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KINETIC EQUATIONS
WITH MAXWELL BOUNDARY CONDITIONS

 S MISCHLER

A. – We prove global stability results of DiPerna-Lions renormalized solutions for the
initial boundary value problem associated to some kinetic equations, from which existence results
classically follow. The (possibly nonlinear) boundary conditions are completely or partially diffuse,
which includes the so-called Maxwell boundary conditions, and we prove that it is realized (it is not
only a boundary inequality condition as it has been established in previous works). We are able to deal
with Boltzmann, Vlasov-Poisson and Fokker-Planck type models. The proofs use some trace theorems
of the kind previously introduced by the author for the Vlasov equations, new results concerning weak-
weak convergence (the renormalized convergence and the biting L1-weak convergence), as well as the
Darrozès-Guiraud information in a crucial way.

R. – Nous montrons la stabilité des solutions renormalisées au sens de DiPerna-Lions
pour des équations cinétiques avec conditions initiale et aux limites. La condition aux limites (qui
peut être non linéaire) est partiellement diffuse et est réalisée (c’est-à-dire qu’elle n’est pas relaxée).
Les techniques que nous introduisons sont illustrées sur l’équation de Fokker-Planck-Boltzmann et
le système de Vlasov-Poisson-Fokker-Planck ainsi que pour des conditions aux limites linéaires sur
l’équation de Boltzmann et le système de Vlasov-Poisson. Les démonstrations utilisent des théorèmes
de trace du type de ceux introduits par l’auteur pour les équations de Vlasov, des résultats d’analyse
fonctionnelle sur les convergences faible-faible (la convergence renormalisée et la convergence au sens
du biting lemma), ainsi que l’information de Darrozès-Guiraud d’une manière essentielle.

1. Introduction and main results

Let Ω be an open and bounded subset of RN and set O = Ω × RN . We consider a
gas confined in Ω ⊂ RN . The state of the gas is given by the distribution function f =

f(t, x, v) ≥ 0 of particles, which at time t ≥ 0 and at position x ∈ Ω, move with the
velocity v ∈ RN . The evolution of f is governed by a kinetic equation written in the domain
(0,∞)× O and it is complemented with a boundary condition that we describe now.

We assume that the boundary ∂Ω is sufficiently smooth. The regularity that we need is
that there exists a vector field n ∈ W 2,∞(Ω; RN ) such that n(x) coincides with the outward
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720 S. MISCHLER

unit normal vector at x ∈ ∂Ω. We then define Σx± := {v ∈ RN ;± v · n(x) > 0} the sets of
outgoing (Σx+) and incoming (Σx−) velocities at point x ∈ ∂Ω as well as Σ = ∂Ω× RN and

Σ± = {(x, v) ∈ Σ;±n(x) · v > 0} = {(x, v); x ∈ ∂Ω, v ∈ Σx±}.

We also denote by dσx the Lebesgue surface measure on ∂Ω and by dλk the measure on
(0,∞)× Σ defined by dλk = |n(x) · v|k dtdσxdv, k = 1 or 2.

The boundary condition takes into account how the particles are reflected by the wall and
thus takes the form of a balance between the values of the trace γf of f on the outgoing and
incoming velocities subsets of the boundary:

(1.1) (γ−f)(t, x, v) = Rx(γ+f(t, x, .))(v) on (0,∞)× Σ−,

where γ±f := 1(0,∞)×Σ± γf . The reflection operator is time independent, local in position
but can be local or nonlocal in the velocity variable. In order to describe the interaction
between particles and wall by means of the reflection operator R, J. C. Maxwell [54] proposed
in 1879 the following phenomenological law by splitting the reflection operator into a local
reflection operator and a diffuse (also denominated as Maxwell) reflection operator (which
is nonlocal in the velocity variable):

(1.2) R = (1− α)L+ αD.

Here α ∈ (0, 1] is a constant, called the accommodation coefficient. The local reflection
operator L is defined by

(Lx φ) (v) = φ(Rx v),

with Rx v = −v (inverse reflection) or Rx v = v − 2 (v · n(x))n(x) (specular reflection).
The diffuse reflection operator D = (Dx)x∈∂Ω according to the Maxwellian profile M with
temperature (of the wall) Θ > 0 is defined at the boundary point x ∈ ∂Ω for any measurable
function φ on Σx+ by

(Dx φ)(v) = M(v) φ̃(x),

where the normalized Maxwellian M is

(1.3) M(v) = (2π)
1−N

2 Θ−
N+1

2 e−
|v|2
2 Θ ,

and the outcoming flux of mass of particles φ̃(x) is

(1.4) φ̃(x) =

∫
v′·n(x)>0

φ(v′) v′ · n(x) dv′ =

∫
Σx

+

φ

M
dµx.

It is worth emphasizing that the normalization condition (1.3) is made in order that the
measure dµx(v) := M(v) |n(x) · v| dv is a probability measure on Σx± for any x ∈ ∂Ω.
Moreover, for any measurable function φ on Σx+ there holds
(1.5) ∫

Σx−

Rxφ |n(x) ·v| dv =

∫
Σx−

Lxφ |n(x) ·v| dv =

∫
Σx−

Dxφ |n(x) ·v| dv =

∫
Σx

+

φn(x) ·v dv,

which means that all the particles which reach the boundary are reflected (no particle goes
out of the domain nor enters in the domain).

The reflection law (1.2) was the only model for the gas/surface interaction that appeared
in the literature before the late 1960s. In order to describe with more accuracy the interaction
between molecules and wall, other models have been proposed in [25, 26, 51] where the
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reflection operator R is a general integral operator satisfying the so-called non-negative,
normalization and reciprocity conditions, see [29] and Remark 6.4. We do not know whether
our analysis can be adapted to such a general kernel. However, the boundary condition
can be generalized in another direction, see [12, 30], and we will sometimes assume that the
following nonlinear boundary condition holds

(1.6) R φ = (1− α̃)Lφ+ α̃D φ, α̃ = α(φ̃),

where α : R+ → R+ is a continuous function which satisfies 0 < ᾱ ≤ α(s) ≤ 1 for any
s ∈ R+.

In the domain, the evolution of f is governed by a kinetic equation

(1.7)
∂f

∂t
+ v · ∇xf = I (f) in (0,∞)× O,

where I (f) models the interactions of particles each one with each other and with the en-
vironment. Typically, it may be a combination of the quadratic Boltzmann collision oper-
ator (describing the collision interactions of particles by binary elastic shocks), the Vlasov-
Poisson operator (describing the fact that particles interact by the way of the two-body long
range Coulomb force) or the Fokker-Planck operator (which takes into account the fact that
particles are submitted to a heat bath). More precisely, for the nonlinear boundary condi-
tion (1.6) we are able to deal with Fokker-Planck type equations, in particular the Fokker-
Planck-Boltzmann equation (FPB in short) and the Vlasov-Poisson-Fokker-Planck system
(VPFP in short), while for a constant accommodation coefficient we are able to deal with
Vlasov type equations such as the Boltzmann equation and the Vlasov-Poisson system (VP
in short). We refer to Section 6 where these models are presented. It is worth mentioning
that the method presented in this paper seems to fail for the Vlasov-Maxwell system.

Finally, we complement these equations with a given initial condition

(1.8) f(0, .) = fin ≥ 0 on O,

which satisfies the natural physical bounds of finite mass, energy and entropy

(1.9)
∫∫

O
fin (1 + |v|2 + | log fin|) dxdv =: C0 <∞.

We begin with a general existence result that we state deliberately in an imprecise way and
we refer to Section 6 (and Theorem 6.2) for a more precise statement.

T 1.1. – Consider the initial boundary value problem (1.1)-(1.7)-(1.8) associated
to the FPB equation or the VPFP system with possibly mass flux depending accommodation
coefficient (1.6) or the boundary value problem associated to the Boltzmann equation or the
VP system with constant accommodation coefficient (1.2). For any non-negative initial datum
fin with finite mass, energy and entropy ((1.9) holds) there exists at least one (renormalized)
solution f ∈ C([0,∞);L1( O)) with finite mass, energy and entropy to the kinetic Equation (1.7)
associated to the initial datum fin and such that the trace function γf fulfills the boundary
condition (1.1).
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722 S. MISCHLER

The Boltzmann equation and the FPB equation for initial data satisfying the natural
bound (1.9) was first studied by R. DiPerna and P.-L. Lions [35, 37, 39] who proved stability
and existence results for global renormalized solutions in the case of the whole space (Ω =

RN ). Afterwards, the corresponding boundary value problem with reflection boundary
conditions (1.1) and constant accommodation coefficient has been extensively studied in the
case of the Boltzmann model [5, 6, 7, 8, 47], [27, 28, 44, 48, 55]. It has been proved, in the
partial absorption case γ−f = θ Rγ

+
f with θ ∈ [0, 1) and in the completely local reflection

case (i.e. (1.1) holds with α ≡ 0), that there exists a global renormalized solution. But in the
most interesting physical case (when θ ≡ 1 and α ∈ (0, 1]), it has only been proved in [7] that
the following boundary inequality condition

(1.10) γ−f ≥ R(γ+f) on (0,∞)× Σ−

holds, instead of the boundary equality condition (1.1). However, it is worth mentioning that
if the renormalized solution built in [7] is in fact a solution to the Boltzmann equation in the
sense of distributions, then that solution satisfies the boundary equality condition (1.1) (a
result that one deduces thanks to the Green formula by gathering the fact that the solution
is mass preserving and the fact that the solution already satisfies the boundary inequality
condition (1.10)). Also, the Boltzmann equation with nonlinear boundary conditions has
been treated in the setting of a strong but non global solution framework in [43].

With regard to existence results for the initial value problem for the VPFP system set in the
whole space, we refer to [14, 15, 16, 20, 21, 22, 23, 36, 59, 61, 65] as well as [32] for physical
motivations. The initial boundary value problem has been addressed in [13, 19]. We also
refer to [1, 4, 46, 58, 68] for the initial boundary value problem for the VP system and to [58]
for the corresponding stationary problem. We emphasize that in all these works only local
reflection or prescribed incoming data are treated, and to our knowledge, there is no result
concerning the diffuse boundary condition for the VP system or for the VPFP system.

We also mention that there is a great deal of information for the boundary value problem
in an abstract setting in [45, 67] with possibly nonlinear boundary conditions [11, 57].

In short, the present work improves the already known existence results for kinetic equa-
tions with diffusive boundary reflection into three directions.

• On the one hand, we prove that (1.1) is fulfilled, while only the boundary inequality
condition (1.10) was previously established.

• On the other hand, we are able to consider a large class of kinetic models (including
Vlasov-Poisson term) while only the Boltzmann equation (or linear equations) could be
handled with earlier techniques.

•Finally, we are able to handle some nonlinear boundary condition in the case of Fokker-
Planck type equation.

We do not present the proof of Theorem 1.1 (nor the proof of its accurate version Theo-
rem 6.2) because it classically follows from a sequential stability or sequential compactness
result that we present below and a standard (but tedious) approximation procedure, see for
instance [55] or the above quoted references. We deliberately state again the sequential sta-
bility result in an imprecise way, referring to Section 6 for a more accurate version.
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T 1.2. – Consider the initial boundary value problem (1.1)-(1.7)-(1.8) associated
to the FPB equation or the VPFP system with possibly mass flux depending constant
accommodation coefficient (1.6) or the boundary value problem associated to the Boltzmann
equation or the VP system with constant accommodation coefficient (1.2). Let then (fn) be
a sequence of (renormalized) solutions to that equation and assume that (fn) and the trace
sequence (γfn) satisfy the natural physical a priori bounds (to be specified for each model).
If fn(0, .) converges to fin weakly in L1( O) then, up to the extraction of a subsequence, fn

converges (at least) weakly in L1([0, T ]× O) for all T ∈ (0,∞) to a (renormalized) solution f
to the kinetic Equation (1.7) with initial value fin. Furthermore, for any ε > 0 and T > 0

there exists a measurable set A ⊂ (0, T )× ∂Ω such that meas ((0, T )× ∂Ω \A) < ε and

(1.11) γ+fn ⇀ γ+f weakly in L1(A× RN , dλ1),

the convergence being strong in the case of the Fokker-Planck type equations. As a consequence
we can pass to the limit in the reflection boundary condition (1.1)-(1.2) (and (1.1)-(1.6) in
the case of Fokker-Planck type equations), so that the reflection boundary condition (1.1) is
fulfilled.

Let us briefly explain the main steps and difficulties in the proof of the stability result.

• The first step consists in collecting the physical estimates available on the solution f to
Equations (1.1)-(1.7)-(1.8) and on its trace γf . In the interior of the domain the a priori
bounds satisfied by f strongly depend on the model considered but they are the same as those
available in the case of the whole space. In general, for the trace, we are only able to prove
that

(1.12) ∀T
∫ T

0

∫
∂Ω

E
(γ+f

M

)
dσxdt ≤ CT ,

with CT only depending on C0 and T , where the functional E = Ex is the Darrozès-Guiraud
information defined by

(1.13) E
(
φ
)

:=

∫
Σx

+

h(φ) dµx − h

(∫
Σx

+

φdµx

)
, h(s) = s log s,

and where we recall that dµx(v) := M(v) |n(x) · v| dv is a probability measure on Σx+ so
that E(φ) ≥ 0 thanks to the Jensen inequality. Let us emphasize that additionally to the a
priori bound of the Darrozès-Guiraud information (1.12), we can prove an L1 a priori bound
in the case of the Boltzmann equation (and of the FPB equation) and only an L1/2 a priori
(but also a posteriori) bound in the case of the VP system (and the FPVP system): in both
cases, we do not have any a priori information on the trace which guaranties uniform local
equiintegrability on the trace functions of a sequence of solutions. The main difficulty is thus
the lack of a good a priori bound on the trace.

• The next step consists in specifying the sense of the equations. The physical a priori
estimates on f make possible to give a sense to (1.7) in a renormalized sense as introduced
by DiPerna and Lions. What is then the meaning of the trace γf of f? That so-called trace
problem has been studied in [3, 10, 18, 31, 45, 64] for the Vlasov equation with a Lipschitz
force field and extended to the Vlasov-Fokker-Planck equation in [19]. In the case of the VP
and the VPFP systems, the a priori estimate on the force field does not guarantee Lipschitz
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regularity but only Sobolev regularity. A trace theory has been developed in [55, 56] for the
(possibly renormalized) solutions of the Vlasov equation with a force field in Sobolev space
that we extend here to the solutions of the Vlasov-Fokker-Planck equation. The trace of a
solution is here defined by a Green formula written on the renormalized equation.

