1,202 research outputs found

    Uncertainty Minimization in Robotic 3D Mapping Systems Operating in Dynamic Large-Scale Environments

    Get PDF
    This dissertation research is motivated by the potential and promise of 3D sensing technologies in safety and security applications. With specific focus on unmanned robotic mapping to aid clean-up of hazardous environments, under-vehicle inspection, automatic runway/pavement inspection and modeling of urban environments, we develop modular, multi-sensor, multi-modality robotic 3D imaging prototypes using localization/navigation hardware, laser range scanners and video cameras. While deploying our multi-modality complementary approach to pose and structure recovery in dynamic real-world operating conditions, we observe several data fusion issues that state-of-the-art methodologies are not able to handle. Different bounds on the noise model of heterogeneous sensors, the dynamism of the operating conditions and the interaction of the sensing mechanisms with the environment introduce situations where sensors can intermittently degenerate to accuracy levels lower than their design specification. This observation necessitates the derivation of methods to integrate multi-sensor data considering sensor conflict, performance degradation and potential failure during operation. Our work in this dissertation contributes the derivation of a fault-diagnosis framework inspired by information complexity theory to the data fusion literature. We implement the framework as opportunistic sensing intelligence that is able to evolve a belief policy on the sensors within the multi-agent 3D mapping systems to survive and counter concerns of failure in challenging operating conditions. The implementation of the information-theoretic framework, in addition to eliminating failed/non-functional sensors and avoiding catastrophic fusion, is able to minimize uncertainty during autonomous operation by adaptively deciding to fuse or choose believable sensors. We demonstrate our framework through experiments in multi-sensor robot state localization in large scale dynamic environments and vision-based 3D inference. Our modular hardware and software design of robotic imaging prototypes along with the opportunistic sensing intelligence provides significant improvements towards autonomous accurate photo-realistic 3D mapping and remote visualization of scenes for the motivating applications

    Information Preserving Processing of Noisy Handwritten Document Images

    Get PDF
    Many pre-processing techniques that normalize artifacts and clean noise induce anomalies due to discretization of the document image. Important information that could be used at later stages may be lost. A proposed composite-model framework takes into account pre-printed information, user-added data, and digitization characteristics. Its benefits are demonstrated by experiments with statistically significant results. Separating pre-printed ruling lines from user-added handwriting shows how ruling lines impact people\u27s handwriting and how they can be exploited for identifying writers. Ruling line detection based on multi-line linear regression reduces the mean error of counting them from 0.10 to 0.03, 6.70 to 0.06, and 0.13 to 0.02, com- pared to an HMM-based approach on three standard test datasets, thereby reducing human correction time by 50%, 83%, and 72% on average. On 61 page images from 16 rule-form templates, the precision and recall of form cell recognition are increased by 2.7% and 3.7%, compared to a cross-matrix approach. Compensating for and exploiting ruling lines during feature extraction rather than pre-processing raises the writer identification accuracy from 61.2% to 67.7% on a 61-writer noisy Arabic dataset. Similarly, counteracting page-wise skew by subtracting it or transforming contours in a continuous coordinate system during feature extraction improves the writer identification accuracy. An implementation study of contour-hinge features reveals that utilizing the full probabilistic probability distribution function matrix improves the writer identification accuracy from 74.9% to 79.5%

