94,897 research outputs found

    Doing and Showing

    Get PDF
    The persisting gap between the formal and the informal mathematics is due to an inadequate notion of mathematical theory behind the current formalization techniques. I mean the (informal) notion of axiomatic theory according to which a mathematical theory consists of a set of axioms and further theorems deduced from these axioms according to certain rules of logical inference. Thus the usual notion of axiomatic method is inadequate and needs a replacement.Comment: 54 pages, 2 figure

    Ontological beliefs and their impact on teaching elementary geometry

    Get PDF
    This paper proposes a conceptual framework to classify ontological beliefs on elementary geometry. As a first application, this framework is used to interpret nine interviews taken from secondary school teachers. The interpretation leads to the following results: (a) the ontological beliefs vary in a broad range, denying the assumption that a similar education provokes analogue opinions; and (b) ontological beliefs have a remarkable influence on the standards of proofs and on the epistemological status of theorems, and also on the role of drawing, constructions and their descriptions, media, and model building processes

    Optimization of measurement configurations for geometrical calibration of industrial robot

    Get PDF
    The paper is devoted to the geometrical calibration of industrial robots employed in precise manufacturing. To identify geometric parameters, an advanced calibration technique is proposed that is based on the non-linear experiment design theory, which is adopted for this particular application. In contrast to previous works, the calibration experiment quality is evaluated using a concept of the user-defined test-pose. In the frame of this concept, the related optimization problem is formulated and numerical routines are developed, which allow user to generate optimal set of manipulator configurations for a given number of calibration experiments. The efficiency of the developed technique is illustrated by several examples.Comment: arXiv admin note: text overlap with arXiv:1211.610

    On systematic approaches for interpreted information transfer of inspection data from bridge models to structural analysis

    Get PDF
    In conjunction with the improved methods of monitoring damage and degradation processes, the interest in reliability assessment of reinforced concrete bridges is increasing in recent years. Automated imagebased inspections of the structural surface provide valuable data to extract quantitative information about deteriorations, such as crack patterns. However, the knowledge gain results from processing this information in a structural context, i.e. relating the damage artifacts to building components. This way, transformation to structural analysis is enabled. This approach sets two further requirements: availability of structural bridge information and a standardized storage for interoperability with subsequent analysis tools. Since the involved large datasets are only efficiently processed in an automated manner, the implementation of the complete workflow from damage and building data to structural analysis is targeted in this work. First, domain concepts are derived from the back-end tasks: structural analysis, damage modeling, and life-cycle assessment. The common interoperability format, the Industry Foundation Class (IFC), and processes in these domains are further assessed. The need for usercontrolled interpretation steps is identified and the developed prototype thus allows interaction at subsequent model stages. The latter has the advantage that interpretation steps can be individually separated into either a structural analysis or a damage information model or a combination of both. This approach to damage information processing from the perspective of structural analysis is then validated in different case studies

    The Immanent Contingency of Physical Laws in Leibniz’s Dynamics

    Get PDF
    This paper focuses on Leibniz’s conception of modality and its application to the issue of natural laws. The core of Leibniz’s investigation of the modality of natural laws lays in the distinction between necessary, geometrical laws on the one hand, and contingent, physical laws of nature on the other. For Leibniz, the contingency of physical laws entailed the assumption of the existence of an additional form of causality beyond mechanical or efficient ones. While geometrical truths, being necessary, do not require the use of the principle of sufficient reason, physical laws are not strictly determined by geometry and therefore are logically distinct from geometrical laws. As a consequence, the set of laws that regulate the physical laws could have been created otherwise by God. However, in addition to this, the contingency of natural laws does not consist only in the fact that God has chosen them over other possible ones. On the contrary, Leibniz understood the status of natural laws as arising from the action internal to physical substances. Hence the actuality of physical laws results from a causal power that is inherent to substances rather than being the mere consequence of the way God arranged the relations between physical objects. Focusing on three instances of Leibniz’s treatment of contingency in physics, this paper argues that, in order to account for the contingency of physical laws, Leibniz maintained that final causes, in addition to efficient and mechanical ones, must operate in physical processes and operations

    On Constructive Axiomatic Method

    Get PDF
    In this last version of the paper one may find a critical overview of some recent philosophical literature on Axiomatic Method and Genetic Method.Comment: 25 pages, no figure
    corecore