• In a last step, we have to pass to the limit in a sequence of solutions which satisfy the
“natural physical bounds”. For the equation satisfied by f in the interior of the domain, the
proofs have been done already by DiPerna-Lions [35, 36, 37] and Lions [52], and nothing has
to be changed. The main difficulty solved here is to handle the boundary condition which is
made up of two equations:

(1) the renormalized Green formula which links together the solution f in the interior of
the domain with its trace function γf ;

(2) the boundary equality condition (1.1) which connects together the incoming velocity
particles density γ−f with the outgoing velocity particles density γ+f .

Let us emphasize that using only the L1 boundedness information (as it is available for
the Boltzmann equation for instance) on a sequence (γfn) of the trace of solutions to a
kinetic equation satisfying the boundary condition (1.1) it is only possible to prove the
boundary inequality condition (1.10). Indeed, on the one hand as in [7] we may use that,
up to the extraction of a subsequence, fn ⇀ f weakly in L1 and γ±fn ⇀ η± in the
weak sense of measures for some measures η± ≥ 0. Then the limit boundary densities
η± fulfill the boundary equality condition (1.1), η− = R η+, whereas they are not the
trace functions associated to f but they are their regular parts with respect to the Lebesgue
measure: γf± = dη±

dλ1
. Putting together these two informations yields to the boundary

inequality condition (1.10). On the other hand, as in [44], we may use that, up to the
extraction of a subsequence, fn ⇀ f weakly in L1 and γ±fn ⇀ g± in the biting L1-weak
sense (see below) for some measurable functions g± ≥ 0. Then the limit boundary densities
g± are the trace functions associated to f , g± = γ±f , whereas the reflection operator is only
l.s.c. with respect to the biting L1-weak convergence, R g+ ≤ lim inf R γ+fn. Again, these
two informations only imply the boundary inequality condition (1.10).

• In this paper, we prove some L1-weak (L1-strong in the case of FP models) convergence
in the velocity variable for the sequence (γ+fn) (as stated in Theorem 1.2) which is strong
enough to conclude. Our proof is based on the use of notions of weak-weak convergences,
namely the renormalized convergence (r-convergence) and the biting L1-weak convergence
(b-convergence). We say weak-weak convergences in order to express the fact that they are
extremely weak senses of convergence (weaker, for instance, than the L1-weak convergence
and the a.e. convergence) and furthermore that they are not associated to any topological
structure, see Proposition A.2. On the one hand, thanks to the trace theory, we prove that the
sequence of trace functions (γfn) r-converges to γf (as well as a.e. in the case of FP models).
Next, thanks to some additional L1 a priori bounds, or because the r-convergence is almost
equivalent to the b-convergence when the limit function belongs to L0, we deduce that flγ+fn
b-converges to fiγ+f . Finally, that information and the boundedness of the Darrozès-Guiraud
information lead to (1.11).

Let us now briefly outline the contents of the paper. In Section 2, we consider the free
transport equation for which we apply the above strategy. We present for this very simple
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case the different tools (renormalized and biting L1-weak convergence, trace theory and
Darrozès-Guiraud information), we state a first velocity L1-weak compactness result and
then we prove the corresponding version of the stability Theorem 1.2. In Section 3, we
develop the notion of renormalized convergence in a more general framework and we prove
some more accurate version of biting L1-weak convergence and velocity L1-weak com-
pactness. In Section 4, we present the trace theory for the Vlasov-Fokker-Planck equation
with Sobolev regularity on the force field. In Section 5, putting together the results from
Section 3 and Section 4, we establish the renormalized convergence and the almost every-
where convergence of trace functions sequences. In Section 6 we present the models and we
establish the main stability (up to the boundary) results. Finally, in the appendix, we come
back to the notion of renormalized convergence for which we give several relevant examples
and counterexamples.

2. An illuminating example: the free transport equation

In this section we assume that f is governed by the free transport equation

(2.1)
∂f

∂t
+ v · ∇xf = 0 in (0,∞)× O,

complemented with the initial condition (1.8) and the boundary reflection condition (1.1)
with constant restitution coefficient α ∈ (0, 1]. Our aim is to adapt the DiPerna-Lions
stability theory to that simple boundary value problem. We follow the strategy expounded in
the introduction. We first collect the a priori bounds satisfied by a solution to the boundary
value problem (2.1)-(1.1)-(1.8) with initial datum satisfying (1.9). We next present some
general functional analysis tools which roughly speaking make possible to deduce the L1

weak convergence in the v variable of a sequence which is uniformly bounded in L1 and for
which the associated Darrozès-Guiraux information is uniformly bounded. We finally state
and prove the stability result associated to the boundary value problem (2.1)-(1.1)-(1.8).

R 2.1. – It is worth mentioning that the proof of the corresponding stability result
for the Boltzmann equation is essentially the same as for the free transport equation. We refer
to Section 6 where that model is handled. However, the reader who is only interested in the
Boltzmann model may easily adapt the proof below with the arguments introduced in [56] (it
will be more elementary than the proof presented in Section 3 to Section 6 which is made in
order to also deal with a Vlasov-Poisson term and/or with a Fokker-Planck term).

2.1. A priori bounds

L 2.2. – For any non-negative initial datum fin such that (1.9) holds and any
time T ∈ (0,∞) there exists a constant CT (only depending on C0 and T) such that any
sufficiently regular and decreasing at the infinity solution f to the initial boundary value
problem (2.1)-(1.1)-(1.8) satisfies

(2.2) sup
[0,T ]

∫∫
O
f (1 + |v|2 + | log f |) dxdv + α

∫ T

0

∫
∂Ω

E
Å
γ+f

M

ã
dσxdt ≤ CT ,
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where E is defined in (1.13), and

(2.3) α

∫ T

0

∫∫
Σ

γf (1 + |v|2) |n(x) · v| dvdσxdt ≤ CT .

Proof of Lemma 2.2. We consider a solution f of (1.1)-(2.1)-(1.8), which is sufficiently
regular and decreasing at the infinity in such a way that all the integrations by parts in our
arguments are legitimate.
Step 1. Mass conservation. Integrating the free transport Equation (2.1) over x, v, using the
Green formula and the Identity (1.5), we obtain the mass conservation

∀ t ≥ 0

∫∫
O
f(t, .) dvdx =

∫∫
O
fin dvdx.

Step 2. Relative entropy. Multiplying the free transport Equation (2.1) by h′(f/M), with
h(s) = s log s, and integrating it over x, v, we have

(2.4)
d

dt

∫∫
O
h(f/M)M dvdx =

∫∫
Σ

h(γf/M)M v · n(x) dvdσx.

The Darrozès-Guiraud inequality states that the entropy boundary flux at the right hand
side of Equation (2.4) is non-negative. That is a straightforward consequence of the Jensen
inequality taking advantage that dµx(v) = M |v ·n(x)| dv is a probability measure. Now we
present the proof of an accurate version of the Darrozès-Guiraud inequality which makes
clear how much that term is non-negative. From the boundary reflection condition (1.1), the
convexity of h and the expression (1.2) of the reflection operator, we have∫

RN
h(γf/M) dµx(v) =

∫
Σ+
x

h(γ+ f/M) dµx(v)−
∫

Σ−x

h( Rγ+f/M) dµx(v)(2.5)

≥ α
®∫

Σ+
x

h(γ+ f/M) dµx(v)−
∫

Σ−x

h(Dγ+f/M) dµx(v)

´
+(1− α)

®∫
Σ+
x

h(γ+ f/M) dµx(v)−
∫

Σ−x

h(Lγ+f/M) dµx(v)

´
= α

®∫
Σ+
x

h(γ+ f/M) dµx(v)− h(γ̃+f)

´
= α Ex(

γ+f

M
),

where we have performed the change of variables Lx : v 7→ Rxv in the second term
with jacLx = 1, so that this term vanishes, and where the Darrozès-Guiraud information
functional Ex is defined in (1.13) and γ̃

+
f is defined in (1.4). Gathering (2.4) and (2.5), we

get
d

dt

∫∫
O
h(f/M)M dvdx+ α

∫
∂Ω

Ex(γ+ f) dσx ≤ 0.

Finally, using the elementary estimates, that one can find in [53] for instance,

(2.6)
∫

RN
f
( |v|2

4 Θ
+ | log f |

)
dv ≤ CM +

∫
RN

h(f/M)M dv,

and

(2.7)
∫

RN
h(fin/M)M dv ≤

∫
RN

fin

( |v|2
4 Θ

+ | log fin|
)
dv + CM ,
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for some constant CM ∈ (0,∞), we obtain that (2.2) holds.

Step 3. Additional L1 estimates. For the sake of completeness we sketch the proof
of the L1 a priori bound (2.3) already established in [7, 55]. We multiply the free transport
Equation (2.1) by n(x) · v and we integrate it over all variables, to get∫ T

0

∫∫
Σ

γf (n(x) · v)2 dvdσxdt =

ï∫∫
O
f n(x) · v dvdx

ò0

T

+

∫ T

0

∫∫
O
f v · ∇xn(x)v dvdxdt,

so that, thanks to (2.2) and because n ∈W 1,∞(Ω),

(2.8)
∫ T

0

∫∫
Σ

γf (n(x) · v)2 dvdσxdt ≤ CT .

We then remark that for the constant C1 := ‖M(v) (n(x) · v)2‖−1
L1(Σx−) we have

γ̃+f = C1

∫
Σx−

M(v) γ̃+f (n(x) · v)2 dv = C1

∫
Σx−

γ−f (n(x) · v)2 dv,(2.9)

and that for the constant C2 := ‖M(v) (1 + |v|2) |n(x) · v|‖L1(Σx−) we have

(2.10)
∫

Σx−

γ−f (1 + |v|)2 |n(x) · v| dv =

∫
Σx−

M(v) γ̃
+
f (1 + |v|2) |n(x) · v| dv = C2 γ̃+f.

Finally, we come back to Equation (2.1) that we multiply by |v|2 and that we integrate in all
variables. We obtain

(2.11)
∫∫

O
f(T, .) |v|2 dvdx+ α

∫ T

0

∫∫
Σ+

γ
+
f |v|2 n(x) · v dvdσxdt

=

∫∫
O
fin |v|2 dvdx+ α

∫ T

0

∫∫
Σ−

γ−f |v|2 |n(x) · v| dvdσxdt.

Estimate (2.3) follows gathering (2.9), (2.8) and (2.10), (2.11).

2.2. Biting L1-weak convergence and L1-weak compactness in the velocity variable

In this section we present some functional analysis results which make possible to obtain
the L1-weak convergence in the v variable of a sequence which satisfies a L1 bound and a
uniform bound of its Darrozès-Guiraud information. We state the result in some more general
setting because we believe that it may have its own interest (outside the applications to the
trace theory for kinetic equations). For that purpose, we introduce a first notion of weak-
weak convergence, namely the bitingL1-weak convergence. It seems to have been introduced
by Kadec and Pelzyński [50] and rediscovered and developed in a L1 and bounded measure
framework by Chacon and Rosenthal in the end of the 1970’s, see [41], [17]. Let us first recall
the definition of the biting L1-weak convergence that we extend to a “L framework”.

In the sequel Y = (Y, ν) stands for a separable and σ-compact topological space, i.e.
Y = ∪kYk where (Yk) is an increasing sequence of compact sets, endowed with its σ-ring
of Borel sets and with a locally finite Borel measure ν. We denote by L(Y ) the space of all
measurable functions φ : Y → R̄ and by L0(Y ) the subset of all measurable and ν-almost
everywhere finite functions. In order to simplify the presentation, we will be only concerned
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with non-negative functions of L and L0. Thus, in this section, we also denote by L and L0

the cone of non-negative functions in these spaces, and we do not specify it anymore.

D 2.3. – We say that a sequence (ψn) of L(Y ) converges in the biting L1-weak

sense (or b-converges) to ψ ∈ L(Y ), denoted by ψn
b
⇀ψ, if for every k ∈ N we can find

Ak ⊂ Yk in such a way that (Ak) is increasing, ν(Yk\Ak) < 1/k, ψn ∈ L1(Ak) for all n large
enough and ψn ⇀ ψ weakly in L1(Ak). In particular, that implies ψ ∈ L0(Y ).

The fundamental result concerning the biting L1-weak convergence is the so-called biting
lemma that we recall now. We refer to [9, 17, 24, 41] and [50] for a proof of this lemma. We
also refer to [2] and [33] for other developments related to the biting L1-weak convergence.
Extension of this theory to multi-valued functions has been done by Balder, Castaing,
Valadier and others; we refer to [60] for precise references.

T 2.4 (Biting lemma). – Let (ψn) be a bounded sequence of L1(Y ). There
exist ψ ∈ L1(Y ) and a subsequence (ψn′) such that (ψn′) b-converges to ψ and
‖ψ‖L1 ≤ lim inf ‖ψn′‖L1 .

Our first result is a kind of intermediate result between the biting lemma and the Dunford-
Pettis lemma. More precisely, we prove the L1-weak compactness in the v variable for
sequences (φn) which are bounded in L1 and such that the associated Darrozès-Guiraud
information is uniformly (in n) bounded. It is based on the biting lemma, the Dunford-Pettis
lemma and a convexity argument.

T 2.5. – Consider j : R+ → R a convex function of class C2(0,∞) such that
j(s)/s → +∞ when s ↗ +∞ and such that the application J from (R+)2 to R defined by
J(s, t) = (j(t)− j(s)) (t− s) is convex, ω a non-negative function of RN such that ω(v)→∞
when |v| → ∞ and, for any y ∈ Y , a probability measure µy on RN . Assume that (φn) is a
sequence of non-negative measurable functions on Y × RN such that

(2.12)
∫
Y

∫
RN

[
φn(y, v) (1 + ω(v)) + E(φn(y, .))

]
dµy(v) dν(y) ≤ C1 <∞,

where E = Ej,y is the non-negative Jensen information functional defined by

E(φ) =

∫
RN

j(φ) dµy − j
(∫

RN
φdµy

)
if 0 ≤ φ ∈ L1(RN , dµy).

Then, there exist φ ∈ L1(Y × RN ) and a subsequence (φn′) such that for every k ∈ N we can
find Ak ⊂ Yk in such a way that (Ak) is increasing, ν(Yk\Ak) < 1/k and

φn′ ⇀ φ weakly in L1(Ak × RN ; dν dµ).

