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Abstract

Image-based estimation of camera motion, known as visual odometry (VO), plays a very im-
portant role in many robotic applications such as control and navigation of unmanned mobile
robots, especially when no external navigation reference signal is available. The core problem
of VO is the estimation of the camera’s ego-motion (i.e. tracking) either between successive
frames, namely relative pose estimation, or with respect to a global map, namely absolute pose
estimation. This thesis aims to develop efficient, accurate and robust VO solutions by tak-
ing advantage of structural regularities in man-made environments, such as piece-wise planar
structures, Manhattan World and more generally, contours and edges. Furthermore, to handle
challenging scenarios that are beyond the limits of classical sensor based VO solutions, we
investigate a recently emerging sensor — the event camera and study on event-based map-
ping — one of the key problems in the event-based VO/SLAM. The main achievements are
summarized as follows.

First, we revisit an old topic on relative pose estimation: accurately and robustly estimat-
ing the fundamental matrix given a collection of independently estimated homograhies. Three
classical methods are reviewed and then we show a simple but nontrivial two-step normaliza-
tion within the direct linear method that achieves similar performance to the less attractive and
more computationally intensive hallucinated points based method.

Second, an efficient 3D rotation estimation algorithm for depth cameras in piece-wise pla-
nar environments is presented. It shows that by using surface normal vectors as an input, planar
modes in the corresponding density distribution function can be discovered and continuously
tracked using efficient non-parametric estimation techniques. The relative rotation can be esti-
mated by registering entire bundles of planar modes by using robust L1-norm minimization.

Third, an efficient alternative to the iterative closest point algorithm for real-time tracking
of modern depth cameras in Manhattan Worlds is developed. We exploit the common orthogo-
nal structure of man-made environments in order to decouple the estimation of the rotation and
the three degrees of freedom of the translation. The derived camera orientation is absolute and
thus free of long-term drift, which in turn benefits the accuracy of the translation estimation as
well.

Fourth, we look into a more general structural regularity — edges. A real-time VO system
that uses Canny edges is proposed for RGB-D cameras. Two novel alternatives to classical
distance transforms are developed with great properties that significantly improve the classical
Euclidean distance field based methods in terms of efficiency, accuracy and robustness.

Finally, to deal with challenging scenarios that go beyond what standard RGB/RGB-D
cameras can handle, we investigate the recently emerging event camera and focus on the prob-
lem of 3D reconstruction from data captured by a stereo event-camera rig moving in a static
scene, such as in the context of stereo Simultaneous Localization and Mapping.

Key words: Visual Odometry (VO), Piece-wise Planar Environment, Manhattan World,
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Distribution Alignment, RGB-D Camera, 3D-2D Registration, Distance Transform, Event
Camera.



Contents

Acknowledgments vii

Abstract ix

1 Introduction and Contributions 1
1.1 History of VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Probabilistic Filter based Monocular SLAM . . . . . . . . . . . . . . . 2
1.1.2 Nister’s VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Parallel Tracking and Mapping (PTAM) . . . . . . . . . . . . . . . . . 3
1.1.4 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation and Objectives — Exploiting Structural Regularities and Beyond . . 5
1.2.1 2D Geometrically Constrained Relative Pose Estimation: Points on

Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Tracking a 3D Sensor in Piece-wise Planar Environments and Manhat-

tan Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 One Step Beyond: A More General Regularity — Edges . . . . . . . . 10
1.2.4 Beyond the Limits: Event-based VO . . . . . . . . . . . . . . . . . . . 12

1.3 Thesis Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 2D Geometrically Constrained Relative Pose Estimation: Points on Planes 17
2.1 Related Work — Three Classical Methods . . . . . . . . . . . . . . . . . . . . 17
2.2 A Robust Two-Step Linear Solution . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Synthetic Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Experiment on Real Images . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Numerical Stability and Algorithmic Complexity . . . . . . . . . . . . 23

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Real-time Rotation Estimation for Depth Sensors in Piece-wise Planar Environ-
ments 27
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Problem Definition and Prerequisites . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Normal-vector based Rotation Estimation . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Mean-shift on the Unit Sphere . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Robust Rotation Estimation . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 Initialization and Bundle Update . . . . . . . . . . . . . . . . . . . . . 33

xi



xii Contents

3.3.4 Memory Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Parameter Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Evaluation on a Synthetic Dataset . . . . . . . . . . . . . . . . . . . . 36
3.4.4 Evaluation on Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.5 Limitations and Failure Cases . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Efficient Density-Based Tracking of 3D Sensors in Manhattan Worlds 41
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Overview of the Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Absolute Orientation Based on Manifold-Constrained Mean-Shift Tracking . . 44

4.3.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Seeking the Dominant Axes . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Maintaining Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.4 Initialization in the First Frame . . . . . . . . . . . . . . . . . . . . . 47

4.4 Translation Estimation through Separated 1-D Alignments . . . . . . . . . . . 47
4.4.1 Independence of the Three Translational Degrees of Freedom . . . . . 48
4.4.2 Alignment of Kernel Density Distribution . . . . . . . . . . . . . . . . 49
4.4.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.1 Parameter Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.2.1 Manhattan Frame Seeking in Difficult Cases . . . . . . . . . 51
4.5.2.2 Translation Estimation in the Manhattan Frame . . . . . . . 52

4.5.3 Evaluation on Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.4 Limitations and Failure Cases . . . . . . . . . . . . . . . . . . . . . . 54

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Visual Odometry with RGB-D Cameras based on Geometric 3D-2D Edge Align-
ment 57
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Review of Geometric 3D-2D Edge Registration . . . . . . . . . . . . . . . . . 60

