needs more time than SA to produce the desired result. This

is because IP represents an exact method which explores all

available solutions then selects the optimal one. SA is an

approximation method which tries to better explore the re-

search space of solutions and keeps the closest approximation

solution to the optimal.
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FIGURE 7: Comparison between SA an IP based on computational
time.

About the makespan metric, the two approaches produce

close results under a platform of four processors. When we
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FIGURE 8: Comparison between SA an IP based on the Makespan.

multiply the number of processors, the IP approach approves

its ahead versus SA from different instances (Fig. 8). In fact,

IP is an exact method which is able to explore more the

research space and execute widely the available combinations

according to the related constraints. Yet, this can influence on

the computing time which can be enough high.

Figs. 9 and 10 present comparative evaluation of IP and

SA based on the number of periods and adjusted frequencies

during the execution of the instances. The result still shows
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the advantage of SA over IP.
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FIGURE 9: Comparison between SA an IP based on the number of
adjusted frequencies.
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FIGURE 10: Number of adjusted periods after each reconfiguration
scenario.

According to the SA complexity (Fig. 11), we show that

it offers much better quality to solve the scheduling problem

of real-time tasks with a reasonable execution time. One of

the algorithm features lies in its adaptation to different con-

straints such as temporal constraints, precedence constraints

and resource-sharing constraints.

We must also admit that the choice of parameters requires

certain skills, especially for simulated annealing, where there

are more than one parameter to be tuned, namely the number

of iterations and the temperature update. It remains difficult

to demonstrate SA’s theoretical complexity for this problem.

The proposed solution allows to compute the scaling

factors more than the execution sequence of tasks, the start

and the finish time of each task. Table 12 and Fig. 12 show
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FIGURE 11: Experimental complexity of SA.

that the proposed approaches (IP and Heuristic) produce

better results than the works presented in [46] according

to the computational time for instances of 10 to 25 tasks

with a multi-processor platform composed of 10 and 15
processors. The related approaches do not address also the

context of reconfigurable systems. In Table 14, the pro-

TABLE 12: Comparison between IP, SA and Majazi [46]

Computational Time (ms)

Tasks Processors IP SA GA [46] SA [46] Lingo [46]
10 10 145 80 350 165 100
20 10 335 205 400 200 164
20 15 211 135 416 121 850
25 15 803 460 900 750 940
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FIGURE 12: Comparison between IP, SA and Majazi [46] based
on execution time.

posed approaches have been compared with the work in

[38] (Table 15) with an instance of 300 tasks to confirm the

lower energy consumption. The result shows that IP and SA

are more efficient than HVSA and RH-VHVSA and give

less energy consumption when the number of processors
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TABLE 13: Comparison between IP, SA, Saracicek [47] and Serafettin [48]

Time Makespan

Tasks Processors IP SA MA
[48]

TS
[47]

SA
[47]

IP SA MA
[48]

TS
[47]

SA
[47]

10 4 221 113 240 1170 188 57.2 67.43 73.05 104.31 97.12
20 8 266 156 1730 1739 1047 35.52 51.06 69.46 56.53 72.10
20 16 512 270 2690 1559 1078 21.48 23.17 34.62 37.31 59.08
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FIGURE 13: Comparison between IP, SA and Chuan [38].

increases (Fig. 13). IP and SA have lost the competition in

front of the provided solution in [38] on platforms of 4 and

8 processors in terms of energy consumption. However, their

performance is seen when the number of processors becomes

more important (e.g. 16 CPUs).

The work in [38] does not deal with the context of

reconfigurable systems and cannot be generalized as the

number of tasks increases.

Our approaches are also compared with [47] and [48]

in term of execution time and makespan (Table 13). The

comparison confirms the performance that the current paper

gives optimal solutions either in the execution time (Fig. 14)

or the makespan (Fig. 15).

Figs. 16 and 17 show some communication statistics

and performance of the developed architecture. The response

time and error message rate are presented to evaluate the

architecture performance.