Furthermore, E is a convex and weakly L1 l.s.c. functional, and thus

(2.13)
∫
Y

∫
RN

[
φ(y, v) (1 + ω(v)) + E(φ(y, .))

]
dµy(v) dν(y) ≤ C1.
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Proof of Theorem 2.5. From the bound (2.12) and the biting lemma we know that there
exists a subsequence n′ such that for every k ∈ N we can find a Borel set A = Ak ⊂ Yk with
ν(Yk\A) < 1/k such that

(2.14)
∫

RN
φn′ dµy(v) weakly converges in L1(A).

Thanks to (2.14), the Dunford-Pettis lemma and the De La Vallée-Poussin uniform inte-
grability criterion there is a convex function Φ = Φk such that Φ(s)/s → ∞ when s → ∞
and ∫

A

Φ
(∫

RN
φn′ dµy(v)

)
dν(y) ≤ C2 = C2(k) <∞.

Furthermore, we can assume that Φ(0) = 0, Φ′ = am in [m,m+1] with j′(s0) ≤ am ↗ +∞,
where s0 ∈ N? is such that j(s0) ≥ 0 and j′(s0) ≥ 0.

Then we define Ψ = Ψk by Ψ(s) = j(s) for s ∈ [0, s0] and by induction on m ∈ N, we
consider tm such that j′(tm) = am−Ψ′(sm) + j′(sm) and we set sm+1 = [tm] + 1, Ψ′′ := j′′

on [sm, tm] and Ψ′′ := 0 on [tm, sm+1] so that tm ≥ sm ≥ m and Ψ′(sm+1) ≥ am ≥ Ψ′(sm).
Therefore, we have built a convex function Ψ such that the function s 7→ j(s)−Ψ(s) is convex,
Ψ(s)/s↗∞ since Ψ′(s)↗∞, and Ψ ≤ Φ since Ψ′ ≤ Φ′, so that

(2.15)
∫
A

Ψ
(∫

RN
φn′ dµ

)
dν ≤ C2.

The Jensen inequality, written for the function s 7→ j(s)−Ψ(s), gives∫
RN

Ψ(φn′) dµ−Ψ
(∫

RN
φn′ dµ

)
≤ E(φn′),

and combining it with (2.12) and (2.15) we get∫∫
A×RN

Ψ(φn′) dµ dν ≤ C1 + C2,

and thus ∫∫
A×RN

Ψ+(φn′) dµy dν ≤ C1 + C2 +

∫∫
A×RN

Ψ−(φn′) dµy dν(2.16)

≤ C3(k) := C1 + C2 + ν(A) sup j− <∞.

Thanks to estimates (2.12), (2.16) and the Dunford-Pettis lemma we get that (φn′) falls in a
relatively weakly compact set of L1(Ak × RN ) for any k ∈ N. We conclude, by a diagonal
process, that there are a function φ ∈ L1(Y ×RN ) and a subsequence (φn′′) which converges
to φ in the sense stated in Theorem 2.5.

In order to prove that E is a convex functional, we begin by assuming that j ∈ C1(R+,R),
so that E is Gâteaux differentiable. By definition of the G-differential

∇ E(φ) · ψ := lim
t→0

E(φ+ t ψ)− E(φ)

t

=

∫
RN

j′(φ)ψ dµ− j′
(∫

RN
φdµ

) ∫
RN

ψ dµ,
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for any 0 ≤ φ, ψ ∈ L∞(RN ). Therefore, by the Jensen inequality, we have

〈∇ E(ψ)−∇ E(φ), ψ − φ 〉 =

∫
RN

J(φ, ψ) dµ− J
(∫

RN
φdµ,

∫
RN

ψ dµ
)
≥ 0,

so that∇ E is monotone and thus E is convex on L∞(RN ): for any 0 ≤ φ, ψ ∈ L∞(RN ) and
any t ∈ (0, 1)

(2.17) E(φ+ (1− t)ψ) ≤ t E(φ) + (1− t) E(ψ).

When j /∈ C1(R+,R) we define, for any ε > 0, the function jε(s) = j(s + ε) − j(ε)

which belongs to C1(R+,R), and the above computation for the associated functional Eε is
correct, so that inequality (2.17) holds for E replaced by Eε. Then, writing inequality (2.17)
for Eε and fixed 0 ≤ φ, ψ ∈ L∞(RN ), t ∈ (0, 1) and passing to the limit ε → 0 we obtain
that E is convex on L∞(RN ). Now let us fix 0 ≤ φ, ψ ∈ L1(RN ), t ∈ (0, 1). If j(φ) or
j(ψ) /∈ L1(RN ) then t E(φ)+(1− t) E(ψ) = +∞ and the convex inequality (2.17) obviously
holds. In the other case, we have j(φ), j(ψ) ∈ L1(RN ), and we can choose two sequences
0 ≤ (φn), (ψn) of L∞(RN ) such that φn ↗ φ and ψn ↗ ψ a.e.. Passing to the limit ε → 0

in the convex inequality (2.17) written for φε and ψε we get, by the Lebesgue convergence
dominated Theorem and the Fatou lemma,∫

RN
j(t φ+ (1− t)ψ) ≤ lim inf

ε→0

∫
RN

j(t φε + (1− t)ψε)

≤ t E(φ) + (1− t) E(ψ) + j
(∫

RN
t φ+ (1− t)ψ

)
,

which exactly means that E is a convex functional in L1(RN ). Finally, if 0 ≤ φ,
ψ ∈ L1(Y × RN ) and t ∈ (0, 1), then φ(y, .), ψ(y, .) ∈ L1(RN ) for almost every y ∈ Y and,
integrating the convex inequality (2.17), we obtain that the functional

0 ≤ φ ∈ L1(Y × RN ) 7→ F (φ) =

∫
Y

E(φ) dν

is convex. Furthermore, by Fatou lemma, F is l.s.c. for the strong convergence in L1, for
the weak σ(L1, L∞) convergence and for the biting L1-weak convergence, so that (2.13)
holds.

We introduce a second kind of weak-weak convergence, namely the renormalized conver-
gence, which is the very natural notion of convergence when we deal with sequences of trace
functions, as we will see below. We now present the definition (in a simplified case) and a
first elementary result that we will use in the next subsection. More about the renormalized
convergence is presented in Section 3.

D 2.6. – Let us define the sequence (TM ) by setting TM (s) := s ∧ M =

min(s,M) ∀ s, M ≥ 0. We say that a sequence (φn) of L(Y ) converges in the renormalized
sense (or r-converges) if there exists a sequence (T̄M ) of L∞(Y ) such that

TM (φn) ⇀ T̄M σ(L∞(Y ), L1(Y )) ? and T̄M ↗ φ a.e. in Y.

L 2.7. – For any sequence (φn) of L(Y ) and φ ∈ L0(Y ) such that φn
b
⇀φ in the

biting L1-weak sense, there exist a subsequence (φn′) such that φn′
r
⇀φ in the renormalized

sense.
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Proof of Lemma 2.7. We follow the proof of [9] where that result is established in a
L1 framework. By assumption, for any k ∈ N, there exists a Borel set Ak such that
ν (Yk\Ak) < 1/k and φn ⇀ φ weakly in L1(Ak). Thanks to the Dunford-Pettis lemma,
there is a function δk : R+ → R+ such that δk(M)→ 0 when M → +∞ and

(2.18)
∫
Ak

φn 1{φn≥M} dy ≤ δk(M) ∀n,M, k ∈ N∗.

Moreover, there exist a subsequence (φn′) of (φn) and a sequence (T̄M ) of L∞(Y ) such that
for any M ∈ N there holds

TM (φn′) ⇀ T̄M σ(L∞(Y ), L1(Y )).

We obviously have that (T̄M ) is an increasing sequence in L∞(Y ) and T̄M ≤ φ a.e. because
that is true on any Ak. Observe that

(2.19) 0 ≤ φn − TM (φn) ≤ (φn −M) 1φn≥M a.e. in Y.

Gathering (2.18) and (2.19) we get∫
Ak

|φ− T̄M | dν = lim
n′→∞

∫
Ak

(φn′ − TM (φn′)) [sign(φ− T̄M )] dν

≤ lim inf
n′→∞

∫
Ak

φn′ 1{φn′≥M} dy ≤ δk(M).

That proves T̄M → φ a.e. in Y when M →∞, and then φn′
r
⇀φ.

2.3. The trace theorem and the stability result

Let us recall the following trace theorem which makes precise the meaning of the trace of
a solution.

T 2.8 ([55]). – Let g ∈ L∞(0, T ;L1( O)) satisfy

Λ g := ∂tg + v · ∇xg = 0 in D′((0, T )× O).

There exist γg ∈ L1
loc((0, T )× Σ; dλ2) and g0 ∈ L1( O) which satisfy the renormalized Green

formula

(2.20)
∫ T

0

∫∫
O
β(g) Λφdvdxdt =

∫ T

0

∫∫
Σ

β(γ g)φ n(x) · v dvdσxdt−
∫∫

O
β(g0)φdxdv,

for all β ∈W 1,∞(R) and all test functions φ ∈ D([0, T )× Ō), as well as for all β ∈W 1,∞
loc (R),

with β′ ∈ L∞(R), and all test functions φ ∈ D([0, T )× Ō) such that φ = 0 on [0, T )× Σ0 .

We may then state our first main result.

T 2.9. – Let fn ∈ L∞(0,∞;L1( O)) be a sequence of solutions to the initial
boundary value problem (2.1)-(1.1)-(1.8) such that both (fn) and the trace sequence (γfn)

satisfy the associated natural a priori bounds: for any T > 0 there is a constant CT

(2.21) sup
[0,T ]

∫∫
O
fn
(
1 + |v|2 + | log fn|

)
dvdx ≤ CT
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and

(2.22)
∫ T

0

∫∫
Σ

γfn (1 + |v|2) |n(x) · v| dvdσxdt+

∫ T

0

∫
∂Ω

E(γ+fn) dσxdt ≤ α−1 CT .

On the one hand, there exist f ∈ L∞(0,∞;L1( O)) satisfying (2.2) and fin ∈ L1( O)

satisfying (1.9) such that, up to the extraction of subsequences,

(2.23) fn ⇀ f σ(L1, L∞), fn(0, .) ⇀ fin σ(L1, L∞),

and f is a solution to the free transport Equation (2.1)-(1.8) with initial datum fin.

On the other hand, there exists η± ∈ L1(0, T ) × Σ±, dλ1) for all T ∈ (0,∞), which
furthermore satisfies (2.2)-(2.3) (with γ±f replaced by η±), such that, up to the extraction
of a subsequence, for any T, ε > 0 there exists a measurable set A ⊂ (0, T ) × ∂Ω such that
meas ((0, T )× ∂Ω \A) < ε and

γ±fn ⇀ η± weakly in L1(A× RN , dλ1).(2.24)

As a consequence, γ±f = η± and the reflection boundary condition (1.1) holds.

Proof of Theorem 2.9. First, from (2.21) and the Dunford-Pettis lemma we deduce (2.23).
Then, thanks to Lemma 2.7, extracting again a subsequence if necessary, we deduce that
fn

r
⇀f or more precisely, there exist two sequences (T̄M ) and (T̄ 0

M ) such that

TM (fn) ⇀ T̄M σ(L∞, L1) ? and T̄M ↗ f a.e.,(2.25)

TM (fn(0, .)) ⇀ T̄ 0
M σ(L∞, L1) ? and T̄ 0

M ↗ fin a.e..(2.26)

Next, from (2.22) and Theorem 2.5 (with φn = γ+fn/M , j(s) = s log s, ω(v) = |v|2,
dν(y) = dσxdt, dµy(v) = |n(x) · v|M(v) dv) we deduce that γ+fn ⇀ η+ in the sense stated
in (2.24). That implies that for any T, ε > 0 there exists a measurable set A ⊂ (0, T ) × ∂Ω

such that meas ((0, T )× ∂Ω \A) < ε andflγ+fn ⇀ η̃+ weakly in L1(A),

so that D(γ+fn) ⇀ D(η+) in the sense stated in (2.24). That also implies that for any
φ ∈ L∞(RNv )∫

RN
γ+fn(t, x, v)φ(Rx v)n(x) · v dv ⇀

∫
RN

η+(t, x, v)φ(Rx v)n(x) · v dv weakly in L1(A),

which means nothing but L(γ+fn) ⇀ L(η+) in the sense stated in (2.24). Gathering these
two convergence results, we get γ−fn ⇀ η− in the sense stated in (2.24) with η− := R(η+).

Finally, thanks to Lemma 2.7 again, extracting a subsequence if necessary, we deduce that
γfn

r
⇀η := η+ 1(0,∞)×Σ+

+ η− 1(0,∞)×Σ− or more precisely, there exists a sequence (γ̄M )

such that

(2.27) TM (γfn) ⇀ γ̄M σ(L∞, L1) ? and γ̄M ↗ η a.e.

We write then the Green renormalized formula (2.20) for the free transport equation∫ T

0

∫∫
O
TM (fn) Λϕdvdxdt =

∫ T

0

∫∫
Σ

TM (γ fn)ϕ n(x) · v dvdσxdt−
∫∫

O
TM (fn(0, .))ϕdxdv,
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for any ϕ ∈ D([0, T ) × Ō). Using (2.25), (2.26) and (2.27), we may pass twice two the limit
in the above equation, first when n→∞, next when M →∞, and we get∫ T

0

∫∫
O
f Λϕdvdxdt =

∫ T

0

∫∫
Σ

η ϕ n(x) · v dvdσxdt−
∫∫

O
fin ϕdxdv.

In other words, f is a solution to the free transport equation and γ±f = η± thanks to the
trace Theorem 2.8. We conclude by gathering that information with the equation satisfied
by η±.

3. On the convergence in the renormalized sense

3.1. Basic properties

We present the main basic properties concerning the notion of convergence in the renor-
malized sense. More about renormalized convergence is set out in the appendix section. In
that section the framework and notations are the same as those of Subsection 2.2, and again,
we only deal with non-negative functions of L = L(Y ), but we do not specify it anymore.

D 3.1. – We say that α is a renormalizing function if α ∈ Cb(R) is increasing
and 0 ≤ α(s) ≤ s for any s ≥ 0. We say that (αM ) is a renormalizing sequence if αM is a
renormalizing function for any M ∈ N and αM (s) ↗ s for all s ≥ 0 when M ↗ ∞. Given
any renormalizing sequence (αM ), we say that (φn) (αM )-renormalized converges to φ (or we
just say that (φn) r-converges to φ) if there exists a sequence (ᾱM ) of L∞(Y ) such that

αM (φn) ⇀ ᾱM σ(L∞(Y ), L1(Y )) ? and ᾱM ↗ φ a.e. in Y.