5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 ICP-based Motion Estimation . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 Euclidean Distance Fields . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Approximate Nearest Neighbour Fields . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Point-to-Tangent Registration . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 ANNF based Registration . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Oriented Nearest Neighbour Fields . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.1 Field Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.2 ONNF based Registration . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.3 Performance Boost through Adaptive Sampling . . . . . . . . . . . . . 69



Contents xiii

5.5 Robust Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5.1 Learning the Probabilistic Sensor Model . . . . . . . . . . . . . . . . . 70
5.5.2 Point Culling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.3 Visual Odometry System . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6.1 Handling Registration Bias . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6.2 Exploring the Optimal Configuration . . . . . . . . . . . . . . . . . . 74
5.6.3 TUM RGB-D benchmark . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6.4 ICL-NUIM Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.5 ANU-RSISE Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.6.6 Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Semi-Dense 3D Reconstruction with a Stereo Event Camera 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Related work on Event-based Depth Estimation . . . . . . . . . . . . . 88
6.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 3D Reconstruction by Event Time-History Maps Energy Minimization . . . . . 89

6.2.1 Event Time-History Maps . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.3 Inverse Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Semi-Dense Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.1 Uncertainty of Inverse Depth Estimation . . . . . . . . . . . . . . . . . 94
6.3.2 Inverse Depth Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.1 Stereo Event-camera Setup . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Summary and Future Work 103
7.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.1 Improving Efficiency, Accuracy and Robustness . . . . . . . . . . . . 103
7.1.2 Exploration of Novel Camera Architectures . . . . . . . . . . . . . . . 104

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2.1 Towards an Agile and Robust VO System for RGB-D Cameras . . . . . 105
7.2.2 Detection and Tracking of Independent Motions Using 3D Edges . . . 106

7.2.2.1 Energy function . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.2.2 Alternated Optimization . . . . . . . . . . . . . . . . . . . . 108

7.2.3 Semi-Dense Visual Odometry Using a Stereo Event Camera . . . . . . 108

A Appendix 111
A.1 Derivations in Regards to Robust Geometric 3D-2D Edge Alignment . . . . . . 111

A.1.1 Derivation on Jacobian Matrix of ANNF based Tracking . . . . . . . . 111



xiv Contents

A.1.2 Derivation on Robust Weight Function Corresponding to the Tukey-
Lambda Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 Derivations in Regards to 3D Reconstruction Using a Stereo Event Camera . . 114
A.2.1 Calculation of the Derivatives . . . . . . . . . . . . . . . . . . . . . . 114
A.2.2 Uncertainty Propagation . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Figures

1.1 Illustration of the epipolar geometry. The optical centres of the two cameras
and the 3D point X determines the epipolar plane. Epipoles e, e′ are defined
as the intersection points of the baseline with each image plane. The epipolar
plane and an image plane intersects at an epipolar line. . . . . . . . . . . . . . 6

1.2 Illustration of a hompgrahy that associates the projections of a point on a planar
structure. The raw image is from (Szpak et al. [2014]). . . . . . . . . . . . . . 7

1.3 Illustration of point cloud registration problem. The point cloud is from (Sanchez
et al. [2017]). The 3D camera and its observation are associated by using the
same color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Existing works that estimate the motion (rotation) of a camera by taking ad-
vantage of the Manhattan World assumption. . . . . . . . . . . . . . . . . . . . 10

1.5 Illustration of the 3D-2D registration problem. The goal is to estimate the
relative pose of frame Fk+1 (with 2D information) w.r.t frame Fk (with 3D
information). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Examples that use boundaries, edges and semi-dense regions around them. . . . 11

1.7 Illustration of challenging scenarios for classical vision based navigation. Im-
ages are from http://rpg.ifi.uzh.ch/gallery.html. . . . . . . . . . . . . . . . . 12

1.8 Illustration of an event camera and its working mechanism. Unlike standard
RGB cameras that capture the scene at a fixed frame rate, the event camera
only reports “events” — intensity changes. The images are from (Rebecq et al.
[2017b]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Figure (a) shows the configuration of the experiment. The accuracy of the
fundamental matrix estimation is shown in Fig (b) with the max norm as the
assessing criterion. Figures (c) (d) separately depict rotation and translation
error of DLT, HP, TSL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Grouped point features which are used for estimating the homographies are
shown in Fig (a) and (b). Epipolar lines obtained by DLT(yellow), HP(green),
TSL(blue) and groundtruth (red) are shown in Fig (c). . . . . . . . . . . . . . . 25

2.3 The average condition number under each noise level is shown in Figure (a).
TSL1, TSL2 and TSL3 are the three sub least squares problems of TSL. Figure
(b) shows the corresponding average variance of the condition number. . . . . . 25

3.1 Overview of the proposed 3D rotation estimation algorithm for depth cameras
in piece-wise planar environments. . . . . . . . . . . . . . . . . . . . . . . . . 28

xv

http://rpg.ifi.uzh.ch/gallery.html


xvi LIST OF FIGURES

3.2 Illustration of the geometry of the problem. Three modes exist in both the
reference view (left) and the current view (right). The chordal distance di be-
tween each corresponding pair of modes is indicated with a black line segment.
The relative rotation from the reference view to the current view is the solution
that minimizes the sum of the chordal distances (in a general sense of `1-norm
regression). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Initialial mode seeking. The first figure shows the pattern that defines the start-
ing coordinates for the mean-shift clustering. The second figure shows a mean-
shift in a tangential plane starting from a given coordinate. The histogram-
based non-maximum suppression is shown in the third figure. It splits off
mode centres by picking one mode and creating a histogram of rotation dis-
tances with respect to all other modes. The final result after non-maximum
suppression is shown in the last figure. Four planar modes are found and high-
lighted with different colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Robustness of the rotation estimation. (a) (b) and (c) compare the performance
of the least-squares and the `1-norm regression based methods for the case of
2, 3 and 4 modes, respectively. Note that in (a), the red line and the green line
coincide with each other. The horizontal axes of (a), (b), and (c) denote the
standard deviation of the noise that is imposed on the "badly tracked mode".
(d) demonstrates the outlier resilience of the two methods for an increasing
outlier fraction (10 modes in total). All the results (rotation error under each
noise level and outlier number) are the average of 1000 trials with combination
of arbitrary bundle structure and groundtruth rotation. . . . . . . . . . . . . . . 36