    Automotive Interior Sensing - Anomaly Detection

    Get PDF
    Com o surgimento dos veículos autónomos partilhados não haverá condutores nos veículos capazes de manter o bem-estar dos passageiros. Por esta razão, é imperativo que exista um sistema preparado para detetar comportamentos anómalos, por exemplo, violência entre passageiros, e que responda de forma adequada. O tipo de anomalias pode ser tão diverso que ter um "dataset" para treino que contenha todas as anomalias possíveis neste contexto é impraticável, implicando que algoritmos tradicionais de classificação não sejam ideais para esta aplicação. Por estas razões, os algoritmos de deteção de anomalias são a melhor opção para construir um bom modelo discriminativo. Esta dissertação foca-se na utilização de técnicas de "deep learning", mais precisamente arquiteturas baseadas em "Spatiotemporal auto-encoders" que são treinadas apenas com sequências de "frames" de comportamentos normais e testadas com sequências normais e anómalas dos "datasets" internos da Bosch. O modelo foi treinado inicialmente com apenas uma categoria das ações não violentas e as iterações finais foram treinadas com todas as categorias de ações não violentas. A rede neuronal contém camadas convolucionais dedicadas à compressão e descompressão dos dados espaciais; e algumas camadas dedicadas à compressão e descompressão temporal dos dados, implementadas com células LSTM ("Long Short-Term Memory") convolucionais, que extraem informações relativas aos movimentos dos passageiros. A rede define como reconstruir corretamente as sequências de "frames" normais e durante os testes, cada sequência é classificada como normal ou anómala de acordo com o seu erro de reconstrução. Através dos erros de reconstrução são calculados os "regularity scores" que indicam a regularidade que o modelo previu para cada "frame". A "framework" resultante é uma adição viável aos algoritmos tradicionais de reconhecimento de ações visto que pode funcionar como um sistema que serve para detetar ações desconhecidas e contribuir para entender o significado de tais interações humanas.With the appearance of SAVs (Shared Autonomous Vehicles) there will no longer be a driver responsible for maintaining the car interior and well-being of passengers. To counter this, it is imperative to have a system that is able to detect any abnormal behaviours, e.g., violence between passengers, and trigger the appropriate response. Furthermore, the type of anomalous activities can be so diverse, that having a dataset that incorporates most use cases is unattainable, making traditional classification algorithms not ideal for this kind of application. In this sense, anomaly detection algorithms are a good approach in order to build a discriminative model. Taking this into account, this work focuses on the use of deep learning techniques, more precisely Spatiotemporal auto-encoder based frameworks, which are trained on human behavior video sequences and tested on use cases with normal and abnormal human interactions from Bosch's internal datasets. Initially, the model was trained on a single non-violent action category. Final iterations considered all of the identified non-violent actions as normal data. The network architecture presents a group of convolutional layers which encode and decode spatial data; and a temporal encoder/decoder structure, implemented as a convolutional Long Short Term Memory network, responsible for learning motion information. The network defines how to properly reconstruct the 'normal' frame sequences and during testing, each sequence is classified as normal or abnormal based on its reconstruction error. Based on these values, regularity scores are inferred showing the predicted regularity of each frame. The resulting framework is a viable addition to traditional action recognition algorithms since it can work as a tool for detecting unknown actions, strange/abnormal behaviours and aid in understanding the meaning of such human interactions

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Exploiting Structural Regularities and Beyond: Vision-based Localization and Mapping in Man-Made Environments

    Get PDF
    Image-based estimation of camera motion, known as visual odometry (VO), plays a very important role in many robotic applications such as control and navigation of unmanned mobile robots, especially when no external navigation reference signal is available. The core problem of VO is the estimation of the camera’s ego-motion (i.e. tracking) either between successive frames, namely relative pose estimation, or with respect to a global map, namely absolute pose estimation. This thesis aims to develop efficient, accurate and robust VO solutions by taking advantage of structural regularities in man-made environments, such as piece-wise planar structures, Manhattan World and more generally, contours and edges. Furthermore, to handle challenging scenarios that are beyond the limits of classical sensor based VO solutions, we investigate a recently emerging sensor — the event camera and study on event-based mapping — one of the key problems in the event-based VO/SLAM. The main achievements are summarized as follows. First, we revisit an old topic on relative pose estimation: accurately and robustly estimating the fundamental matrix given a collection of independently estimated homograhies. Three classical methods are reviewed and then we show a simple but nontrivial two-step normalization within the direct linear method that achieves similar performance to the less attractive and more computationally intensive hallucinated points based method. Second, an efficient 3D rotation estimation algorithm for depth cameras in piece-wise planar environments is presented. It shows that by using surface normal vectors as an input, planar modes in the corresponding density distribution function can be discovered and continuously tracked using efficient non-parametric estimation techniques. The relative rotation can be estimated by registering entire bundles of planar modes by using robust L1-norm minimization. Third, an efficient alternative to the iterative closest point algorithm for real-time tracking of modern depth cameras in ManhattanWorlds is developed. We exploit the common orthogonal structure of man-made environments in order to decouple the estimation of the rotation and the three degrees of freedom of the translation. The derived camera orientation is absolute and thus free of long-term drift, which in turn benefits the accuracy of the translation estimation as well. Fourth, we look into a more general structural regularity—edges. A real-time VO system that uses Canny edges is proposed for RGB-D cameras. Two novel alternatives to classical distance transforms are developed with great properties that significantly improve the classical Euclidean distance field based methods in terms of efficiency, accuracy and robustness. Finally, to deal with challenging scenarios that go beyond what standard RGB/RGB-D cameras can handle, we investigate the recently emerging event camera and focus on the problem of 3D reconstruction from data captured by a stereo event-camera rig moving in a static scene, such as in the context of stereo Simultaneous Localization and Mapping

    Single and multiple object tracking using a multi-feature joint sparse representation

    Get PDF
    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms
    corecore