Notice that the renormalized convergence as defined in Definition 2.6 is nothing but the
(TM )-renormalized convergence.

P 3.2. – 1. The (αM )-renormalized limit in the Definition 3.1 does not depend
on the renormalizing sequence (αM ), but only on the sequence (φn). In other words, given
two renormalizing sequences (αM ) and (βM ), if (φn) (αM )-renormalized converges to φα and
(βM )-renormalized converges to φβ then φα = φβ .

2. For any sequence (φn) of L there exist a subsequence (φn′) of (φn) and a function φ ∈ L
such that (φn′) (αM )-renormalized converges to φ for any renormalizing sequence (αM ).

3. A sequence (φn) which converges to φ a.e. or strongly in Lp, p ∈ [1,∞], also r-converges
to φ. From a sequence (φn) which converges to φ weakly in Lp, p ∈ [1,∞], or in the biting
L1-weak sense, we may extract a subsequence (φn′) which r-converges to φ.

R 3.3. – 1. The definition of the (αM )-renormalized convergence with αM 6= TM
is important in order to obtain the renormalized convergence of the trace functions sequence
in Theorem 5.2. Indeed, TM is not smooth enough in order to be taken as a renormalizing
function for the VFP equation and we have to introduce the “smooth” renormalizing functions
α := ΦM,θ.

2. Because of Proposition 3.2 we will often make a misuse of language by not specifying the
renormalizing sequence (αM ) used to define the (αM )-renormalized convergence and by saying
that (φn) r-converges (to φ) when it is only a subsequence of (φn) which r-converges (to φ).
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3. Let us notice that in general we cannot exclude that the limit φ ≡ +∞, since for instance
the sequence (φn) defined by φn = n belongs to L and r-converges to φ ≡ ∞.

Proof of the Proposition 3.2. Step 0. We first claim that for any sequence (φn) of L and
any renormalizing sequence (αM ) there exist a subsequence (φn′) of (φn) and φ ∈ L such
that (φn′) (αM )-renormalized converges to φ. Indeed, for any M we can find a subsequence
(nMk )k and ᾱM ∈ L∞ such that αM (φnM

k
) ⇀ ᾱM weakly in L∞. By a diagonal process we

can obtain a unique subsequence (n′) such that the above weak convergence holds for any
M ∈ N. Furthermore, since (αM ) is increasing, we get that (ᾱM ) is an increasing sequence
of non-negative measurable functions, so that it converges to a limit φ ∈ L.

Step 1. Assume that for a renormalizing sequence (αK) we have αK(φn) ⇀ ᾱK ↗ ψ.
Thanks to step 0, there exist a sub-sequence (φn′), a sequence T̄M ∈ L∞ and a function φ ∈
L such that TM (φn′) ⇀ T̄M ↗ φ. It is clear that ∀K,M ∈ N ∀ε > 0 there is kM,ε,mK ∈ N
such that αK ≤ TmK and TM ≤ αkM,ε + ε. Therefore, writing that αK(φn) ≤ TmK (φn) and
TM (φn) ≤ αkM,ε(φn) + ε, and passing to the limit n→ +∞, we get

ᾱK ≤ T̄mK ≤ φ and T̄M ≤ ᾱkM,ε + ε ≤ ψ + ε.

Then passing to the limit M,K ↗ ∞ we obtain that ψ ≤ φ ≤ ψ + ε for any ε > 0, and
finally passing to the limit ε→ 0 we conclude that ψ = φ.

Step 2. Let us remark that the class of renormalizing functions is separable for the uniform
norm of Cb(R+). For instance, the family A = {αk} of functions α such that

0 ≤ α(s) ≤ s and α′(s) =
J∑
j=1

θj 1[aj ,aj+1[(s), aj , θj ∈ Q+

is countable and dense. By a diagonal process and thanks to step 0, we can find a subsequence
(φn′) in such a way that for any α ∈ A there exists ᾱ ∈ L∞ such that α(φn′) ⇀ ᾱ. Let us fix
now (βM ) a renormalizing sequence. On one hand, for any M there exists a sequence (αk)

of A such that αk ≤ βM ≤ αk + 1/k for any k ∈ N and αk ↗ βM . We already know
that αk(φn′) ⇀ ᾱk. Since (ᾱk) is not decreasing, it converges a.e., and we set β∗M = lim ᾱk.
On the other hand, thanks to Step 0, there exist a subsequence (φn′′) and a function β̄M
such that βM (φn′′) ⇀ β̄M . That implies ᾱk ≤ β̄M ≤ ᾱk + 1/k. Passing to the limit
k → ∞, we get β̄M = β∗M . Therefore, by uniqueness of the limit, it is the whole sequence
βM (φn′) which converges to β∗M . Finally, thanks to the usual monotony argument we deduce
that φn′ converges in the (βM )-renormalized sense and its limit is necessarily φ thanks to
Step 1.

Step 3. If φn → φ a.e. then clearly αM (φn) ⇀ αM (φ) L∞-weak and αM (φ) ↗ φ for
any renormalizing sequence (αM ), so that φn

r
⇀φ. If (φn) converges strongly or weakly in

Lp, p ∈ [1,∞], then it obviously converges in the biting L1-weak sense and we may apply
Lemma 2.7.

Let us now define the limit superior and the limit inferior in the renormalized sense.

D 3.4. – Let (φn) be a sequence of L. Consider I the set of all the increasing
applications ı : N → N such that the subsequence (φı(k))k≥0 of (φn)n≥0 converges in the
renormalized sense and note φı = r-limφı(k). Thanks to Proposition 3.2.2, we know that I
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is not empty. We defined the limit superior and the limit inferior of (φn) in the renormalized
sense by

r-lim supφn := sup
ı∈I

φı and r-lim inf φn := inf
ı∈I

φı.

It is clear that if r-lim supφn = r-lim inf φn then (φn) r-converges (up to the extraction of a
subsequence).

P 3.5. – 1. If φn
r
⇀φ, ψn

r
⇀ψ and λn → λ in R?+ then φn + λψn

r
⇀φ+ λψ.

2. Let φn
r
⇀φ and β be a non-negative and concave function; then β(φ) ≥ r-lim supβ(φn).

3. Let β be a strictly concave function, and (φn) be a sequence such that φn
r
⇀φ and

β(φ) ≤ r-lim inf β(φn) then, up to the extraction of a subsequence, φn → φ a.e. in Y .
4. Letφn

r
⇀φ andS be a bounded and non-negative operator ofL1; thenS φ ≤ r-lim inf S φn.

Proof of the Proposition 3.5. Step 1. From the elementary inequality

∀ a, b,M ≥ 0 M ∧ (a+ b) ≤M ∧ a+M ∧ b ≤ (2M) ∧ (a+ b),

we deduce

w-lim [M ∧ (φn + ψn)] ≤ w-lim [M ∧ φn] + w-lim [M ∧ ψn] ≤ w-lim [(2M) ∧ (φn + ψn)]

so that r-lim (φn + ψn) = φ+ ψ. Next, from the elementary identity

∀ a, b,M ≥ 0 (a b) ∧M = a
(
b ∧ (M/a)

)
and because for any ε > 0 there holds 0 < λ− ε ≤ λn ≤ λ+ ε for n large enough, we have

(λ− ε)
[
φn ∧

M

λ− ε

]
≤ (λn φn) ∧M ≤ (λ+ ε)

[
φn ∧

M

λ+ ε

]
.

We deduce that for a subsequence (λn′ φn′)

∀ ε > 0 (λ− ε) T̄ M
λ−ε
≤ w-lim

n′→∞
TM (λn′ φn′) ≤ (λ+ ε) T̄ M

λ+ε
,

so that, passing to the limit ε→ 0 and using that TM/(λ+ε) ≤ TM/(λ−ε),

λ T̄M = w-lim
n′→∞

TM (λn′ φn′).

Passing to the limit M →∞, we conclude that r-lim (λn φn) = λφ.

Step 2. We know that
β(s) = inf

`≥β
`(s),

where the inf is taken over all real values affine functions `(t) = a t+ b which satisfy a, b ≥ 0

and β(t) ≤ `(t) for any t ≥ 0. Furthermore, for any ` and M , there clearly exists KM such
that

TM (`(s)) ≤ `(TK(s)) and `(TM (s)) ≤ TK(`(s)) for all K ≥ KM , s ≥ 0.

We deduce that for any ` ≥ β, we have

TM (β(φn)) ≤ `(TK(φn)).

Therefore, we get
lim sup

n
TM (β(φn)) ≤ `(lim

n
TK(φn)) ≤ `(φ)
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and finally

lim sup
n

TM (β(φn)) ≤ β(φ) for any M,

which exactly means that r-lim supβ(φn) ≤ β(φ).

Step 3. For any subsequence (n′) such that β(φn′), β(φn′/2 + φ/2)) and β(φn′/2 + φ/2))−
β(φn′)/2− β(φ)/2 ≥ 0 converge in the renormalized sense, we have

r-lim
ï
β

Å
φn′ + φ

2

ã
− β(φn′)

2
− β(φ)

2

ò
+
β(φ)

2
+ r-lim

β(φn′)

2
= r-limβ

Å
φn′ + φ

2

ã
,

thanks to step 1. As a consequence, we get

0 ≤ r-lim
ï
β
(φn′ + φ

2

)
− β(φn′)

2
− β(φ)

2

ò
= r-limβ

(φn′ + φ

2

)
− β(φ)

2
− r-lim

β(φn′)

2

≤ β(φ)− β(φ)

2
− β(φ)

2
= 0,

thanks to step 2 and because φn′/2 + φ/2
r
⇀φ. Therefore, for any k, we have

0 ≤ lim
n→∞

∫
Yk

T1

(
β
(φn′ + φ

2

)
− β(φn′)

2
− β(φ)

2

)
dν

≤
∫
Yk

r-lim sup

ï
β
(φn′ + φ

2

)
− β(φn′)

2
− β(φ)

2

ò
dν = 0,

so that, up to extraction of a subsequence,

β
(φn′ + φ

2

)
− β(φn′)

2
− β(φ)

2
→ 0 a.e. on Y and φn′ → φ a.e. on Y.

Step 4. Fix χ ∈ Cc(Y ), the space of continuous functions on Y with compact support, such
that 0 ≤ χ ≤ 1. Since TM (φn)χ ⇀ T̄M χ weakly in L1, we have

(3.1) S(TM (φn)χ) ⇀ S(T̄M χ) weakly in L1.

We deduce, using TK(S(TM (φn)χ)) ≤ TK(S(φn)) and Proposition 3.2.3 that

S(T̄M χ) = r-lim inf
n→∞

S(TM (φn)χ) ≤ r-lim inf
n→∞

S(φn).

We conclude letting χ↗ 1 and M → +∞.

3.2. From renormalized convergence to weak convergence

We give now a kind of extension of the biting lemma in the L0 framework.

D 3.6. – We say that a sequence (ψn) is asymptotically bounded in L0(Y ) if for
any k ∈ N there exists δk : R+ → R+ such that δk(M) ↘ 0 when M ↗ +∞ and for any M
there is nk,M such that

(3.2) meas {y ∈ Yk, ψn(y) ≥M} ≤ δk(M) ∀k ∈ N, ∀n ≥ nk,M .

T 3.7. – Let (ψn) be a sequence ofL0(Y ) which r-converges to ψ with ψ ∈ L0(Y ).
Then (ψn) is asymptotically bounded in L0(Y ) and there exists a subsequence (ψn′) which
b-converges to ψ.
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R 3.8. – In the L1 framework, J. Ball and F. Murat [9] have already proved that the
biting L1-weak convergence implies, up to the extraction of a subsequence, the convergence in
the renormalized sense, as it has been recalled and extended to theL0 framework in Lemma 2.7.
As a consequence, combining Ball and Murat’s result with Theorem 3.7, we get the equivalence
between the biting L1-weak convergence and the renormalized convergence. More precisely,
considering a sequence (ψn) of L(Y ), it is equivalent to say that, up to the extraction of a
subsequence,

ψn
b
⇀ψ in the biting L1-weak sense (so that ψ ∈ L0(Y )),(3.3)

ψn
r
⇀ψ in the renormalized sense and ψ ∈ L0(Y ).(3.4)

Furthermore, in both cases, the full sequence (ψn) is asymptotically bounded in L0. Again,
we refer to the appendix where some complements about r-convergence and b-convergence are
given.

Proof of Theorem 3.7. Step 1. Proof of the asymptotic boundedness in L0. We argue by
contradiction. For an arbitrary ε > 0 we know that there existsB ⊂ Yk such that ν(Yk\B) <

ε/2 and ψ ∈ L1(B). If there is no m ∈ N such that meas {y ∈ B, ψn(y) ≥ m} < ε/2 for all
n large enough, this means that there exists an increasing sequence (nm) such that

meas {y ∈ B, ψnm(y) ≥ m} ≥ ε/2 ∀m ≥ 0.

Therefore, for any ` ∈ N and any m ≥ ` we have∫
B

T`(ψnm) ≥ `meas {y ∈ B, ψnm(y) ≥ `} ≥ `meas {y ∈ B, ψnm(y) ≥ m} ≥ ` ε
2
,

and passing to the limit m→∞, we get∫
B

ψ ≥
∫
B

w-lim
m→∞

T`(ψnm) ≥ ` ε
2

∀` ≥ 0.

Letting ` ↗ ∞ we get a contradiction with the fact that ψ ∈ L1(B). As a conclusion, we
have proved that for any ε > 0 there existmε and nε such that meas {y ∈ Yk, ψn ≥ mε} < ε

for any n ≥ nε, and (3.2) easily follows.

Step 2. Proof of the convergence in the biting L1-weak sense. As in Step 1, for any k ∈ N

we can choose B such that ν(Yk\B) < 1/3k and ψ ∈ L1(B). Setting
∫
B

ψ dy = C0, we

construct a sequence (n`) such that

(3.5)
∫
B

T`(ψn`) dy ≤ C0 +
1

`
.