3.5 Performance evaluation on the synthetic dataset “Pyramid”. (a) shows the syn-
thetic scene which contains a ground plane and the four faces of a pyramid.
The rotation estimation error is shown in (b). The estimated roll, pitch, and
yaw angles are shown in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 The rotation estimation performance of the proposed algorithm without and
with the mode memory scheme. An obvious step-like curve in the top fig-
ure again demonstrates the piece-wise drift-free behavior. The long-term drift
compensation is shown in the bottom figure, where the blue dashed lines de-
note the time instants when planar modes are revisited and the accumulated
rotational drift gets compensated. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Illustration of the proposed algorithm running on a set of real sequences. Note
that images shown here are just to illustrate the scenes but are not used in
the proposed algorithm. A unit sphere in the bottom-left corner of each image
illustrates the planar mode bundle. Corresponding planes in each image of each
sequence are denoted with the same color (e.g. the ground plane is always
shown in red). We do not show results of TUM 3 because it has a similar
scene as TUM 4. We also don’t show images for the ETH 1 dataset because it
provides only point clouds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Overview of the proposed, decoupled motion estimation framework for 3D
sensors in Manhattan worlds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



LIST OF FIGURES xvii

4.2 Illustration of our cascaded manifold-constrained mean-shift implementation.
We first compute updates sj for each mode on S2, which brings us from the
black to the blue modes. The blue modes however do no longer represent a
point on the underlying manifold SO(3). We find the nearest rotation through
a projection onto the manifold (green arrow), thus returning the red modes
which are closest and at the same time fulfill the orthogonality constraint. . . . 47

4.3 The mechanism of the initial Manhattan frame seeking. The first figure shows
the start from a random rotation. Each dominant direction is refined by per-
forming a mean-shift iteration on the tangential space. The second figure
shows the redundant result obtained by tracking 100 times from random starts.
The redundancy of the estimated rotation matrices R is removed by first con-
verting all the R to canonical form followed by a histogram-based non-maximum
suppression. The final result is shown in the fourth figure. For the sake of clear
visualization, the illustrated example contains a significant part of uniformly
distributed noisy normal vectors. Note that the proposed seeking strategy is
even able to find multiple MFs in the environment, and thus come up with a
mixture of Manhattan frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 The left figure shows an example of discretly sampled distribution truncated
on the left and right sides (see red dashed lines). The right figure shows the
convergence performance. After the truncation, the minimization problem has
only one local minimum with a reasonably large convergence basin. . . . . . . 50

4.5 Robust MF seeking performance in several challenging cases. (a): Seeking the
dominant MF when an additional mode/slanted plane exists. (b): Seeking the
dominant MF in the case where only two modes can be observed. (c): The
success rate of MF seeking under different levels of noise. . . . . . . . . . . . 52

4.6 Simulation to demonstrate the benefit of performing the distribution alignment
in the MF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.7 Evaluation of our method on the TUM dataset cabinet and comparison to two
alternative odometry solutions (FastICP and DVO). Our method (red curve)
works at 50 Hz on a CPU for VGA resolution depth images. It outperforms
both DVO(blue curve, 30 Hz) and FastICP(cyan curve, 1 Hz) in terms of drift
in rotation and translation. More detailed results can be found in Table 4.1 . . . 56

5.1 Image gradients are calculated in both horizontal and vertical direction at each
pixel location. The euclidean norm of each gradient vector is calculated and
illustrated in (a) (brighter means bigger while darker means smaller). Canny-
edges are obtained by thresholding gradient norms followed by non-maximum
suppression. By accessing the depth information of the edge pixels, a 3D edge
map (b) is created, in which warm colors mean close points while cold colors
represent faraway points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Example of a distance field for a short edge in a 7×7 image, plus the resulting
nearest neighbour field. ir and ic contain the row and column index of the
nearest neighbour, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 64



xviii LIST OF FIGURES

5.3 Illustration of the point-to-tangent distance. The projected distance r is finally
calculated by projecting vr onto the direction of the local gradient g. . . . . . . 65

5.4 (a) Orientation bins chosen for the discretisation of the gradient vector incli-
nation (8 bins of 45◦ width). (b) Example oriented distance fields for edges
extracted from an image of a football. Distinct edge segments are associated
to only one of the 8 distance fields depending on the local gradient inclination
and the corresponding bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Adaptively Sampled Nearest Neighbour Fields. In practice, the concatenated
result is just an n × m matrix where the connected blue and green regions
simply contain identical elements. . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Sensor model is obtained by fitting the histogram with different probabilistic
distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7 Flowchart of the Canny-VO system. Each independent thread is bordered by a
dashed line. CE refers to the Canny edge and DT is the abbreviation of distance
transformation, which could be one of EDF, ANNF and ONNF. . . . . . . . . . 72

5.8 Analysis of registration bias in case of only partially observed data. . . . . . . . 74

5.9 Semi-dense reconstruction of two sequences from the TUM RGB-D bench-
mark datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.10 Semi-dense reconstruction of the ICL_NUIM living room sequence kt2. . . . . 78

5.11 The schematic trajectory of the sensor when collecting the sequence is illus-
trated in (a). The sequence starts from the position highlighted with a green
dot. Structures such as window glass, plants, dark corridor caused by incon-
sistent illumination that make the sequence challenging are shown in (b). . . . . 82

