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Abstract
This artifact provides the experimental details and
implementations of all the facilitated schedulability
tests used in the reported acceptance ratio based

evaluations as documented in the related paper
Push Forward: Global Fixed-Priority Scheduling of
Arbitrary-Deadline Sporadic Task Systems.
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1 Scope

This provided artifact relates to the implementations and evaluations of the schedulability tests
proposed in the paper Push Forward: Global Fixed-Priority Scheduling of Arbitrary-Deadline
Sporadic Task Systems [3]. That is, we provide all implementations of the schedulability tests and
experimental setups that were used to retrieve the reported acceptance ratio results in the paper.

The intent is to prove the validity and reproducibility of the presented and claimed results
by providing all relevant information about the facilitated experimental setups as well as the
implementations of the compared to algorithms. Moreover, we want to demonstrate the existence
of an efficient implementation of the schedulability test shown in Theorem 4.4 of the related
paper [3] as was claimed by the authors by providing the source code for a reference implementation
as well as a detailed description of the algorithm in the appendix.
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2 Content

The content of this artifact is structured into three folders, namely algorithms, utility and
experiments.

Algorithms: The algorithms folder contains all implementations of the evaluated schedulabil-
ity tests, namely:

OUR-4.4 : Theorem 4.4 in the related paper.
OUR-4.6 : Theorem 4.6 in the related paper.
OUR-4.7 : Theorem 4.7 in the related paper.
HC : The sufficient schedulability test presented in Corollary 2 by Huang and Chen in W.-H.
Huang and J.-J. Chen. Response time bounds for sporadic arbitrary-deadline tasks under global
fixed-priority scheduling on multiprocessors. In RTNS, 2015. [5].
LOAD: The load-based analysis for deadline-monotonic scheduling by Baruah and Fisher
presented in S. K. Baruah and N. Fisher. Global fixed-priority scheduling of arbitrary-deadline
sporadic task systems. In Distributed Computing and Networking, 9th International Conference,
ICDCN, pages 215–226, 2008. [2].
BAK : Theorem 11 in T. P. Baker. An analysis of fixed-priority schedulability on a multipro-
cessor. Real-Time Systems, 32(1-2):49–71, 2006. [1].

Utility: The utility folder contains scripts to generate sporadic arbitrary-deadline task sets
for multiprocessor systems. More precisely, the task generator draws periods uniformly from a
(min,max, False) range (to be specified in the argument of the respective function), where the
boolean flag specifies whether the period should be truncated to integers or not. Each deadline is
constructed as Di = αiTi, where αi is drawn uniformly from the range (min,max) as specified
in the arguments. For the generation of uniformly distributed utilizations, the randfixedsum
algorithm [4] is used. Further, this folder contains helpful scripts for plotting.

Experiments: Lastly, the experiments folder contains the scripts to generate schedulability
test evalutions in terms of acceptance ratios. Each experiment is placed in it’s unique folder,
where the experimental setup is to be specified in the experiments.py file. All associated results
are stored in the sub directory results.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS).

4 Tested platforms

The provided artifact was tested on a desktop computer using 64-bit Linux Ubuntu 16.04 LTS,
Intel Core i5 (4 Cores) and 8GB of RAM. In general, the artifact should be feasible on any system
that can provide Python (≥ Python 2.7.12) with the following packages:

Matplotlib 1.5.1
Tkinter (Python-tk 2.7.12)
Numpy 1.11.0

5 License

The artifact is available under the MIT License.
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6 MD5 sum of the artifact

6ca9de53b717d130c40c289a82ab61d5

7 Size of the artifact

712 KiB

A Polynomial Time implementation

I Theorem 1 (Theorem 4.4 [3]). Task τk is schedulable by the given global fixed-priority scheduling
if

∀` ∈ N,∃1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk)

`Ck
D′k

+
∑
τi∈T∗

γiUiDi

D′k
+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ µk, (1)

where µk = M − (M − 1)ρ with 1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk), D′k is (`− 1)Tk +Dk,

γi =
{

1 if Ui > ρ

0 if Ui ≤ ρ
(2)

and T∗ is the set of the dµke− 1 tasks among the k− 1 higher-priority tasks with the largest values
of γiUiDi. Note that |T∗| can be smaller than dµke − 1 if the number of tasks with Ui > ρ is less
than dµke − 1. If Dk ≤ Tk, we only need to consider ` = 1.