From (3.5), Theorem 2.4 (biting lemma) and Lemma 2.7, we may extract a subsequence, still
denoted by (ψn`), which b-converges and r-converges to a limit denoted by ψ∗ ∈ L1(B). On
the one hand, for any M ∈ N we have TM (ψn`) ≤ T`(ψn`) for ` ≥ M so that, passing to
the limit ` → ∞, we get w-limTM (ψn`) ≤ ψ∗ and thus ψ ≤ ψ∗. On the other hand, from
Theorem 2.4 (biting lemma) again, we have ‖ψ∗‖L1 ≤ lim inf ‖T`(ψn`)‖L1 ≤ C0 = ‖ψ‖L1 .
Gathering these two inequalities, we have proved

T`(ψn`) ⇀ ψ weakly in L1(B).
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Furthermore, since (ψn) is asymptotically bounded in L0(Y ) we have, up to the extraction
of a subsequence again,

meas{ψn` 6= T`(ψn`)} = meas{ψn` > `} ≤ δk(`) −→
`→∞

0.

Therefore, we can choose another subsequence, still noted (ψn`), such that
ZL := {∀` ≥ L / ψn` 6= T`(ψn`)} satisfies

meas(ZL) ≤
∑
`≥L

meas{ψn` > `} −→
L→∞

0.

Finally, choosing L large enough such that meas (ZL) < 1/3k and settingAk := B∩ZcL, we
have |Yk\A| < 1/k, ψn` ∈ L1(A) for all ` ≥ L and

ψn` = T`(ψn`) ⇀ ψ weakly in L1(A).

We conclude thanks to a diagonal process.

A simple but fundamental consequence of Theorem 2.5 and Theorem 3.7 is the following.

T 3.9. – Consider a function m : RN → R and a family of measures d$y on RN

such that∫
RN

m(v) d$y(v) = 1,

∫
RN

m(v)1/4 d$y(v) ≤ C4 ∀y and m(0) ≥ m(v) −→
|v|→∞

0.

Let (φn) be a sequence of L0(Y × RN ) which satisfies∫
Y

E
(φn(y, .)

m(.)

)
dν(y) ≤ C1 <∞,

with E just like in Theorem 2.5 with dµy(v) = m(v) d$y(v), and assume that

(3.6) ψn(y) :=

∫
RN

φn(y, v) d$y(v)
r
⇀ ψ with ψ ∈ L0(Y ).

Then, there exist φ ∈ L1(Y × RN , dνd$) and a subsequence (φn′) such that for every k ∈ N
we can find Ak ⊂ Yk in such a way that (Ak) is increasing, ν(Yk\Ak) < 1/k and

φn′ ⇀ φ weakly in L1(Ak × RN , dνd$).

As a consequence ψ =

∫
RN

φd$ and E(φ/m) ∈ L1(Y ).

Proof of Theorem 3.9. From (3.6), Theorem 3.7 and Definition 2.3, we know that there exists
a subsequence (ψn′) such that for every k ∈ N we can find A = Ak ⊂ Yk satisfying that the
sequence (Ak) is increasing, ν(Yk\Ak) < 1/k and

ψn′ is weakly compact in L1(A).

Next, we come back to estimate (2.16) in the proof of Theorem 2.5, which written with the
new notation, becomes

(3.7)
∫∫

A×RN
φn′ Ξ

( φn′
m(v)

)
d$ydν ≤ C3,
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where we have set Ξ(s) := Ψ+(s)/s. Of course, we can assume without loss of generality
that Ξ is not decreasing, Ξ(s)↗∞ when s↗∞ and Ξ(s) ≤ s1/2. From (3.7) we deduce

(3.8)
∫∫

A×RN
φn′ Ξ

( φn′
m(0)

)
d$y dν ≤ C3,

as well as∫∫
A×RN

φn′ Ξ(m(v)−1/2) d$y dν(3.9)

≤
∫∫

A×RN
φn′ Ξ(m(v)−1/2)

(
1{φn′≤m(v)1/2} + 1{φn′≥m(v)1/2}

)
d$y dν

≤
∫∫

A×RN
m(v)1/4 d$y dν +

∫∫
A×RN

φn′ Ξ
( φn′
m(v)

)
d$y dν ≤ C4 |Yk|+ C3.

Gathering (3.8) and (3.9), we deduce thanks to the Dunford-Pettis lemma that (φn′) belongs
to a weak compact set of L1(A×RN , dνd$), and we conclude as in the end of the proof of
Theorem 2.5.

4. Trace theorems for solutions of the Vlasov-Fokker-Planck equation

4.1. Statement of the trace theorems

In this section we recall the trace results established in [55, 56] for the Vlasov equation
(which corresponds to the case ν = 0 in the theorem below) and we extend them to the VFP
equation. Given a vector fieldE = E(t, x, v), a source termG = G(t, x, v), a constant ν ≥ 0

and a solution g = g(t, x, v) to the Vlasov-Fokker-Planck equation

(4.1) ΛE g =
∂g

∂t
+ v · ∇xg + E · ∇vg − ν∆vg = G in (0, T )× O,

we show that g has a trace γg on the boundary (0, T ) × Σ and a trace γtg on the section
{t}× O for any t ∈ [0, T ]. These trace functions are defined thanks to a Green renormalized
formula. We write indifferently γtg = g(t, .).

The meaning of Equation (4.1) is of two kinds. In the first case, we assume that g ∈
L∞(0, T ; Lploc( Ō)), with p ∈ [1,∞], is a solution of (4.1) in the sense of distributions, i.e.,

(4.2)
∫ T

0

∫∫
O
(gΛ?Eφ+Gφ) dvdxdt = 0,

for all test functions φ ∈ D((0, T )× O), where we have set

Λ?E φ =
∂φ

∂t
+ v · ∇xφ+ E · ∇vφ+ ν∆vφ+ (divvE)φ.

In this case we assume

(4.3) E ∈ L1
(
0, T ;W 1,p′

loc ( Ō)
)
, divvE ∈ L1

(
0, T ;Lp

′

loc( Ō)
)
, G ∈ L1

loc([0, T ]× Ō),

where p′ ∈ [1,∞] stands for the conjugate exponent of p, given by 1/p + 1/p′ = 1, and we
make one of the two additional hypotheses

(4.4) ν

∫ T

0

∫
OR
|∇vg|2 dvdxdt ≤ CT,R
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or

(4.5) ν

∫ T

0

∫
OR
|∇vg|2 1{M≤|g|≤M+1} dvdxdt ≤ CT,R ∀M ≥ 0.

R 4.1. – The bound (4.5) is the natural bound that appears when we consider, for
example, the initial value problem with initial datum g0 ∈ Lp( O) when Ω = RN or when Ω is
an open subset of RN and specular reflections are imposed at the boundary.

In the second case, we assume that g is a renormalized solution of (4.1). In order to make
precise the meaning of such a solution, we must introduce some notations. We denote by
B1 the class of functions β ∈ W 2,∞(R) such that β′ has a compact support and by B2

the class of functions β ∈ W 2,∞
loc (R) such that β′′ has a compact support. Remark that for

every u ∈ L(Y ) and β ∈ B1 one has β(u) ∈ L∞(Y ). We shall write g ∈ C([0, T ];L( O)) if
β(g) ∈ C([0, T ];L1

loc( Ō)) for every β ∈ B1.

We say that g ∈ L((0, T )× O) is a renormalized solution of (4.1) if for all β ∈ B1 we have
(4.6)
E ∈ L1

(
0, T ;W 1,1

loc ( Ō)
)
, β′(g)G ∈ L1

loc([0, T ]× Ō), ν β′′(g) |∇v g|2 ∈ L1
loc([0, T ]× Ō),

and β(g) is solution of

(4.7) ΛE β(g) = β′(g)G− ν β′′(g) |∇v g|2 in D′((0, T )× O).

We can now state the trace theorems for the Vlasov-Fokker-Planck Equation (4.1).

T 4.2 (The case p =∞). – Let g ∈ L∞([0, T ] × O) be a solution of Equa-
tions (4.2)-(4.3)-(4.4). There exists γg defined on (0, T ) × Σ and for every t ∈ [0, T ] there
exists γtg ∈ L∞( O) such that

(4.8) γtg ∈ C([0, T ];Laloc( Ō)) ∀a ∈ [1,∞) and γ g ∈ L∞((0, T )× Σ),

and the following Green renormalized formula∫ t1

t0

∫∫
O

(
β(g) Λ?Eφ+ (β′(g)G− ν β′′(g) |∇v g|2)φ) dvdxdt(4.9)

=
[ ∫∫

O
β(g(t, .))φdxdv

]t1
t0

+

∫ t1

t0

∫∫
Σ

β(γ g)φ n(x) · v dvdσxdt,

holds for all t0, t1 ∈ [0, T ], all β ∈W 2,∞
loc (R) and all test functions φ ∈ D([0, T ]× Ō).

R 4.3. – A fundamental point, which is a consequence of the Green formula (4.9),
is the possibility of renormalizing the trace function, i.e.

(4.10) γ β(g) = β(γ g)

for all β ∈ W 2,∞(R). More generally, (4.10) holds as soon as γ β(g) is defined. This is the
property that will allow us to define the trace of a renormalized solution.
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T 4.4 (The case p ∈ [1,∞)). – Let g ∈ L∞(0, T ;Lploc( Ō)) be a solution of
Equations (4.2)-(4.3)-(4.5). There exists γg defined on (0, T )×Σ and for every t ∈ [0, T ] there
exists γtg ∈ Lp( O) such that

(4.11) γtg ∈ C([0, T ];L1
loc( O)) and γ g ∈ L1

loc

(
[0, T ]× Σ, dλ2

)
,

satisfy the Green formula (4.9) for every t0, t1 ∈ [0, T ], every β ∈ B1 and every test functions
φ ∈ D([0, T ] × Ō), as well as for every t0, t1 ∈ [0, T ], every β ∈ B2 and every test functions
φ ∈ D0([0, T ]× Ō), the space of functions φ ∈ D([0, T ]× Ō) such that φ = 0 on (0, T )×Σ0.

T 4.5 (The renormalized case). – Let g ∈ L((0, T ) × O) satisfy the bound
condition (4.6) and the Equation (4.7). Then there exists γg ∈ L([0, T ] × Σ) and for
every t ∈ [0, T ] there exists γtg ∈ C([0, T ];L( O)) which satisfy the Green formula (4.9) for
all t0, t1 ∈ [0, T ], all β ∈ B1 and all test functions φ ∈ D([0, T ] × Ō). Furthermore, if (4.7)
makes sense for at least one function β such that β(s)↗∞ when s↗∞, then γtg ∈ L0( O)

for any t ∈ [0, T ] and γg ∈ L0([0, T ]× Σ).

4.2. Proof of the trace theorems

We begin with some notations. For a given realR > 0, we defineBR = {y ∈ RN / |y| < R},
ΩR = Ω ∩ BR, OR = ΩR × BR and ΣR = (∂Ω ∩ BR) × BR. We also denote by
La,bR the space La(0, T ;Lb( OR)) or La(0, T ;Lb(ΩR)), and La,bloc the space La(0, T ;Lbloc( Ō))

or La(0, T ;Lbloc(Ω̄)).

Proof of Theorem 4.2. First step: a priori bounds. In this step we assume that g is a
solution of (4.1) and is “smooth”. Precisely, g ∈W 1,1

(
0, T ;W 1,∞(Ω;W 2,∞(RN ))

)
, in such

a way that the Green formula (4.9) holds. The trace γg in (4.9) is defined thanks to the usual
trace theorem in the Sobolev spaces. We shall prove two a priori bounds on g. Let us define
β ∈W 2,∞

loc (R) by

β(s) =

{
|s| − 1/2 if |s| ≥ 1

s2/2 if |s| ≤ 1
so that β′(s) =


1 if s ≥ 1

s if |s| ≤ 1

−1 if s ≤ −1

and β′′(s) =

{
0 if |s| ≥ 1

1 if |s| ≤ 1
,

and thus β ∈ B1. Fix R > 0 and consider χ ∈ D( Ō) such that 0 ≤ χ ≤ 1, χ = 1 on OR and
suppχ ⊂ ŌR+1. We set φ = χ n(x) · v. The Green formula (4.9) gives∫ T

0

∫∫
Σ

β(γ g)χ (n(x) · v)2 dvdσxdt = −
[ ∫∫

O
β(g(t, .))φdxdv

]T
0

+

∫ T

0

∫∫
O

(
β(g) Λ?Eφ+ (β′(g)G− ν β′′(g) |∇v g|2)φ) dvdxdt.
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We deduce from it a first a priori bound: there are some constants γR and CR such that

γR

∫ T

0

∫∫
ΣR

|γ g| (n(x) · v)2 dvdσxdt ≤
∫ T

0

∫∫
ΣR

β(γ g) (n(x) · v)2 dvdσxdt

≤ CR
∫ T

0

∫∫
OR+1

(
g2 (1 + |E|) + |G|+ ν |∇v g|2

)
dvdxdt(4.12)

+CR

∫∫
OR+1

(
g2(0, .) + g2(T, .)

)
dxdv,

where we have used the fact that for u ∈ L∞(YR) with YR = OR or ΣR there holds

γR

∫
YR

|u| ≤
∫
YR

β(u) ≤ γ−1
R

∫
YR

u2.

Let K ⊂ O be a compact set and consider φ ∈ D( O) such that 0 ≤ φ ≤ 1, φ = 1 on K
and R > 0 such that suppφ ⊂ OR. We fix t0 ∈ [0, T ]. The Green formula (4.9) implies∫∫

O
β(g(t1, .))φdxdv =

∫∫
O
β(g(t0, .))φdxdv(4.13)

+

∫ t1

t0

∫∫
O

(
β(g) Λ?Eφ+ (β′(g)G− ν β′′(g) |∇v g|2)φ) dvdxdt,

and we get a second a priori bound

γR

∫∫
K

|g|(t1, .) dxdv ≤ CR
∫∫

OR
g2(t0, .) dxdv(4.14)

+ CR

∫ T

0

∫∫
OR

(
g2 (1 + |E|) + |G|+ ν |∇v g|2

)
dvdxdt.

Second step: regularization and passing to the limit. Let us now consider a function g which
satisfies the assumptions of Theorem 4.2. We define the mollifier ρk by

ρk(z) = kN ρ(k z) ≥ 0, k ∈ N?, ρ ∈ D(RN ), supp ρ ⊂ B1,

∫
RN

ρ(z) dz = 1,

and we introduce the regularized functions gk = g ?x,k ρk ∗v ρk, where ∗ stands for the usual
convolution and ?x,k for the convolution-translation defined by

(u ?x,k hk)(x) = [τ2n(x)/k(u ∗ hk)](x) =

∫
RN

u(y)hk(x− 2

k
n(x)− y) dy,

for all u ∈ L1
loc(Ω̄) and hk ∈ L1(RN ) with supphk ⊂ B1/k.