5.12 Evaluation on our own indoor sequence. The figures show different perspec-
tives of the result obtained with and without loop closure enabled. . . . . . . . 84

5.13 Close-up perspectives during the exploration of level 3 of the ANU Research
School of Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.14 Efficiency analysis on EDF, ANNF and ONNF based tracker. . . . . . . . . . . 85

6.1 Left: output of an event camera when viewing a rotating dot. Right: Time-
surface map (6.1) at a time t, T (x, t), which essentially measures how far in
time (with respect to t) the last event spiked at each pixel x = (u, v)T. The
brighter the color, the more recently the event was generated. . . . . . . . . . 90

6.2 Illustration of the geometry of the proposed problem and solution. The refer-
ence view (RV) is on the left, in which an event with coordinates x is back-
projected into 3D space with a hypothetical inverse depth ρ. The optimal in-
verse depth ρ?, lying inside the search interval [ρmin, ρmax], corresponds to the
real location of the 3D point which fulfills the temporal consistency in each
neighbouring stereo observation s. . . . . . . . . . . . . . . . . . . . . . . . . 91



LIST OF FIGURES xix

6.3 Verification of the proposed objective function. A randomly selected event in
the reference view (RV) is marked by a red circle in (a). The overall energy
is visualized in (b), with a red curve obtained by averaging the cost of all
valid neighbouring observations (indicated by curves with random colors). The
vertical dashed line (black) indicates the groundtruth inverse depth. The time-
surface map of the left and the right event cameras at one of the observation
times are shown in (c) and (d), respectively, where the patches for measuring
the temporal residual are marked by red rectangles. . . . . . . . . . . . . . . . 93

6.4 Distribution of the temporal residuals and Gaussian fit N (µ, σ2). . . . . . . . . 95
6.5 Illustration of the fusion strategy. All stereo observations (T s

left, T s
right) are de-

noted by hollow circles and listed in chronological order. Neighbouring RVs
are fused into a chosen RV (e.g. , RV3). Using the fusion from RV5 to RV3

as an example, the fusion rules are illustrated in the dashed square, in which
a part of the image plane is visualized. The blue dots are the reprojections of
3D points in RV5 on the image plane of RV3. Gray dots represent unassigned
pixels which will be assigned by blue dots within one pixel away. Pixels that
have been assigned, e.g. the green ones (compatible with the blue ones) will be
fused. Pixels that are not compatible (in red) will either remain or be replaced,
depending on which distribution has the smaller uncertainty. . . . . . . . . . . 96

6.6 Left, (a) and (b): the stereo event-camera rig used in our experiment, consisting
of two synchronized DAVIS (Brandli et al. [2014]) devices. Right, (c) and (d):
rectified event maps at one time observation. . . . . . . . . . . . . . . . . . . 97

6.7 Results of the proposed method on several datasets. Images on the first col-
umn are raw intensity frames (not rectified nor lens-distortion corrected). The
second column shows the events (undistorted and rectified) in the left event
camera of a reference view (RV). Semi-dense depth maps (after fusion with
several neighbouring RVs) are given in the third column, colored according to
depth, from red (close) to blue (far). The fourth column visualizes the 3D point
cloud of each sequence at a chosen perspective. No post-processing, such as
regularization through median filtering (Rebecq et al. [2017a]), was performed. 100

6.8 Illustration of how the fusion strategy increasingly improves the density of the
reconstruction while reducing depth uncertainty. The first column shows the
uncertainty maps σρ before the fusion. The second to the fourth columns report
the uncertainty maps after fusing with 4, 8 and 16 neighbouring estimations,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 Illustration of the dynamic (piece-wise rigid) case. Three independent motions
exist in the scene: two cars having uncorrelated motion and the camera’s mo-
tion with respect to the static background (e.g. the traffic light and the traffic
lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



xx LIST OF FIGURES



List of Tables

2.1 Algorithm Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Performance comparison on several indoor datasets. . . . . . . . . . . . . . . . 39

4.1 Performance comparison on several indoor dataset. . . . . . . . . . . . . . . . 55

5.1 Comparison on the properties of different distance transformations . . . . . . . 70
5.2 Robust weight functions and their parameters fitted on each sub dataset . . . . 71
5.3 Relative Pose RMSE(R:deg/s, t:m/s) of TUM datasets . . . . . . . . . . . . . . 76
5.4 Absolute Trajectory RMSE(m) of TUM datasets . . . . . . . . . . . . . . . . . 77
5.5 Relative pose RMSE R:deg/s, t:m/s of ICL_NUIM . . . . . . . . . . . . . . . 79
5.6 Absolute Trajectory RMSE (m) of ICL_NUIM . . . . . . . . . . . . . . . . . 80

6.1 Quantitative evaluation on sequences with groundtruth depth. . . . . . . . . . . 98

xxi



xxii LIST OF TABLES



Chapter 1

Introduction and Contributions

Where am I? Who am I?
How did I come to be here?
What is this thing called the world ...

Søren Kierkegaard, Danish philosopher.

As one of the hypotheses that may explain the burst of apparently rapid evolution in the
lower Cambrian, the "Light Switch" theory of Parker [2016] believes that the evolution of
eyes started an arms race that accelerated evolution. The rationale behind this hypothesis is
that vision adds context of a scene, which enables creatures to more easily recognize food, a
potential mate, or a predator. This is definitely an evolutionary advantage. Now, sighted crea-
tures cover millions of species, from a part of invertebrates, such as some insects, to almost
all vertebrates, including humans. From some molecularly similar chemoreceptor cells to pho-
toreceptor cells, the eye experiences a long history of evolution to become a dedicated organ
(Nilsson [1996]). These special cells are very sensitive to light, more accurately photons. The
signals of those photons are transmitted to the brain, where they are decoded as colors and
shapes. Modern cameras work in the similar principle as our eyes do, whereas imaging chips
(e.g. semiconductor charge-coupled devices (CCD) or active pixel sensors in complementary
metal–oxide–semiconductor (CMOS)) play the role of photoreceptor cells. With these artifi-
cial eyes, researchers expect to endow robots the ability to perceive the world visually as we
humans do. The missing part right here is the “algorithm” in robots’ brains to process the data.

