8 research outputs found

    Cooperative Online Learning: Keeping your Neighbors Updated

    Full text link
    We study an asynchronous online learning setting with a network of agents. At each time step, some of the agents are activated, requested to make a prediction, and pay the corresponding loss. The loss function is then revealed to these agents and also to their neighbors in the network. Our results characterize how much knowing the network structure affects the regret as a function of the model of agent activations. When activations are stochastic, the optimal regret (up to constant factors) is shown to be of order αT\sqrt{\alpha T}, where TT is the horizon and α\alpha is the independence number of the network. We prove that the upper bound is achieved even when agents have no information about the network structure. When activations are adversarial the situation changes dramatically: if agents ignore the network structure, a Ω(T)\Omega(T) lower bound on the regret can be proven, showing that learning is impossible. However, when agents can choose to ignore some of their neighbors based on the knowledge of the network structure, we prove a O(χT)O(\sqrt{\overline{\chi} T}) sublinear regret bound, where χα\overline{\chi} \ge \alpha is the clique-covering number of the network

    Climate Informatics: Accelerating Discovering in Climate Science with Machine Learning

    Get PDF
    The goal of climate informatics, an emerging discipline, is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the field's remaining challenges. Given the impact of climate change, understanding the climate system is an international priority. The goal of climate informatics is to inspire collaboration between climate scientists and data scientists, in order to develop tools to analyze complex and ever-growing amounts of observed and simulated climate data, and thereby bridge the gap between data and understanding. Here, recent climate informatics work is presented, along with details of some of the remaining challenges

    Online Learning with Optimism and Delay

    Full text link
    Inspired by the demands of real-time climate and weather forecasting, we develop optimistic online learning algorithms that require no parameter tuning and have optimal regret guarantees under delayed feedback. Our algorithms -- DORM, DORM+, and AdaHedgeD -- arise from a novel reduction of delayed online learning to optimistic online learning that reveals how optimistic hints can mitigate the regret penalty caused by delay. We pair this delay-as-optimism perspective with a new analysis of optimistic learning that exposes its robustness to hinting errors and a new meta-algorithm for learning effective hinting strategies in the presence of delay. We conclude by benchmarking our algorithms on four subseasonal climate forecasting tasks, demonstrating low regret relative to state-of-the-art forecasting models.Comment: ICML 2021. 9 pages of main paper and 26 pages of appendix tex

    Global Climate Model Tracking Using Geospatial Neighborhoods

    No full text
    A key problem in climate science is how to combine the predictions of the multi-model ensemble of global climate models. Recent work in machine learning (Monteleoni et al. 2011) showed the promise of an algorithm for online learning with experts for this task.We extend the Tracking Climate Models (TCM) approach to (1) take into account climate model predictions at higher spatial resolutions and (2) to model geospatial neighborhood influence between regions. Our algorithm enables neighborhood influence by modifying the transition dynamics of the Hidden Markov Model used by TCM, allowing the performance of spatial neighbors to influence the temporal switching probabilities for the best expert (climate model) at a given location. In experiments on historical data at a variety of spatial resolutions, our algorithm demonstrates improvements over TCM, when tracking global temperature anomalies
    corecore