To comprehensively evaluate the proposed architecture,

we have selected a set of metrics such as the energy con-

sumption (Fig. 18), response time (Fig. 19) and the number

of transmitted messages between ScA and RAp (Figs. 20 and

21).

The comparison is considered in the worst and best cases

of the reconfiguration scenarios that may occur in the sys-

tem. The worst case is considered when all devices undergo

reconfigurations. The other case describes the situation when

just one device is affected by the reconfiguration.
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FIGURE 14: Comparison between IP, SA, Serafettin [48] and
Saracicek [47] based on execution time.
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FIGURE 15: Comparison between IP, SA, Serafettin [48] and
Saracicek [47] based on makespan.

D. DISCUSSION AND ORIGINALITY

The quality of the solution generated by the heuristic is

worse than that produced by CPLEX because the heuristic

provides an approximate solution. However, we notice that

the gap or distance to the optimality between the two solu-

tions is low, which proves the performance of this approach.

We note that the approaches (IP and SA) are compared

with HVSA, RH-VHVSA, GA, MA, TS, and Lingo reported
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TABLE 14: Comparison between IP, SA and Chuan [38]

Energy Consumption

Tasks Processors IP SA HVSA [38] RH-HVSA [38]
300 4 1189 1225 900 1050
300 8 1489 1345 1250 1600
300 16 1409 1384 1600 1520
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FIGURE 16: Response time evaluation with multiple set of proces-
sors.
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FIGURE 17: Message error rate.

in [38], [46]–[48] (Table 15). Those works are based on

mathematical approaches and heuristics but they are not

designed to be applied in reconfigurable systems, which is

the case with this work. In addition, apart from the work in

[38], they do not take into account the energy consumption

constraint which generally requires more computation and

thereafter more time to produce the solution compared with

the current work which incorporates several assessment

metrics such as the energy consumption, the execution time

and the makespan.
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FIGURE 18: Architecture evaluation according to the worst and
best reconfiguration scenario.
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FIGURE 19: Architecture evaluation according to the worst and
best reconfiguration scenario.
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FIGURE 20: Architecture evaluation according to the worst and
best reconfiguration scenario.

As far as the related execution platform of those works,

it can be seen that the application environment and the
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FIGURE 21: Architecture evaluation according to the worst and
best reconfiguration scenario.

hardware tools are more efficient than those used in the actual

work. Despite all this, the proposed solution gives better

results which proves its quality and efficiency.

VII. CONCLUSION

This paper deals with a scheduling problem of real-time

tasks in distributed architectures supporting the dynamic

voltage and frequency scaling. The system composed of a

set of networked devices can undergo run-time reconfigura-

tion scenarios which can cause critical problem such as the

violation of real-time or energy constraints.

The paper presents a set of combinatorial and optimiza-

tion solutions which are implemented and integrated to pro-

duce a real-time adaptive multi-agent architecture. A multi-

objective mathematical model which is extensible and appli-

cable to a wide range of analogous systems is formulated for

this reason. The proposed architecture aims to centralize the

decision in order to avoid errors and to try to produce sub-

optimal and flexible solutions for a true real-time schedule

under power constraints.

Through this paper, we have made significant progress

toward the development of a real-time and reconfigurable

architecture with performance criteria. However, the con-

ducted work is only an initial step in this direction. Several

major tunings still remain. Some of them are related to the

capability of the architecture while others are under real-

time constraints. A future study will include more extensions

for complementary adaptation, intelligent schedulers, control

and reliable coherence in a distributed system.

In this work, we consider a non-preemptive policy which

is not time and energy costly especially if we use limited

hardware resources. Nevertheless, we will consider preemp-

tive policies in the future work. The considered tasks in

this work are periodic. Nevertheless the consideration of

an extended model that considers mixed categories of tasks

(aperiodic and sporadic) is a necessity. We will consider the

dependency constraints between tasks which is frequently

present in modern real-time applications.
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