L 4.6. – With this notation one has gk ∈W 1,1
(
0, T ;W 1,∞(Ω;W 2,∞(RN ))

)
and

ΛEgk = Gk in D′((0, T )× O),

with Gk ∈ L1
loc((0, T )× Ō) for all k ∈ N. Moreover, the sequences (gk) and (Gk) satisfy

(4.15)


(gk) is bounded in L∞((0, T )× O), gk −→ g a.e. in (0, T )× O,

∇vgk −→ ∇vg in L2
loc([0, T ]× Ō) and Gk −→ G in L1

loc([0, T ]× Ō).
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The proof of Lemma 4.6 is similar to the proof of [56, Lemma 1] and of [38, Lemma II.1] to
which we refer.

From Lemma 4.6 we have that for all k, ` ∈ N? the difference gk − g` belongs to
W 1,1

(
0, T ;W 1,∞(Ω;W 2,∞(RN ))

)
and is a solution of

ΛE(gk − g`) = Gk −G` in D′((0, T )× O).

We know, thanks to (4.15), that gk(t, .) converges to g(t, .) inL2
loc( Ō) for a.e. t ∈ [0, T ]; we fix

t0 such that gk(t0, .)→ g(t0, .). Moreover, up to a choice for the continuous representation
of gk, we can assume that gk ∈ C([0, T ], L1

loc( Ō)). Therefore, the estimate (4.13) applied to
gk − g` in t0 and the convergence (4.15) imply that for all compact sets K ⊂ O we have

(4.16) sup
t∈[0,T ]

‖(gk − g`)(t, .)‖L1(K) −→
k,`→+∞

0.

We deduce from this, that there exists, for any time t ∈ [0, T ], a function γtg such that gk(t, .)

converges to γtg in C([0, T ];L1
loc( O)); in particular,

g(t, x, v) = γtg(x, v) for a.e. (t, x, v) ∈ (0, T )× O.

Thus, we also have gk(t, .) = (γt g) ?x,k ρk ∗v ρk a.e. in (0, T ) × O, and since these two
functions are continuous, the equality holds for all (t, x, v) ∈ [0, T ]× Ō and k ∈ N?, so that
gk(t, .)→ γtg in L2

loc( Ō) for all t ∈ [0, T ].

Using now the estimate (4.12), applied to gk − g`, and the convergence (4.15) and (4.16)
we get that ∫ T

0

∫∫
ΣR

|γgk − γg`| (n(x) · v)2 dvdσxdt −→
k,`→+∞

0,

for allR > 0. We deduce that there exists a function γg ∈ L1
loc([0, T ]×Σ, (n(x)·v)2 dvdσxdt),

which is the limit of γgk in this space. Moreover, since ‖γgk‖L∞ ≤ ‖gk‖L∞ is bounded, we
have γg ∈ L∞((0, T )× O).

Finally, we obtain the Green formula (4.9) writing it first for gk and then passing to the
limit k → ∞ thanks to the convergence previously obtained. Uniqueness of the trace
function follows from the Green formula.

Proof of Theorem 4.5. The proof is based on Theorem 4.2 and on a monotony argument.
This is exactly the same as the one presented in [55] in the case of Vlasov equation. Let
(βM )M≥1 be a sequence of odd functions of B1 such that

βM (s) =

{
s if s ∈ [0,M ]

M + 1/2 if s ≥M + 1,

and |βM (s)| ≤ |s| for all s ∈ R. The function αM (s) := βM (β−1
M+1(s)), with the convention

αM (s) = M + 1/2 if s ≥ M + 3/2, is well defined, odd and also belongs to B1. We will
construct the trace function γg as the limit of (γβM (g)) when M → ∞, that one being
defined thanks to Theorem 4.2. Indeed, the condition (4.5) implies that

∇vg 1|g|≤M+1 ∈ L2
loc([0, T ]× Ō),

and then ∇vβM (g) = β′M (g)∇vg ∈ L2
loc([0, T ] × Ō) in such a way that βM (g) satisfies the

assumption of Theorem 4.2. We define Γ
(±)
M = {(t, x, v) ∈ (0, T )× Σ,±γβM (g)(t, x, v) > 0}
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and Γ
(0)
M = {(t, x, v) ∈ (0, T ) × Σ, γβM (g)(t, x, v) = 0}. Thanks to the definition of αM

and the renormalization property (4.10) of the trace, one has γ βM (g) = γ αM (βM+1(g)) =

αM (γ βM+1(g)). We deduce that, up to a set of measure zero,

Γ
(+)
M = Γ

(+)
1 , Γ

(−)
M = Γ

(−)
1 and Γ

(0)
M = Γ

(0)
1 for all M ≥ 1.

Therefore the sequence (γ βM (g))M≥1 is increasing on Γ
(+)
1 and decreasing on Γ

(−)
1 . This

implies that γ βM (g) converges a.e. to a limit denoted by γg which belongs to L([0, T ]×Σ).
Obviously, if (4.7) holds for one function β such that β(s) ↗ +∞ when s ↗ ±∞, then
β(γg) ∈ L1((0, T ) × Σ, dλ2) and γg ∈ L0((0, T ) × Σ). In order to establish the Green
formula (4.9) we fix β ∈ B1 and φ ∈ D((0, T ] × Ō). We write the Green formula for the
function β(βM (g)), and using the fact that γ

[
β ◦ βM (g)

]
= β(γβM (g)), we find∫ T

0

∫∫
O

(
β ◦ βM (g) (

∂φ

∂t
+ v · ∇xφ+ E · ∇vφ) + (β ◦ βM )′(g)Gφ

)
dvdxdt

=

∫ T

0

∫∫
Σ

β(γ βM (g))φn(x) · v dvdσxds.

We get (4.9) by letting M →∞ and noticing that β ◦ βM (s)→ β(s) for all s ∈ R.

R 4.7. – Theorem 4.4 is now a quite simple consequence of Theorem 4.5 using the
a priori bounds stated in the proof of Theorem 4.2. Let us emphasize that with the additional
assumption (4.4) at hand, it is possible to give a direct proof of Theorem 4.4 (following the
proof of Theorem 4.2) instead of passing through the renormalization step. See [56] for details.

Proof of Theorem 4.4. For all β ∈ B1 it is clear that β(g) ∈ L∞, ∇vβ(g) ∈ L2 and that
β(g) is solution of (4.7) using Lemma 5.5 below (we just have to multiply Equation (5.20),
in the case µ ≡ 0, by β′(gk) and to pass to the limit k → ∞). Thanks to Theorem 4.5, we
already know that g has a trace γtg ∈ L( O) and γg ∈ L((0, T )× O) which satisfies the Green
formula (4.9) for all β ∈ B1 and φ ∈ D([0, T ] × Ō). We just have to prove that γg and γtg
belong to the appropriate space. On one hand, for all β ∈ B1 such that |β(s)| ≤ |s| one has

‖β(γtg)‖Lp
R
≤ sup

k
sup
[0,T ]

‖β(gk(t, .))‖Lp
R
≤ sup

[0,T ]

‖gk(t, .)‖Lp
R
≤ ‖g‖L∞,p

R
,

and thus, choosing β = βM , defined in the proof of Theorem 4.5, one gets, passing to the
limit M →∞,

sup
[0,T ]

‖γtg‖Lp
R
≤ ‖g‖L∞,p

R
<∞.

In the same way and using (4.12), we show that

‖γg‖L1([0,T ]×ΣR,dλ2) <∞.

We still have to prove that γtg ∈ C([0, T ], L1
loc( Ō)), which is an immediate consequence of

the following lemma.

L 4.8. – Let (un) be a bounded sequence of L1
loc( O) such that β(un) ⇀ β(u) in(

Cc( O)
)′

for all β ∈ B2. Then un → u in L1
loc( O).
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Proof of Lemma 4.8. We fix j : R → R a non-negative function of class C2, strictly convex
on the interval [−M,M ] and such that j′′(t) = 0 for all t /∈ [−M,M ]; in particular j ∈ B2.
We also consider χ ∈ Cc( O) such that 0 ≤ χ ≤ 1. By assumption

(4.17)
∫

O
j(un)χ→

∫
O
j(u)χ

and by convexity of j one also has

(4.18) lim inf
n→∞

∫
O
j
(un + u

2

)
χ ≥

∫
O
j(u)χ since

un + u

2
⇀ u in

(
Cc( O)

)′
.

Remarking that

(4.19)
1

2
j(t) +

1

2
j(s)− j

( t+ s

2

)
≥ 0 ∀t, s ∈ R,

we deduce from (4.17) and (4.18) that

(4.20)
∫

O

[1
2
j(un) +

1

2
j(u)− j

(un + u

2

)]
χ→ 0.

From the fact that in (4.19) the inequality is strict whenever t, s ∈ [−M,M ] and t 6= s,
we obtain from (4.20) that there exists a subsequence (unk) such that unk → u a.e. on
suppχ ∩ [ |u| < M ]. The preceding argument being valuable for arbitrary M and χ, we
obtain, by a diagonal process, a subsequence of (un), still denoted by (unk), such that unk →
u a.e. in O.

We now set j±(s) = s±. We first remark that we can write j± = j±,1+j±,2 with j±,1 ∈ B2

and j±,2 ∈W 2,∞(R) in such a way that∫
O
j±(unk)χ→

∫
O
j±(u)χ.

On the other hand, the elementary inequality
∣∣ b−|a−b| ∣∣ ≤ a ∀a, b ≥ 0 and the dominated

convergence theorem imply j±(unk)−|j±(unk)−j±(u)| → j±(u) in L1
loc( O). It follows that

lim sup
k→∞

∫
O

∣∣ j±(unk)− j±(u)
∣∣χ =

∫
O
j±(u)χ− lim

k→∞

∫
O
j±(unk)χ = 0.

We conclude that unk = j+(unk) − j−(unk) → j+(u) − j−(u) = u strongly in L1
loc( O) and

that, in fact, it is the whole sequence (un) which converges.

5. Renormalized convergence for the trace functions sequence

We present now a quite general stability result in both the interior and up to the boundary
for a sequence of renormalized solutions to the Vlasov-Fokker-Planck equation in a domain.
This will be a key argument in the proof of Theorem 1.2. In some sense, this result says
that renormalized convergence, as well as the a.e. convergence, can be propagated from the
interior to the boundary. Notice that it is not clear that a similar result holds for theL1-weak
convergence.
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T 5.1. – Define B3 as the class of functions of W 1,∞
loc (R) such that

|β′(s)| (1 + s)−1 ∈ L∞(R). Consider three sequences (gn), (En) and (Gn), with Gn = G+
n −G−n ,

G±n ≥ 0, which satisfy for any renormalizing sequence (αM ) in B3 and for any β ∈ B3 the
convergence assumptions

gn ⇀ g weakly in L∞(0, T : L1( O)),(5.1)

En → E strongly in L1((0, T )× Ω), uniformly bounded in L1(0, T ;W 1,1(Ω)),(5.2)

α′M (gn)G±n ⇀ Ḡ±M weakly in L1((0, T )× OR),(5.3)

with Ḡ±M ↗ G± a.e. and β′(g)G± ∈ L1((0, T )× OR),

as well as the renormalized Vlasov equation

(5.4) ΛEn β(gn) = β′(gn)Gn in D′((0, T )× O),

for which each term clearly makes sense thanks to (5.1) (5.3). Then g ∈ L∞(0, T ;L1( O)) is a
solution of

(5.5) ΛE β(g) = β′(g)G in D′((0, T )× O), G = G+ −G−,

for any β ∈ B3. Furthermore, the traces γgn and γg defined thanks to Theorem 4.5 satisfy

(5.6) γgn
r
⇀γg in the renormalized sense.

Proof of Theorem 5.1. The proof is essentially the same as Step 2 in the proof of [55,
Proposition 5] and as the proof of Theorem 2.9. Nevertheless, for the sake of completeness,
we sketch the main arguments.

Step 1. Up to the extraction of a subsequence, we have gn
r
⇀g thanks to (5.1) and Lemma 2.7,

and there exists η ∈ L((0, T ) × Σ) such that γgn
r
⇀η thanks to Proposition 3.2. More

precisely, there exist two sequences (ᾱM ) and (γ̄M ) such that

αM (gn) ⇀ ᾱM σ(L∞, L1) ? and ᾱM ↗ g a.e.,(5.7)

αM (γgn) ⇀ γ̄M σ(L∞, L1) ? and γ̄M ↗ η a.e..(5.8)

The Green formula (4.9) associated to Equation (5.4) with β = αM implies∫ T

0

∫∫
O

(
αM (gn) Λ∗Eϕ+ α′M (gn)Gnϕ

)
dvdxdt =

∫ T

0

∫∫
Σ

αM (γ gn)ϕ n(x) · v dvdσxdt,

for any ϕ ∈ D((0, T )× Ō). Passing to the limit M →∞ with the help of (5.7), (5.2), (5.3) in
the above identity, we obtain

(5.9) ΛE ᾱM = ḠM := Ḡ+
M − Ḡ

−
M in D′((0, T )× O),

and γᾱM = γ̄M thanks to the trace Theorem 4.2 and the convergence (5.8).

Step 2. For a given function β ∈ B3 ∩ L∞, we write the renormalized Green formula (4.9)
associated to Equation (5.9) as

(5.10)
∫ T

0

∫∫
O

(
β(ᾱM ) Λ∗Eϕ+β′(ᾱM ) ḠMϕ

)
dvdxdt =

∫ T

0

∫∫
Σ

β(γM )ϕ n(x) ·v dvdσxdt,

for any ϕ ∈ D((0, T )× Ō). Using that (ᾱM ), (G±M ) and (γ̄M ) are a.e. increasing sequences
we have

(5.11) β(ᾱM )↗ β(g), β′(ᾱM ) Ḡ±M ↗ β′(g)G± in L1((0, T )× O)
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as well as

(5.12) β(γ̄M )↗ β(η) a.e. and uniformaly bounded in L∞((0, T )× O).

Passing to the limit in (5.10) with the help of (5.11) and (5.12) we obtain∫ T

0

∫∫
O

(
β(g) Λ∗Eϕ+ β′(g)Gϕ

)
dvdxdt =

∫ T

0

∫∫
Σ

β(η)ϕ n(x) · v dvdσxdt,

which precisely means that η = γg. We conclude by gathering that information with (5.8).