When stepping into an unknown environment, like humans, the first priority of a robot is to
be aware of where it is and what the surrounding environment is like. Vision based ego-motion
estimation, coined as Visual Odometry (VO) by Nistér et al. [2004], has been an active field
of research for more than three decades. It has wide application domains including augmented
reality (AR) and autonomous driving, etc. Specifically, VO plays an essential role in the field
of robotic control and navigation when no external reference signal is available. Examples
are given by rovers operating on Mars (Moravec [1980]; Lacroix et al. [1999]), autonomous
underwater vehicles (AUVs) carrying out exploration under the ocean (Corke et al. [2007];
da Costa Botelho et al. [2009]) and unmanned aerial vehicles (UAVs) patrolling in a GPS-
denied environment, such as an indoor scene, a forest or an urban canyon (Courbon et al.
[2009]; Tomic et al. [2012]; Forster et al. [2013]; Langelaan and Rock [2005]), etc. All of
above systems need an alternative navigation modality which helps the robots to know their
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2 Introduction and Contributions

own status of motion with respect to surrounding environments.

1.1 History of VO

The term VO was first used by Srinivasan et al. [1997] to define motion orientation of honey
bees. This term has become popular in the field of computer vision and robotics since the
paper Visual Odometry (Nistér et al. [2004]) was published. However, in fact the first known
work implementing this idea is a stereo VO system by Moravec [1980] for NASA’s Mars rover
in 1980. The goal of the project is to give an alternative to wheel odometry which is always
affected by slippage in uneven terrains. In the following two decades, the research on VO
was led by NASA/JPL in preparation for the 2004 Mars mission (Matthies and Shafer [1987];
Matthies [1989]; Lacroix et al. [1999]; Olson et al. [2000]).

Stereo cameras are the most popular choice in the early solutions (Matthies and Shafer
[1987]; Matthies [1989]; Lacroix et al. [1999]; Olson et al. [2000, 2003]; Cheng et al. [2005];
Milella and Siegwart [2006]; Howard [2008]). The reason is that stereo systems can recover
3D information without a prior of motion, which turns the estimation of the relative pose into
a process of solving a straightforward 3D-to-3D point registration problem. Different motion
estimation schemes are introduced by Nistér et al. [2004] and Comport et al. [2007]. Nistér
et al. [2004] performed a 3D-to-2D point registration while Comport et al. [2007] relied on the
quadrifocal tensor, which allowed motion estimation to be computed from 2D-to-2D image
matches without having to triangulate 3D points.

An alternative to stereo based solutions is to use a single camera. The reason of interest in
the monocular case is three-fold. First, stereo systems need to be calibrated intrinsically and
extrinsically, which makes them more complicated compared to monocular systems. Second,
multiple cameras will lead to additional energy consumption, which may not be available to
some small mobile platforms. Last but not the least, a stereo system is known as to degenerate
to the monocular case when the distance from the cameras to the scene becomes much bigger
than the length of the baseline.

Some of existing works are worth special mentioning because they either created standards
and inspired following works or still represent the state of the art.

1.1.1 Probabilistic Filter based Monocular SLAM

Mono-SLAM (Davison [2003]; Davison et al. [2007]) set the standard framework for tradi-
tional Bayesian filtering based visual SLAM framework. It uses image features to represent
landmarks in the map and iteratively updates the probability density of features’ depth by
frame-to-frame matching and triangulation. A feature-based sparse map is created conse-
quently and the full state vector including the robot’s pose and 3-D locations of landmarks
are updated within an EKF framework. Further pipelines worth mentioning, such as (Mon-
temerlo et al. [2002]; Pupilli and Calway [2005, 2006]), utilized a particle filter instead of an
EKF framework in camera/laser pose tracking. Compared to EKF based pipelines, these works
scale better with the number of landmarks in the map.
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1.1.2 Nister’s VO

Nister et al. made several contributions to the field of VO. First, they presented an efficient
five-point algorithm (Nistér [2004]) which would not degenerate in the case of coplanarity as
the normalized eight-point algorithm (Hartley [1997]) does. Second, they provided a 3D-to-
2D formulation of VO (Nistér et al. [2004]), which performs 3D reconstruction and camera
pose estimation in an alternated fashion. More importantly, they concluded that the 3D-to-2D
scheme is more accurate compared to either the 2D-to-2D or the 3D-to-3D scheme.

1.1.3 Parallel Tracking and Mapping (PTAM)

The standard of the front-end for modern SLAM systems is set by a work from the commu-
nity of AR. Parallel tracking and mapping, also known as PTAM, was proposed by Klein and
Murray [2007]. PTAM is a feature based method and follows the 3D-to-2D formulation de-
scribed in (Nistér et al. [2004]). Its original design consists of decoupling the mapping from
the tracking. This enables keyframe based bundle adjustment (BA) (Triggs et al. [1999]) that
optimizes over many more points than the filter based method. Moreover, PTAM does not
need to maintain an estimate of a dense covariance matrix as Mono-SLAM does, therefore
much faster.

1.1.4 State of the Art

Based on the schemes of previous works, state-of-the-art systems keep making improvement
from perspectives of both theory and system engineering. Based on the different information
used for motion estimation, they could be clustered into four categories: feature based methods,
direct methods, hybrid methods, and methods based on 3D point set registration.