In Theorem 1 we need to find a ρ with 1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk) for each ` ∈ N such that

`Ck
D′k

+
∑
τi∈T∗

γiUiDi

D′k
+
k−1∑
i=1

(
Ci − CiUi

D′k
+ Ui

)
≤ µk (1)

holds, where µk = M − (M − 1)ρ and D′k = (`− 1)Tk +Dk. Furthermore γi = 1 if Ui > ρ and
γi = 0 if Ui ≤ ρ. As Ci, Di, Ti, and Ui are given for all tasks, whether Eq. (1) holds or not only
depends on the values of ρ (and hence µk), `, and T∗. Let

∑
τi∈T∗

γiUiDi

D′
k

be denoted as G(µ).
Note that T∗ depends on ρ and hence µk. If we assume µk and hence G(µ) to be a constant, the
left hand side of Eq. (1), denoted as F (`, µ), is either an increasing or a non-increasing function
with respect to `, i.e., `→∞.

We will use ∞ as a value here for notational brevity, where F (∞, µ) is the limit of the function
F (`, µ) when `→∞. Knowing this, for a given µk we have the following cases:
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F (`, µ) is increasing with respect to `
F (1, µ) > µk ⇒ Eq. (1) never holds.
F (∞, µ) ≤ µk ⇒ Eq. (1) always holds.
F (1, µ) ≤ µk and F (∞, µ) > µk. This means, we can calculate a value lµk

∈ R with
F (lµk

, µ) = µk ⇒ Eq. (1) holds for 1 ≤ ` ≤ lµk
but not for ` > lµk

.
F (`, µ) is not increasing with respect to `
F (1, µ) ≤ µk ⇒ Eq. (1) always holds.
F (∞, µ) > µk ⇒ Eq. (1) never holds.
F (1, µ) > µk and F (∞, µ) ≤ µk. This means, we can calculate a value lµk

∈ R with
F (lµk

, µ) = µk ⇒ Eq. (1) holds for lµk
≤ ` but not for ` < lµk

.

As a result, for a given ρ we can calculate the interval where Eq. (1) holds by calculating
the values for ` = 1, ` = ∞, and lµk

∈ R with F (lµk
, µ) = µk. Note that this interval must be

further reduced due to the condition 1 ≥ ρ ≥ `Ck/((`− 1)Tk +Dk), i.e., some (or all) values of `
are not allowed for a given µk. However, when each ` ∈ N is covered by at least one interval, the
task is schedulable according to Theorem 1. By testing only a finite number of µk values, we can
implement the schedulability condition in Theorem 1 efficiently.

When we only look at the right hand side of Eq. (1), we would want to reduce ρ as much
as possible to get the largest possible value for µk, thus making the condition easier. However,
increasing µk will lead to a larger value of G(µ), i.e., a bigger left hand side. This happens either
due to an additional summand in the summation or due to new tasks available to be summed up,
i.e, the reduction of ρ leads to Ui > ρ. For the number of summands, due to the ceiling function,
we only have to test integer values of µk, as they maximize the right hand side of Eq. (1) for
a given number of summands. As µk = M − (M − 1)ρ, the number of integer values for µk is
bounded by the number of processors, i.e., we only have to test a finite number of ρ values to
cover the situation where the number of summands in G(µ) increases. In addition, only tasks τi
with Ui > ρ are allowed in G(µ). As ρ gets smaller, the number of tasks with Ui > ρ increases
and vice versa. However, if we test all values with Ui = ρ, where τi that has higher priority than
τk, in an increasing order, we only have to test a finite number of additional ρ values, depending
on the number of tasks.

Therefore, we only have to test those O(M + k) possible ρ values. As discussed above, each of
them forms an interval Iρ of the integer values of ` that can be covered by the specified ρ value.
For each interval Iρ = [leftρ, rightρ), Eq. (1) holds when ` = leftρ, leftρ + 1, . . . , rightρ − 1,
where leftρ is an positive integer and rightρ is either positive integer or ∞. Note that such an
interval Iρ does not exist if Eq. (1) never holds, and such ρ values are discarded from further
considerations. Deriving all these valid intervals needs O(M + k) time in the amortized manner,
provided that the higher-priority tasks are sorted by their utilization in O(k log k) and stored
in a list in advance. We need to pay some attention if an interval Iρ does not have a limited
upper bound, called an unbounded interval here, i.e., Eq. (1) holds for any ` ≥ leftρ. Note
that we do need the existence of at least such an unbounded interval to cover sufficiently large
`. Among the unbounded intervals, we take the minimum left endpoint, called `max. This step
takes O(M + k). The remaining intervals Iρ that are not unbounded are called bounded intervals.
Verifying whether ` = 1, 2, . . . , `max − 1 are covered can be done by checking whether the union
of these bounded intervals provides the coverage, which is achievable in O((M + k) log(M + k))
with Klee’s algorithm [6].

Due to the above discussions, we can efficiently implement the schedulability test in Theorem 1
with a time complexity of O((M + k) log(M + k)).
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