T 5.2. – Consider three sequences (gn), (En) and (Gn) which satisfy, for all
β ∈ B4 the class of functions of W 2,∞

loc (R) such that |β′(s)| (1 + s)−1 ∈ L∞(R) and
|β′′(s)| (1 + s)−2 ∈ L∞(R),

gn → g strongly in L1((0, T )× O) and is uniformly bounded in L∞(0, T ;L1( O)),(5.13)

En ⇀ E weakly in L1(0, T ;W 1,1
loc ( Ō)),(5.14)

β′(gn)Gn ⇀ β′(g)G weakly in L1((0, T )× OR), ∀R ≥ 0,(5.15) ∫ T

0

∫
O

|∇vgn|2

1 + gn
dvdxdt ≤ CT ,(5.16)

as well as the renormalized Vlasov-Fokker-Planck equation

(5.17) ΛEn β(gn) = β′(gn)Gn − ν β′′(gn) |∇vgn|2 in D′((0, T )× O),

for which each term makes sense thanks to (5.13) (5.16). Then g ∈ L∞(0, T ;L1( O)) is a
solution of

(5.18) ΛE β(g) = β′(g)G− ν β′′(g) |∇vg|2 in D′((0, T )× O)

for all β ∈ B4. Furthermore, the traces γgn and γg defined thanks to Theorem 4.5 satisfy

(5.19) γgn
r
⇀γg in the renormalized sense, and γ+gn → γ+g a.e.

We shall need the following auxiliary results in the proof of Theorem 5.2.

L 5.3. – Let (un) be a bounded sequence of L2(Y ) such that un ⇀ u weakly in
L2(Y ). Then, there exists µ ∈ (Cc(Y ))′, a non-negative measure, such that, up to the
extraction of a subsequence,

|un|2 ⇀ |u|2 + µ weakly in (Cc(Y ))′.

L 5.4. – For any θ ∈ (0, 1) and M ∈ (0,∞) we set

Φ(s) = ΦM,θ(s) :=

{
1/θ (eθ s − 1) if s ≤M
(s−M) eθM + 1/θ (eθM − 1) if s ≥M,

and β(s) := β1(s) = log(1 + s). Then
Φ′(s) ≥ 1, Φ ◦ β(s)↗ s when M ↗∞, θ ↗ 1,

and 0 ≤ −(Φ ◦ β)′′(s) ≤ 1− θ + e(θ−1)M

1 + s

∀s ≥ 0.
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L 5.5. – Let g ∈ L∞(0, T ;Lploc( O)) be a solution to the Vlasov-Fokker-Planck
equation

(5.20) ΛE g = G+ µ in D′((0, T )× O),

with E ∈ L1(0, T ;W 1,p′

loc ( O)), G ∈ L1
loc((0, T ) × O)) and µ ∈ D′((0, T ) × O), µ ≥ 0. For a

given mollifer ρk in RN , we set

gk := g ∗t ρk ∗x ρk ∗v ρk and µk := µ ∗t ρk ∗x ρk ∗v ρk.

Then gk satisfies the Vlasov-Fokker-Planck equation

ΛE gk = Gk + µk in all compact set of (0, T )× O,

with Gk → G strongly in L1
loc([0, T ]× O)).

The proof of Lemma 5.3 is classical, the one of Lemma 5.4 is elementary, and we refer to [35]
for the proof of Lemma 5.5.

Proof of the Theorem 5.2. Step 1: Proof of (5.18). This step is inspired from [35] and
it is clear from the theory of renormalized solution [38] that it is enough to prove (5.18)
only for β(s) := log(1 + s). With the notation hn := β(gn) and h = β(g) we have
∇vhn =

√
−β′′(gn)∇vgn ⇀

√
−β′′(g)∇vg = ∇vh weakly in L2((0, T ) × O) so that,

thanks to Lemma 5.3, there is a bounded measure µ ≥ 0 such that, up to the extraction of a
subsequence, |∇vhn|2 ⇀ |∇vh|2 + µ weakly in D′([0, T ] × Ō). Passing to the limit n → ∞
in (5.17) we get

ΛE β(g) = β′(g)G− β′′(g) |∇vg|2 + µ in D′((0, T )× O).

We just point out that

En β(gn) ⇀ E β(g) weakly in L1((0, T )× O),

since β(gn) → β(g) strongly in L2(0, T ;Lp( O)) for all p < ∞ and En ⇀ E weakly in
L2(0, T ;Lq( O)) for every q ∈ [1, N/(N − 1)). We prove now that µ = 0 in (0, T )× O.

With the notations introduced in Lemma 5.4 and Lemma 5.5 we have

ΛE Φ(hk) = Φ′(hk)
(
β′(g)G− β′′(g) |∇vg|2

)
∗t,x,v ρk − Φ′′(hk) |∇vhk|2 + Φ′(hk)µk.

Using that Φ′ ≥ 1 (thanks to Lemma 5.4) and passing to the limit k → ∞ (thanks to
Lemma 5.5), we get

ΛE (Φ ◦ β)(g) ≥ Φ′(β(g))β′(g)G− (Φ′(β(g))β′′(g) + Φ′′(β(g)) (β′(g))2) |∇vg|2 + µ

and then

(5.21) ΛE (Φ ◦ β)(g)− (Φ ◦ β)′(g)G ≥ (Φ ◦ β)′′(g) |∇vg|2 + µ in D′((0, T )× O).

In order to have an estimate of the left hand side we come back to Equation (5.17), and we
write

ΛEn Φ ◦ β(gn) = (Φ ◦ β)′(gn)Gn − (Φ ◦ β)′′(gn) |∇vgn|2 in D′((0, T )× O)
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since Φ ◦ β ∈ B4. Then, for all χ ∈ D((0, T ) × O such that 0 ≤ χ ≤ 1 we have (thanks to
Lemma 5.4) ∣∣∣∫ T

0

∫
O

(
Φ ◦ β(gn) ΛEn χ+ (Φ ◦ β)′(gn)Gn χ

)
dvdxdt

∣∣∣
= −

∫ T

0

∫
O
(Φ ◦ β)′′(gn) |∇vgn|2 χdvdxdt

≤ [1− θ + e(θ−1)M ]

∫ T

0

∫
O

|∇vgn|2

1 + gn
dvdxdt.

Passing to the limit n→∞ we get, thanks to (5.16),∣∣∣∫ T

0

∫
O

(
Φ ◦ β(g) ΛE χ+ (Φ ◦ β)′(g)Gχ

)
dvdxdt

∣∣∣ ≤ [1− θ + e(θ−1)M ]CT .

Then, coming back to (5.21), we have (thanks to Lemma 5.4 again)∫ T

0

∫
O
χdµ ≤ −

∫ T

0

∫
O

(
Φ ◦ β(g) ΛE χ+ (Φ ◦ β)′(g)Gχ+ (Φ ◦ β)′′(g) |∇vg|2

)
dvdxdt

≤ 2 [1− θ + e(θ−1)M ]CT ∀θ ∈ [0, 1], M > 0,

and letting M → ∞ and then θ → 1 we obtain µ = 0 on suppχ, which is precisely saying
that µ = 0 on (0, T )× O.

Step 2: Proof of (5.19). We fix φ ∈ D((0, T )× Ō) such that 0 ≤ φ ≤ 1. By definition of γgn
we have∣∣∣∫ T

0

∫∫
Σ

Φ ◦ β(γ gn)φ n(x) · v dvdσxdt

−
∫ T

0

∫
O

(
Φ ◦ β(gn) ΛEn χ+ (Φ ◦ β)′(gn)Gn χ

)
dvdxdt

∣∣∣
=

∫ T

0

∫
O
(Φ ◦ β)′′(gn) |∇vgn|2 χdvdxdt ≤ [1− θ + e(θ−1)M ]

∫ T

0

∫
O

|∇vgn|2

1 + gn
dvdxdt.

We note Φ ◦ β the L1-weak limit of Φ ◦ β(γ gn). Passing to the limit n→∞ we get∣∣∣∫ T

0

∫∫
Σ

Φ ◦ β φ n(x) · v dvdσxdt−
∫ T

0

∫
O

(
Φ ◦ β(g) ΛE χ+ (Φ ◦ β)′(g)Gχ

)
dvdxdt

∣∣∣
≤ [1− θ + e(θ−1)M ]CT ,

and thus∣∣∣∫ T

0

∫∫
Σ

Φ ◦ β φ n(x) · v dvdσxdt−
∫ T

0

∫
O

[
Φ ◦ β(g) ΛE χ

+
(
(Φ ◦ β)′(g)G− (Φ ◦ β)′′(g) |∇vg|2

)
χ
]
dvdxdt

∣∣∣ ≤ 2 [1− θ + e(θ−1)M ]CT .

Once again, by definition of γg, we obtain∣∣∣∫ T

0

∫∫
Σ

(
Φ ◦ β − Φ ◦ β(γ g)

)
φ n(x) · v dvdσxdt

∣∣∣ ≤ 2 [1− θ + e(θ−1)M ]CT −→
M→∞,θ→1

0,

and Φ ◦ β ↗ r-lim γgn since Φ ◦ β(s)↗ s when M ↗∞, θ ↘ 1, so that γg = r-lim γgn.
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In order to prove the a.e. convergence we only have to show, thanks to Proposition 3.5.3,
that, up to the extraction of a subsequence,

(5.22) r-lim inf β(γ+gn) ≥ β(γ+g).

Using Lemma 5.3 and the first step, we can pass to the limit in (5.17), up to the extraction of
a subsequence, and we get∫ T

0

∫∫
Σ

β φ n(x) · v dvdσxdt =

∫ T

0

∫
O

(
β(g) ΛE χ+ (β′(g)G+ β′′(g) |∇vg|2 + µ)χ

)
dvdxdt

=

∫ T

0

∫∫
Σ

(β(γg) n(x) · v + µ)φ dvdσxdt,

where β = w-limβ(γgn) is the weak limit in L1((0, T ) × Σ) of β(γgn). We deduce that
β n(x) · v = β(γg) n(x) · v + µ on (0, T )× Σ, and in particular

β ≥ β(γ+g) on (0, T )× Σ+.

Since r-lim inf β(γ+gn) = β̄, that ends the proof of (5.22).

6. Boltzmann, Vlasov-Poisson and Fokker-Planck equations

In this section we derive the a priori physical bound, then make precise the exact
meaning of renormalized solution we deal with and finally state and present a proof of
the corresponding stability results. In order not to repeat many times the exposition, we
consider the full Vlasov-Poisson-Fokker-Planck-Boltzmann system (VPFPB in short)

(6.1)
∂f

∂t
+ v · ∇xf − divv

(
(∇xVf + λ v) f

)
− ν∆vf = Q(f, f) in (0,∞)× O,

where ν ≥ 0, λ ∈ R, Q(f, f) stands for the bilinear Boltzmann collision operator and Vf is
given by means of the Poisson equation

(6.2) −∆Vf = ρf :=

∫
RN

f dv in (0,∞)× Ω, Vf = 0 on (0,∞)× ∂Ω.

We do not give the explicit expression for Q(f, f) that we may find in [25, 37] for
example. The precise assumptions we make on the cross section are those introduced
in [37]. We only recall that the collision operator splits into a gain term and a loss term,
Q(f, f) = Q+(f, f)−Q−(f, f), that it has the following collision invariants

(6.3)
∫

R3

Q(f, f)

Ü
1

v

|v|2

ê
dv = 0,

and that the so-called entropy production term e(f) ≥ 0 satisfies

(6.4)
∫

R3

e(f) dv = −
∫

R3

Q(f, f) log f dv.

Moreover, it has been established in [37] the following estimate

(6.5) ∀R > 0 ∃CR <∞
∫
BR

Q±(f, f)

1 + f
dv ≤ CR

∫
RN

[
(1 + |v|2) f + e(f)

]
dv,
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and in [66] (we also refer to [52] for a related result) the more accurate estimate

(6.6) ∀R > 0 ∃CR <∞
∫
BR

|Q(f, f)|√
1 + f

dv ≤ CR
∫

RN

[
(1 + |v|2) f + e(f)

]
dv.

We assume furthermore that f satisfies the boundary condition (1.1) and the initial con-
dition (1.8), where fin is assumed to verify (1.9), as well as the following additional bound
when ν > 0:
(6.7)∫

Ω

|∇xVfin |2 dx <∞ with −∆xVfin =

∫
R3

fin(x, v) dv on Ω, Vfin = 0 on ∂Ω.

L 6.1. – For any non-negative initial datum fin such that (1.9)-(6.7) holds and any
time T ∈ (0,∞) there exists a constant CT ∈ (0,∞) (only depending on T and on fin through
the quantities C0 and ‖∇xVfin‖L2) such that any solution f to the initial boundary value
problem (6.1)-(6.2)-(1.1)-(1.8) satisfies (at least formally)

sup
[0,T ]

{∫∫
O
f
(
1 + |v|2 + | log f |

)
dvdx+

∫
Ω

|∇xVf |2 dx
}

(6.8)

+

∫ T

0

∫∫
O

(
e(f) + ν

|∇vf |2

f

)
dvdxdt ≤ CT ,

as well as

(6.9)
∫ T

0

∫
∂Ω

{
E
Å
γ+f

M

ã
+

√
γ̃+f

}
dσxdt ≤ CT ,

where E is defined in (1.13). It is worth mentioning that the second estimate in (6.9) is an a
posteriori estimate which we deduce from the interior estimate (6.8) and a Green formula.

Proof of (6.8) in Lemma 6.1. We claim that for f sufficiently regular and decreasing at the
infinity all the integrations (by parts) that we shall perform are allowed.

First, we simply integrate Equation (6.1) over all variables, and we get the conservation of
mass ∫∫

O
f(t, .) dvdx =

∫∫
O
fin dvdx ∀t ≥ 0.

Next, setting hM (s) = s log(s/M) and E = ∇xVf , we compute

∂

∂t
hM (f) + v · ∇xhM (f) + divv

(
(E + λ v)hM (f)

)
− ν∆vhM (f)

= h′M (f)Q(f, f)− ν h′′M (f) |∇vf |2 − f (E + λ v) · ∇v(logM)

+ λ (hM (f)− f h′M (f)) + 2 ν∇vf · ∇v(logM) + ν f ∆v(logM),

where h′M (s) = 1 + log (s/M). We integrate this equation over the x, v variables using the
collision invariants (6.3) and the entropy production identity (6.4), to obtain

d

dt

∫∫
O
hM (f) dvdx+

∫∫
O

(
e(f) + ν

|∇vf |2

f

)
dvdx+

∫∫
Σ

hM (γf) v · n(x) dvdσx(6.10)

=

∫
Ω

E · j
Θ
dx+

∫∫
O

{
λ
( |v|2

Θ
− 1) +

ν

Θ

}
f dvdx,
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where

j(t, x) =

∫
R3

v f(t, x, v) dv.