• Feature based methods:

The front-end of ORB-SLAM (Mur-Artal et al. [2015] is a feature-based method and is
quite similar to PTAM. It achieves better performance compared to PTAM by 1) extend-
ing an additional thread for loop closing which guarantees globally consistent localiza-
tion and mapping; 2) automatically initializing the map via selecting a model between
the Homography and the Fundamental matrix, while PTAM requires manual operation to
finish the initialization; 3) utilizing ORB features (Rublee et al. [2011]) instead of image
patches used in PTAM which improves matching accuracy under scale and orientation
changes; 4) multi-scale mapping which consists of a local graph for pose refinement, a
co-visibility graph for local bundle adjustment, and an essential graph for global bundle
adjustment after a loop closing is detected and verified.

• Direct methods:

Different from feature based methods, direct methods utilize the intensity information of
the whole image for motion estimation, which have been proven to be more effective in
textureless environments. Among direct methods, DTAM (Newcombe et al. [2011b]) is
the first real-time system which is able to estimate a dense depth map at each keyframe.
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However, processing every pixel over all image sequences is very computationally ex-
pensive which leads to dependency on GPU hardwares. The appearance of low cost
RGB-D cameras eliminates the estimation of depth maps, which makes it applicable
for running fully dense methods on CPU in real time. Kerl et al. proposed a dense
visual odometry (DVO) (Kerl et al. [2013a]). The relative pose between two frames
is estimated by solving a 3D-2D registration problem. A probabilistic formulation is
given for improving the robustness in the presence of outliers and sensor noises. More
recently, Engel et al. proposed a semi-dense visual odometry (SDVO) using a monoc-
ular camera (Engel et al. [2013]). SDVO only uses pixels that are along the boundary
of structures. Therefore, it is able to run in real-time on a CPU. SDVO utilizes the
same tracking method as DVO does. The contribution of SDVO is the probabilistic
fusion based mapping, in which measurement uncertainties originating from both geo-
metric and photometric cues are effectively modelled. More recently, Engel et al. [2017]
present the direct sparse odometry (DSO), which applies direct method on a number of
sparse points. These sparse points are sampled across image areas with sufficient inten-
sity gradient. To deal with imperfect brightness constancy, Engel et al. [2017] propose
a photometric calibration pipeline, which recovers the irradiance images and therefore
increases the tracking accuracy.

• Hybrid methods:

Direct methods are known to be sensitive to inconsistent illumination, while feature-
based approaches fail when not enough textures appear. Hybrid methods have claimed a
better performance in these challenging cases. For example, Scaramuzza and Siegwart
[2008] used the image appearance to estimate the rotation of the car and features from
the ground plane to estimate the translation and the absolute scale. Forster et al. [2014]
used the photometric information around sparse features, which leads to precise, robust
and amazingly fast performance (400 fps on a laptop).

• 3D point registration based methods:

3D point set registration is a traditional problem that has been investigated extensively
in the computer vision community. We are limiting the discussion to methods that pro-
cess mainly rigid, geometric information. The most commonly used method is the ICP
algorithm proposed by Besl and McKay [1992], which performs registration through it-
erative minimization of the SSD distances between spatial neighbours in two point sets.
Classical ICP methods are prone to local minima once the displacement is too large. In
order to tackle situations of large view-point changes, Yang et al. [2013] investigated
globally optimal solutions to the point set registration problem. This method is however
inefficient and thus not suited for real-time applications, where the frame-to-frame dis-
placement remains small enough for a successful application of local methods. From a
more modern perspective, the ICP algorithm and its close derivatives (Pomerleau et al.
[2011]; Newcombe et al. [2011a]; Whelan et al. [2012a]; Pomerleau et al. [2013]) still
represent the algorithm of choice for real-time tracking of depth sensor.



§1.2 Motivation and Objectives — Exploiting Structural Regularities and Beyond 5

1.2 Motivation and Objectives — Exploiting Structural Regu-
larities and Beyond

By looking at the history of VO, we see that a lot of efforts have been made in order to achieve
efficient pose estimation while keeping the global drift as small as possible. Among the mas-
sive body of existing work, few of them focus on improving the tracking performance via
taking advantage of the structural prior hidden in structural regularities of man-made environ-
ments.

As a frequently occuring geometric regularity in man-made environments, planar struc-
tures provide a strong geometric constraint on ego-motion estimation. In the 2D relative pose
problem, the co-planarity of points leads to a compact expression of motion and structure —
the homography. It is believed that a prior on the structure would benefit the motion estima-
tion and vice versa (Szeliski and Torr [1998]), thus, the estimation of the fundamental matrix
would ideally benefit from using homographies as input. When 3D information is available,
the piece-wise planar environment enables us to create alternative solutions to ICP, which is
computationally expensive and suffers from local minimums. We show that the surface nor-
mal vectors of those planes can be used to efficiently estimate the relative rotation between
different perspectives. Moreover, if the environment consists of three dominant planes that are
orthogonal to each other, namely a Manhattan World (MW), the rotation estimation is glob-
ally drift-free while each degree of translational freedom could be further solved in parallel.
A more general structure regularity is the contours/edges. They typically correspond to pixels
with strong intensity gradient in images. Pose estimation based on these pixels are less affected
when the photometric consistency assumption does not strictly hold. We can see that both the
efficiency and the accuracy benefits from exploiting structural regularities in this research.
However, when application scenarios bring in challenging conditions such as high-speed mo-
tion, high dynamic range (HDR) that are beyond what normal sensors (standard RGB/RGB-D
cameras) can handle, existing solutions are no longer applicable. Accordingly, it is imperative
to investigate recently emerging sensors and to develop novel algorithms that fit their distinct
characteristics.

