2,493 research outputs found

    The uncertainty of Side-Channel Analysis: A way to leverage from heuristics

    Get PDF
    Performing a comprehensive side-channel analysis evaluation of small embedded devices is a process known for its variability and complexity. In real-world experimental setups, the results are largely influenced by a huge amount of parameters that are not easily adjusted without trial and error and are heavily relying on the experience of professional security analysts. In this paper, we advocate the use of an existing statistical methodology called Six Sigma (6{\sigma}) for side-channel analysis optimization for this purpose. This well-known methodology is commonly used in other industrial fields, such as production and quality engineering, to reduce the variability of industrial processes. We propose a customized Six Sigma methodology, which enables even a less-experienced security analysis to select optimal values for the different variables that are critical for the side-channel analysis procedure. Moreover, we show how our methodology helps in improving different phases in the side-channel analysis process.Comment: 30 pages, 8 figure

    Sequential estimation of intrinsic activity and synaptic input in single neurons by particle filtering with optimal importance density

    Get PDF
    This paper deals with the problem of inferring the signals and parameters that cause neural activity to occur. The ultimate challenge being to unveil brain’s connectivity, here we focus on a microscopic vision of the problem, where single neurons (potentially connected to a network of peers) are at the core of our study. The sole observation available are noisy, sampled voltage traces obtained from intracellular recordings. We design algorithms and inference methods using the tools provided by stochastic filtering that allow a probabilistic interpretation and treatment of the problem. Using particle filtering, we are able to reconstruct traces of voltages and estimate the time course of auxiliary variables. By extending the algorithm, through PMCMC methodology, we are able to estimate hidden physiological parameters as well, like intrinsic conductances or reversal potentials. Last, but not least, the method is applied to estimate synaptic conductances arriving at a target cell, thus reconstructing the synaptic excitatory/inhibitory input traces. Notably, the performance of these estimations achieve the theoretical lower bounds even in spiking regimes.Postprint (published version

    Assessing The Security Posture Of Openemr Using Capec Attack Patterns

    Get PDF
    Attack patterns describe the common methods of exploiting software. Good software engineering practices and principles alone are not enough to produce secure software. It is also important to know how software it attacked and to guard against it. Knowledge of attack patterns provides a good perspective of an attacker, thus enabling developers and testers to build secure software. CAPEC list is a taxonomy of attack patterns which we believe can enhance security testing. This research seeks to assess the security posture of OpenEMR 4.1.1, an open source Electronic Medical Record (EMR) system, based on CAPEC attack patterns. Five categories of CAPEC attack patterns were analyzed to find their relevance and applicability to OpenEMR. Whereas inapplicable attack patterns were not further considered, applicable attack patterns were further tested to assess OpenEMR vulnerability to them. Various security testing tools were used to carry out the tests. Attack patterns helped to focus black-box and white-box testing procedures on what and where to test. OpenEMR was found to be vulnerable to a number of vulnerabilities such as cross site scripting, authentication bypass, session sidejacking, among others. A number of exploitations were carried out based on the vulnerabilities discovered

    SoK: Acoustic Side Channels

    Full text link
    We provide a state-of-the-art analysis of acoustic side channels, cover all the significant academic research in the area, discuss their security implications and countermeasures, and identify areas for future research. We also make an attempt to bridge side channels and inverse problems, two fields that appear to be completely isolated from each other but have deep connections.Comment: 16 page

    Remote Attacks on FPGA Hardware

    Get PDF
    Immer mehr Computersysteme sind weltweit miteinander verbunden und über das Internet zugänglich, was auch die Sicherheitsanforderungen an diese erhöht. Eine neuere Technologie, die zunehmend als Rechenbeschleuniger sowohl für eingebettete Systeme als auch in der Cloud verwendet wird, sind Field-Programmable Gate Arrays (FPGAs). Sie sind sehr flexible Mikrochips, die per Software konfiguriert und programmiert werden können, um beliebige digitale Schaltungen zu implementieren. Wie auch andere integrierte Schaltkreise basieren FPGAs auf modernen Halbleitertechnologien, die von Fertigungstoleranzen und verschiedenen Laufzeitschwankungen betroffen sind. Es ist bereits bekannt, dass diese Variationen die Zuverlässigkeit eines Systems beeinflussen, aber ihre Auswirkungen auf die Sicherheit wurden nicht umfassend untersucht. Diese Doktorarbeit befasst sich mit einem Querschnitt dieser Themen: Sicherheitsprobleme die dadurch entstehen wenn FPGAs von mehreren Benutzern benutzt werden, oder über das Internet zugänglich sind, in Kombination mit physikalischen Schwankungen in modernen Halbleitertechnologien. Der erste Beitrag in dieser Arbeit identifiziert transiente Spannungsschwankungen als eine der stärksten Auswirkungen auf die FPGA-Leistung und analysiert experimentell wie sich verschiedene Arbeitslasten des FPGAs darauf auswirken. In der restlichen Arbeit werden dann die Auswirkungen dieser Spannungsschwankungen auf die Sicherheit untersucht. Die Arbeit zeigt, dass verschiedene Angriffe möglich sind, von denen früher angenommen wurde, dass sie physischen Zugriff auf den Chip und die Verwendung spezieller und teurer Test- und Messgeräte erfordern. Dies zeigt, dass bekannte Isolationsmaßnahmen innerhalb FPGAs von böswilligen Benutzern umgangen werden können, um andere Benutzer im selben FPGA oder sogar das gesamte System anzugreifen. Unter Verwendung von Schaltkreisen zur Beeinflussung der Spannung innerhalb eines FPGAs zeigt diese Arbeit aktive Angriffe, die Fehler (Faults) in anderen Teilen des Systems verursachen können. Auf diese Weise sind Denial-of-Service Angriffe möglich, als auch Fault-Angriffe um geheime Schlüsselinformationen aus dem System zu extrahieren. Darüber hinaus werden passive Angriffe gezeigt, die indirekt die Spannungsschwankungen auf dem Chip messen. Diese Messungen reichen aus, um geheime Schlüsselinformationen durch Power Analysis Seitenkanalangriffe zu extrahieren. In einer weiteren Eskalationsstufe können sich diese Angriffe auch auf andere Chips auswirken die an dasselbe Netzteil angeschlossen sind wie der FPGA. Um zu beweisen, dass vergleichbare Angriffe nicht nur innerhalb FPGAs möglich sind, wird gezeigt, dass auch kleine IoT-Geräte anfällig für Angriffe sind welche die gemeinsame Spannungsversorgung innerhalb eines Chips ausnutzen. Insgesamt zeigt diese Arbeit, dass grundlegende physikalische Variationen in integrierten Schaltkreisen die Sicherheit eines gesamten Systems untergraben können, selbst wenn der Angreifer keinen direkten Zugriff auf das Gerät hat. Für FPGAs in ihrer aktuellen Form müssen diese Probleme zuerst gelöst werden, bevor man sie mit mehreren Benutzern oder mit Zugriff von Drittanbietern sicher verwenden kann. In Veröffentlichungen die nicht Teil dieser Arbeit sind wurden bereits einige erste Gegenmaßnahmen untersucht
    • …
    corecore