We first remark that integrating Equation (6.1) in the velocity variable we have

∂

∂t
ρ+ divx j = 0 on (0,∞)× Ω,

and therefore

(6.11) −
∫

Ω

E · j
Θ
dx =

∫
Ω

∇Vf ·
j

Θ
dx =

∫
Ω

Vf
Θ

∂ρ

∂t
dx =

d

dt

∫
Ω

|∇xVf |2

2 Θ
dx.

Next, combining (6.10), (6.11) and the boundary estimate (2.5) we obtain

d

dt

{∫∫
O
hM (f) dvdx+

∫
Ω

|∇xVf |2

2 Θ
dx
}

+

∫∫
O

[
e(f) + ν

|∇vf |2

f

]
dvdx

+ᾱ

∫
∂Ω

E(γ+ f) dσx ≤ Cλ,ν
∫∫

O
(1 + |v|2) f dvdx.

Here and below, we set ᾱ = α in the case of the constant accommodation coefficient (1.2)
and ᾱ is defined just after Equation (1.6) in the case of mass flux dependent accommodation
coefficient. Using the elementary estimate (2.6) and (2.7) we conclude that (6.8) holds, as well
as the first estimate in (6.9).

In order to prove the second estimate in (6.9), we fix χ ∈ D(RN ) such that 0 ≤ χ ≤ 1,
χ = 1 on B1 and suppχ ⊂ B2 and we apply the Green formula (4.9) written with
φ = n(x) · v χ(v) and β(s) =

√
1 + s. We get∫ T

0

∫∫
Σ

√
1 + γf (n(x) · v)2 χdvdσxdt =

[ ∫∫
O

√
1 + γf φ dvdx

]0
T

(6.12)

+

∫ T

0

∫∫
O

(√
1 + f

(
v · ∇x + (∇xVf + λ v) · ∇v + ν∆v +N λ

)
φdvdxdt

+

∫ T

0

∫∫
O

( Q(f, f)

2 (1 + f)1/2
+
ν

4

|∇vf |2

(1 + f)3/2

)
φdvdxdt.

Thanks to (6.8) and (6.6) and because ∇xφ ∈ L∞, D2
vφ ∈ L∞, we see that the right hand

side term in (6.12) is bounded by a constant denoted by C ′T and which only depends on CT
defined in (6.8). On the other hand, from the boundary condition (1.1)-(1.2) or (1.1)-(1.6),
we have γ−f ≥ ᾱM(v) γ̃

+
f on (0, T )× Σ−. Therefore there is a constant Cχ > 0 such that

Cχ

∫ T

0

∫
∂Ω

√
γ̃
+
f dσxdt ≤

∫ T

0

∫∫
Σ−

√
γ̃
+
f ᾱ1/2M1/2(v)χ (n(x) · v)2 dvdσxdt

≤
∫ T

0

∫∫
Σ−

»
γ−f χ (n(x) · v)2 dvdσxdt ≤ C ′T ,

which ends the proof of (6.9).
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We can now specify the sense of the solution we deal with. With DiPerna and Lions
[35, 37, 39, 52] we say that 0 ≤ f ∈ C([0,∞);L1( O)) is a renormalized solution of (6.1)-
(6.2)-(1.1)-(1.8) if f satisfies the a priori physical bound (6.8) and is a solution of

∂

∂t
β(f) + v · ∇xβ(f) + (∇xVf + λ v) · ∇vβ(f)− ν∆vβ(f) =(6.13)

= β′(f) (Q(f, f) + λN f)− ν β′′(f) |∇vf |2 in D′((0, T )× O),

for all time T > 0, and all β ∈ B5, the class of all functions β ∈ C2(R) such that
|β′′(s)| ≤ C/(1 + s), |β′(s)| ≤ C/

√
1 + s, ∀s ≥ 0. Thanks to (6.8) (and (6.6)) we see that

each term in Equation (6.13) makes sense. Next, the trace functions f(0, .) and γf defined
by Theorem 4.5 through the Green formula (4.9) must satisfy (1.8) and (1.1), say almost
everywhere. Finally, we will always assume that γf satisfies the additional bound (6.9).

Our main result is the following stability or compactness result. Once again, in order not to
repeat several times the proof, we establish our result for the full VPFPB system and the full
VPB system, the same holds for the same equation with less terms.

T 6.2. – Let (fn) be a sequence of renormalized solutions to Equation (6.1)-(6.2)
such that the associated trace functions γfn satisfy (1.1), with the linear reflection operator (1.2)
when ν = 0 and a possibly mass flux depending accommodation coefficient (1.6) when ν > 0

(FP type models). Let us furthermore assume that both the sequence of solutions (fn) and the
trace sequence (γfn) satisfy (uniformly in n) the natural physical a priori bounds

(6.14) sup
[0,T ]

{∫∫
O
fn
(
1 + |v|2 + | log fn|

)
dvdx+

∫
Ω

|∇xVfn |2 dx
}

+

∫ T

0

∫∫
O

(
e(fn) + ν

|∇vfn|2

fn

)
dvdxdt+

∫ T

0

∫
∂Ω

E
Å
γ+fn
M

ã
dσxdt ≤ CT .

If fn(0, .) converges to fin weakly in L1( O) then, up to the extraction of a subsequence, fn

converges weakly in Lp(0, T ;L1( O)) for all T > 0 and p ∈ [1,∞) (the convergence being
strong when ν > 0) to a renormalized solution f to (6.1)-(6.2) with initial value fin and which
satisfies the physical estimates (6.8). Furthermore, for any ε > 0 and T > 0, there exists a
measurable set A ⊂ (0, T )× ∂Ω such that meas ((0, T )× ∂Ω \A) < ε and

γ
+
fn ⇀ γ

+
f weakly in L1(A× RN , dλ1),

(the convergence being strong when ν > 0). As a consequence we can pass to the limit in
the boundary reflection condition (1.1) (and (1.6) when ν > 0), so that the trace condition is
fulfilled and the trace estimate (6.9) holds.

Proof of Theorem 6.2. From (6.14) we deduce, extracting a subsequence if necessary, that fn
converges weakly in Lp(0, T ;L1( O)) (∀p ∈ [1,∞)) to a function f and that the local mass
density ρn = ρfn satisfies (see [52])

sup
[0,T ]

∫
Ω

ρn(1 + | log ρn|) dx ≤ CT .
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In the case ν = 0, using the velocity averaging lemma of [40, 42] and the standard
properties of the Poisson equation, we also show (see for instance [52] and [62])

ρn −→
n→∞

ρf in Lp(0, T ;L1(Ω)) and ∇xVfn −→
n→∞

∇xVf in Lp(0, T ;W 1,1 ∩ La(Ω))

for all T ∈ (0,∞), p ∈ [1,∞) and a ∈ [1, 2). It is also shown in [52] that

Q±(fn, fn)

1 + δ fn
⇀

n→∞
Q̄±δ weakly in L1((0, T )× OR) and Q̄±δ ↗ Q±(f, f) a.e.

In the case ν > 0, since the term on the right hand side of Equation (6.13) is bounded in
L1, thanks to the uniform estimate (6.14), and since ΛEfn is a hypoelliptic operator (see [35],
[15, 49]), we obtain that, say, log(1 + fn) and next fn converge a.e. (see [14] and [35]). We
conclude that fn → f strongly in Lp(0, T ;L1( O)), ∀p ∈ [1,∞). It is also shown in [35] that

Q(fn, fn)

1 + fn
→ Q(f, f)

1 + f
strongly in L1((0, T )× OR).

Therefore, using Theorem 5.1 or Theorem 5.2, we obtain that f satisfies the renormalized
Equation (6.13) (first for the renormalizing function β ∈ B4 and next for β ∈ B5) and that

γfn
r
⇀γf in the renormalized sense on (0, T )× Σ,

as well as
γfn → γf a.e. on (0, T )× Σ,

when ν > 0. It is worth mentioning that f also satisfies the physical estimate (6.8), see
[35, 39, 52]. Next, from (1.1) we havefiγ+fn ≤ ᾱ−1M−1(v) γ−fn on (0, T )× Σ−,

so that fiγ
+
fn

r
⇀ψ in (0, T )× ∂Ω, with ψ ≤ ᾱ−1M−1(v) γ−f.

Furthermore, repeating the proof of Lemma 6.1 we get that ψ ∈ L1/2((0, T ) × ∂Ω). Now,
we can apply Theorem 3.9 (with m(v) = M(v), y = (t, x), d$y(v) = 1Σx

+
|n(x) · v| dv,

φn = γ+fn and dν(y) = dσxdt), which says that for every ε > 0 there is A = Aε ⊂ (0, T )× ∂Ω

such that meas ((0, T )× ∂Ω\A) < ε and

γ
+
fn ⇀ γ

+
f weakly in L1(A× RN ).

In the case ν > 0, since we already know the a.e. convergence, this convergence is in fact
strong inL1(A×RN ). There is no difficulty in passing to the limit in the boundary condition
so that f satisfies (1.1) and f satisfies the same physical estimate (6.9) thanks to the convexity
argument of Theorem 2.5.

R 6.3. – For the Boltzmann equation and the FPB equation, as well as for the
VP system and the VPFP system when the Poisson Equation (6.2) is provided with Neumann
condition, we can prove the additional a priori estimate (2.3) on the trace function. As a
consequence, we may also establish the a priori physical bound (6.8) for a time and position
dependent wall temperature Θ = Θ(t, x) which satisfies

0 < Θ0 ≤ Θ(t, x) ≤ Θ1 <∞.
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Therefore, the stability result and the corresponding existence result can be generalized to these
kinds of boundary conditions. We refer to [7] and [55] for more details.

R 6.4. – Consider the general reflection operator

(6.15) R φ =

∫
v′·n(x)>0

k(v, v′)φ(v′) v′ · n(x) dv′

where the measurable function k satisfies the usual non-negative, normalization and reciprocity
conditions

(6.16) k ≥ 0,

∫
v·n(x)<0

k(v, v′) dv = 1, RM = M,

where M is the normalized Maxwellian (1.3). For that reflection operator (6.15), we can
prove that a solution f to Equations (6.1)-(6.2)-(1.1) formally satisfies the a priori physical
estimate (6.8)-(6.9) with E replaced by

Ek(φ/M) :=

∫
v·n(x)>0

[
h
( φ
M

)
− h
( R φ
M

) ]
M v · n(x) dv.

By Jensen inequality one can prove that Ek is non-negative, see [29, 34, 44]. However, we do
not know whether our analysis can be adapted to this general kernel. Nevertheless, considering
a sequence (fn) of solutions which satisfies the uniform interior estimate in (6.14), we can pass
to the limit in (1.1) with the help of Theorem 5.1 or Theorem 5.2 and of Proposition 3.5.4, and
we get that the limit function f is a solution which trace γf satisfies the boundary inequality
condition (1.10). That extends and generalizes previous results known for the Boltzmann
equation, see for instance [7, 28, 55].

Appendix

More about the renormalized convergence

We come back to the notion of renormalized convergence and mainly discuss its relation-
ship with the biting-L1 weak convergence.

R A.1. – 1. Hypothesis ψ ∈ L0(Y ) in Theorem 3.7 (and (3.4)) is fundamental,
since for example, the sequence (ψn) defined by ψn = ψ ≡ +∞ ∀n does converge in the
renormalized sense to ψ, but (ψn) does not converge (and none of its subsequences) in the
biting L1-weak sense.

2. The (asymptotically) boundedness of (ψn) in L0 does not guarantee that (ψn) satisfies,
up to the extraction of a subsequence, (3.3) or (3.4). An instructive example is the following:
we define u(y) = 1/y on Y = [0, 1] that we extend by 1-periodicity to R, and we set
ψn(y) = u(n y) for y ∈ Y . Therefore, (ψn) is obviously bounded in La(Y ) for all a ∈ [0, 1)

and converges to ψ ≡ +∞ in the renormalized sense.

P A.2. – 1. There exists (φn) which r-converges but does not b-converges.
2. There exists (φn) which b-converges but does not r-converges.
3. Given a sequence (φn), the property

(A.1)
for any subsequence (φn′) there exists a subsequence (φn′′) of (φn′) such that φn′′

ww
⇀φ
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does not imply φn
ww
⇀φ, where ww

⇀ denotes either the b-convergence or the r-convergence. As
a consequence, the b-convergence and the r-convergence are not associated to any Hausdorff
(separated) topological structure.

Proof of Proposition A.2. Points 1 and 3. Let (φn) be the sequence defined by
φn = φp,k = p1[k/p,(k+1)/p] where p ∈ N∗, 0 ≤ k ≤ p− 1 and n = 1 + 2 + ...+ p+ k. Then
(φn) is bounded in L1 and clearly r-converges to 0, but does not b-converge. Moreover, for
any subsequence (φn′) we can find a second subsequence (φn′′) such that φn′′ b-converges to
0.

Points 2 and 3. Consider µy = µ and νy = ν two Young measures on Y = [0, 1] such that∫
R
z µ(dz) =

∫
R
z ν(dz) =: φ ∈ L1(Y ),∫

R
TM (z)µ(dz) 6=

∫
R
TM (z) ν(dz) ∀M > 0,

and define (un) (resp. (vn)) a sequence of L1 functions associated to µ (resp. ν), such that
for any f ∈ C(R)

f(un) ⇀ f̄ :=

∫
R
f(z)µy(dz)

(
resp. f(vn) ⇀ f̃ :=

∫
R
f(z) νy(dz)

)
,

see [63, Theorem 5], [69]. Then define (φn) by setting φ2n = un, φ2n+1 = vn. In such
a way, we have exhibited a sequence (φn) which does not r-converge (for instance does not
(TM )-renormalized converge) but converges to φ in the weak L1 sense, and thus b-converges
to φ. Moreover, for any subsequence (φn′), there exists a second subsequence (φn′′) which
either converges to T̄M (if {n′} contains an infinity of even integer numbers) or to T̃M (if {n′}
contains an infinity of odd integer numbers). Because T̄M ↗ φ and T̃M ↗ φwhenM ↗∞,
in both case φn′′ r-converges to φ, and (A.1) holds.
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