1.2.1 2D Geometrically Constrained Relative Pose Estimation: Points on
Planes

The epipolar geometry of two perspective images, illustrated by Fig. 1.1, demonstrates that a
3D point X observed in one image must lie (when no occlusion exists) on the epipolar line in
the other image. This constraint can be described by a singular 3× 3 matrix. When the camera
is calibrated, the matrix is known as the essential matrix E. For uncalibrated systems, it is
known as the fundamental matrix F. The estimation of the fundamental matrix is a classical
and thoroughly studied topic which plays an essential role in many applications involving
multiple-view geometry.

The most popular method for estimating the fundamental matrix is to solve Eg. 1.1 given
sparse correspondences between local invariant keypoints, for instance SIFT features (Lowe
[2004]).

x′Fx = 0 (1.1)
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Epipolar Plane

BaselineCamera 1 Camera 2

Epipolar Line

Figure 1.1: Illustration of the epipolar geometry. The optical centres of the two cameras and
the 3D point X determines the epipolar plane. Epipoles e, e′ are defined as the intersection
points of the baseline with each image plane. The epipolar plane and an image plane intersects

at an epipolar line.

Using the direct linear transform (DLT), Eq 1.1 is transformed into a linear equation system

Af =

x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

 f = 0, (1.2)

where (xi, yi) ↔ (x′i , y′i), i = 1 · · · n, denotes the feature correspondences, and f consists
of all entries of the fundamental matrix F. Seven points constitute the minimal configuration
because the fundamental matrix has 7 degrees of freedom (DoF). Compared to the eight-point
algorithm, the seven point algorithm needs an additional step to calculate the linear combi-
nation factor of the obtained two-dimensional null-space. While seven point correspondences
represent the minimum for estimating the fundamental matrix (Stewart [1999]), the eight-point
algorithm (Longuet-Higgins [1987]) is the most widely used method because of its linear na-
ture and thus simplicity to implement. However, it was only after Hartley published his seminal
work (Hartley [1997]) on using data normalization that the eight-point algorithm became truly
useful in practice.

When a point is on a plane, its projections on two images can be associated by not only
a fundamental matrix, but also a homography. The association is denoted by Eq. 1.3 and the
geometry is illustrated in Fig. 1.2.

x′ = Hx (1.3)

It is believed that the estimation of both structure and motion can be improved by incorpo-
rating additional geometric constraints like coplanarity of certain points. Luong and Faugeras
[1993, 1996] are the first who proposed to estimate the fundamental matrix with multiple ho-
mographies in a linear way. They compared their linear solutions with other non-linear ones
concluding that none of the developed methods is stable under noise. In other words, though
the direct linear method is quite simple and straightforward, it has limited practical usefulness.
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Figure 1.2: Illustration of a hompgrahy that associates the projections of a point on a planar
structure. The raw image is from (Szpak et al. [2014]).

Zhang [1998] gave a thorough review on the techniques of fundamental matrix estimation and
its uncertainty. The bad performance of the Direct Linear Transformation (DLT) applied to the
compatibility relation between the homography H and the fundamental matrix F was however
not discussed in much detail. Szeliski and Torr [1998] thoroughly discussed three methods
used for solving structure from motion (SfM) with planes. They presented an analysis of the
robustness of each method and then suggested to estimate the fundamental matrix with hal-
lucinated points (HP) that lie on planes instead of using the compatibility equation (and thus
the homograhies directly). Agarwal et al. [2005] demonstrated that the compatibility con-
straint is an implicit equation in H and F. They also concluded that an explicit expression like
F = [e′]×H is more suitable for a computational algorithm. Vincent and Laganiére [2001]
proposed a detection algorithm for planar homographies working on a pair of uncalibrated im-
ages. They claimed that the estimation of the fundamental matrix from point correspondences
derived from homographies allows to use data normalization techniques, and thus performs
much better than using the homographies directly. A method was introduced to estimate the
fundamental matrix with a homology by Sinclair et al. [1995]; Pritchett and Zisserman [1998];
Hartley and Zisserman [2003]. Theoretically, a homology has two identical eigenvalues and
another unique one which is corresponding to the epipole e′. However, in practical cases, the
imperfect homographies may lead to complex eigenvalues. It is hard to choose which eigen-
value corresponds to the unique one; the real parts of the eigenvalues are often equally spread
and/or very close to each other.
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1.2.2 Tracking a 3D Sensor in Piece-wise Planar Environments and Man-
hattan Worlds

3D sensors typically refer to devices that are able to obtain the 3D information of a scene,
especially those that provides dense 3D measurements, such as Velodyne LiDARs, Microsoft
Kinects and so on. The problem of tracking a 3D sensor is typically formulated as a point
cloud registration problem, shown as Fig. 1.3. A 3D point cloud can be denoted as P =
pi, i = 1, ..., M, where pi represents the coordinate of a 3D point, and M is the number of 3D
points in the point cloud. Assume a 3D camera captures a scene at two different perspectives
and generates two point clouds P ,Q. Since the coordinate of the point cloud is described in
the camera coordinate system, to estimate the relative pose between two different perspectives
is equivalent to rigidly registering the two point clouds. The point cloud registration problem
is generally written as

R, t = arg min
R,t

Φ(G(P , R, t),Q), (1.4)

where (R, t) ∈ SE(3), function G applies rigid transformation (R, t) on P , and Φ(·, ·) mea-
sures the registration error in a certain metric. The most commonly used way to solve prob-
lem 1.4 is the ICP algorithm (Besl and McKay [1992]), in which the registration error in 1.4 is
defined as the sum of the squared closest-point distances,

R, t = arg min
R,t

M

∑
i=1

min
j=1,··· ,N

‖Rpi + t− qj‖2, (1.5)

where pi, i = 1, · · · , M and qj, j = 1, · · · , N denote the 3D points in P and Q, respec-
tively. The ICP algorithm performs registration through iterative minimization of the sum of
the squared closest-point distances between spatial neighbours in two point sets.

