3,389 research outputs found

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Architecture of Environmental Risk Modelling: for a faster and more robust response to natural disasters

    Full text link
    Demands on the disaster response capacity of the European Union are likely to increase, as the impacts of disasters continue to grow both in size and frequency. This has resulted in intensive research on issues concerning spatially-explicit information and modelling and their multiple sources of uncertainty. Geospatial support is one of the forms of assistance frequently required by emergency response centres along with hazard forecast and event management assessment. Robust modelling of natural hazards requires dynamic simulations under an array of multiple inputs from different sources. Uncertainty is associated with meteorological forecast and calibration of the model parameters. Software uncertainty also derives from the data transformation models (D-TM) needed for predicting hazard behaviour and its consequences. On the other hand, social contributions have recently been recognized as valuable in raw-data collection and mapping efforts traditionally dominated by professional organizations. Here an architecture overview is proposed for adaptive and robust modelling of natural hazards, following the Semantic Array Programming paradigm to also include the distributed array of social contributors called Citizen Sensor in a semantically-enhanced strategy for D-TM modelling. The modelling architecture proposes a multicriteria approach for assessing the array of potential impacts with qualitative rapid assessment methods based on a Partial Open Loop Feedback Control (POLFC) schema and complementing more traditional and accurate a-posteriori assessment. We discuss the computational aspect of environmental risk modelling using array-based parallel paradigms on High Performance Computing (HPC) platforms, in order for the implications of urgency to be introduced into the systems (Urgent-HPC).Comment: 12 pages, 1 figure, 1 text box, presented at the 3rd Conference of Computational Interdisciplinary Sciences (CCIS 2014), Asuncion, Paragua

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described

    Social Media Analytics in Disaster Response: A Comprehensive Review

    Full text link
    Social media has emerged as a valuable resource for disaster management, revolutionizing the way emergency response and recovery efforts are conducted during natural disasters. This review paper aims to provide a comprehensive analysis of social media analytics for disaster management. The abstract begins by highlighting the increasing prevalence of natural disasters and the need for effective strategies to mitigate their impact. It then emphasizes the growing influence of social media in disaster situations, discussing its role in disaster detection, situational awareness, and emergency communication. The abstract explores the challenges and opportunities associated with leveraging social media data for disaster management purposes. It examines methodologies and techniques used in social media analytics, including data collection, preprocessing, and analysis, with a focus on data mining and machine learning approaches. The abstract also presents a thorough examination of case studies and best practices that demonstrate the successful application of social media analytics in disaster response and recovery. Ethical considerations and privacy concerns related to the use of social media data in disaster scenarios are addressed. The abstract concludes by identifying future research directions and potential advancements in social media analytics for disaster management. The review paper aims to provide practitioners and researchers with a comprehensive understanding of the current state of social media analytics in disaster management, while highlighting the need for continued research and innovation in this field.Comment: 11 page

    empathi: An ontology for Emergency Managing and Planning about Hazard Crisis

    Full text link
    In the domain of emergency management during hazard crises, having sufficient situational awareness information is critical. It requires capturing and integrating information from sources such as satellite images, local sensors and social media content generated by local people. A bold obstacle to capturing, representing and integrating such heterogeneous and diverse information is lack of a proper ontology which properly conceptualizes this domain, aggregates and unifies datasets. Thus, in this paper, we introduce empathi ontology which conceptualizes the core concepts concerning with the domain of emergency managing and planning of hazard crises. Although empathi has a coarse-grained view, it considers the necessary concepts and relations being essential in this domain. This ontology is available at https://w3id.org/empathi/

    Internet of things

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efïŹcient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identiïŹed synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth

    Urbanization and Crisis Management Using Geomatics Technologies

    Get PDF
    Substantial work has been done by Geospatial Information and Communications Technology (GeoICT) and Disaster Management communities to evaluate and develop tools and applications that integrate the complex interrelationships that are required for adequate preparedness, planning, mitigation, response, and recovery from extreme situations. GeoICT technologies have contributed and are contributing to saving life and property throughout the globe. Over the past decade, extensive research has resulted in more advanced GeoICT technologies. This has helped to maximize the demand for these tools, with a noticeable pattern of adoption and expanding user community. This chapter provides an overview of selected rising stars in GeoICT technology and their applications in disaster management. This discussion evaluates the trends in technology development, with emphasis on data collection, processing, and visualization

    A data model for operational and situational information in emergency response: the Dutch case

    Get PDF
    During emergency response a lot of dynamic information is created and needs to be studied and analysed in the decision-making process. However, this analysis of data is difficult and often not possible. A major reason for this is that a lot of information coming from the field operations is not archived in a structured way. This paper presents a data model for the management of dynamic data, which captures the situational information (incident and its effect) and the operational information (processes activated and people/departments involved). The model is derived from the emergency response procedure and structural organisation in the Netherlands
    • 

    corecore