628 research outputs found

    On massless electron limit for a multispecies kinetic system with external magnetic field

    Get PDF
    We consider a three-dimensional kinetic model for a two species plasma consisting of electrons and ions confined by an external nonconstant magnetic field. Then we derive a kinetic-fluid model when the mass ratio me/mim_e/m_i tends to zero. Each species initially obeys a Vlasov-type equation and the electrostatic coupling follows from a Poisson equation. In our modeling, ions are assumed non-collisional while a Fokker-Planck collision operator is taken into account in the electron equation. As the mass ratio tends to zero we show convergence to a new system where the macroscopic electron density satisfies an anisotropic drift-diffusion equation. To achieve this task, we overcome some specific technical issues of our model such as the strong effect of the magnetic field on electrons and the lack of regularity at the limit. With methods usually adapted to diffusion limit of collisional kinetic equations and including renormalized solutions, relative entropy dissipation and velocity averages, we establish the rigorous derivation of the limit model

    Kinetic equations with Maxwell boundary conditions

    Get PDF
    We prove global stability results of {\sl DiPerna-Lions} renormalized solutions for the initial boundary value problem associated to some kinetic equations, from which existence results classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse, which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not only a boundary inequality condition as it has been established in previous works). We are able to deal with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-weak convergence (the renormalized convergence and the biting L1L^1-weak convergence), as well as the Darroz\`es-Guiraud information in a crucial way

    Spatially homogeneous solutions of the Vlasov-Nordstr\"om-Fokker-Planck system

    Full text link
    The Vlasov-Nordstr\"{o}m-Fokker-Planck system describes the evolution of self-gravitating matter experiencing collisions with a fixed background of particles in the framework of a relativistic scalar theory of gravitation. We study the spatially-homogeneous system and prove global existence and uniqueness of solutions for the corresponding initial value problem in three momentum dimensions. Additionally, we study the long time asymptotic behavior of the system and prove that even in the absence of friction, solutions possess a non-trivial asymptotic profile. An exact formula for the long time limit of the particle density is derived in the ultra-relativistic case.Comment: 25 pages, 1 figure. Several changes from previous version. To appear in J. Diff. Eq
    • …
    corecore