In order to avoid the costly repetitive derivation of point-to-point correspondences, the
community has also investigated the representation and alignment of point clouds using density
distribution functions. The idea was proposed by Chui and Rangarajan [2000a] and Tsin and
Kanade [2004], who represented point clouds as explicit Gaussian Mixture Models (GMM)
or implicit Kernel Density Estimates (KDE), and then found the relative transformation (not
necessarily Euclidean) by aligning those density distributions. Jian and Vemuri [2011] sum-
marized the idea of using GMMs for finding the aligning transformation, and notably derived
a closed-form expression for computing the L2 distance between two GMMs. Yet another
alternative which avoids the establishment of point-to-point correspondences was given by
Fitzgibbon [2003], who utilizes a distance transformation in order to efficiently and robustly
compute the cost of an aligning transformation. The distance transformation itself, however, is
again computationally intensive.

Classical ICP or even density alignment based methods are prone to local minima once
the displacement becomes too large and thus also the point cloud structure is subjected to
intensive changes. In order to tackle situations of large view-point changes, the community
has therefore investigated globally optimal solutions to the point set registration problem, such
as Yang et al. [2013]. These methods are however inefficient and thus not suited for real-
time applications, where the frame-to-frame displacement anyway remains small enough for a
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Figure 1.3: Illustration of point cloud registration problem. The point cloud is from (Sanchez
et al. [2017]). The 3D camera and its observation are associated by using the same color.

successful application of local methods.

Planar structures in man-made environments can benefit both tracking and mapping per-
formance when using exteroceptive sensors. Weingarten and Siegwart [2006] and Trevor et al.
[2012] used planar-segment features extracted from 3D sensors. Both of them claimed that the
planar segments can be used to improve the data association, which in turns benefits the whole
localization and mapping process. Taguchi et al. [2013] combined point and plane features
towards fast and accurate 3D registration. From exterior side to interior side, modern buildings
frequently contain orthogonal structures in the surface arrangement. The property was coined
as Manhattan World (MW) in (Coughlan and Yuille [1999]), where they formulated vanishing
point estimation from a single RGB image as a Bayesian inference problem. Košecká and
Zhang [2002] presented a video compass using a similar idea. Tracking the Manhattan Frame
can be regarded as absolute orientation estimation, and thus leads to a significant reduction
or even complete elimination of the rotational drift. Silberman et al. [2012] improved MW
orientation estimation by introducing depth and surface normal information obtained from 3D
sensors. More recently, Straub et al. [2014] proposes the inference of an explicit probabilis-
tic model to describe the world as a mixture of Manhattan frames. They employ an adaptive
Markov-Chain Monte-Carlo sampling algorithm with Metropolis-Hasting split/merge moves to
identify von-Mises-Fisher distributions of the surface normal vectors. In (Straub et al. [2015a]),
they adapted the idea to a more computationally friendly approach for real-time tracking of a
single, dominant MF. As illustrated in Fig. 1.4, most of the existing works are limited to the
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estimation of the rotation of a camera through tracking the Manhattan Frame. Few have shown
how to perform a full 6-Dof motion estimation based on the Manhattan assumption.

(a) Coughlan and Yuille [1999]. (b) Košecká and Zhang [2002]. (c) Straub et al. [2015a].

Figure 1.4: Existing works that estimate the motion (rotation) of a camera by taking advantage
of the Manhattan World assumption.

1.2.3 One Step Beyond: A More General Regularity — Edges

3D

2D

Figure 1.5: Illustration of the 3D-2D registration problem. The goal is to estimate the relative
pose of frame Fk+1 (with 2D information) w.r.t frame Fk (with 3D information).

From a more general perspective, either the piece-wise planar environment or the Manhat-
tan World assumption is so strong that the derived VO systems cannot be applied to environ-
ments where those assumptions do not sufficiently hold. To move one step beyond, a more
general structural regularity is required. Edges are abundant in man-made environments. They
can be boundaries of either structures or textures. Any approach that replies on edges is usually
reported to be outperforming sparse feature based methods in textureless environments and to
be less affected by inconsistent illumination than direct methods. Several typical pipelines are
shown in Fig. 1.6 As a special case of edges, lines have been used as alternative features to
points and widely employed in many VO and SLAM frameworks such as (Eade and Drum-
mond [2009]; Lu and Song [2015]). One reason is that line features are easily parametrized
and included into a bundle adjustment (BA) framework for the purpose of global optimiza-
tion (Eade and Drummond [2009]; Klein and Murray [2008]). However, straight lines are not
general features because contours of objects can be arbitrary curves in 3D space. Therefore,
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(a) Engel et al. [2013, 2014]. (b) Nurutdinova and Fitzgibbon
[2015].

(c) Kuse and Shen [2016].

Figure 1.6: Examples that use boundaries, edges and semi-dense regions around them.

Nurutdinova et al. presented a method which uses parametric curves as landmarks for motion
estimation and BA (Nurutdinova and Fitzgibbon [2015]). In contrast, non-parametric methods
are more popular. Engel et al. applied direct photometric registration to semi-dense regions
defined as all neighbouring pixels of edges (Engel et al. [2013, 2014]). A more relevant work
to this thesis is (Kuse and Shen [2016]), which presents a direct edge alignment approach
for 6-DOF tracking. Non-parametric methods are always formulated as a 3D-2D registration
problem, as illustrated by Fig. 1.5. When using photometric measurements (Newcombe et al.
[2011b]; Engel et al. [2013, 2014]; Schoeps et al. [2014]), the objective function is written as,

R, t = arg min
R,t

∑
i
(Ik+1(W(xi, zi; R, t))− Ik(xi))

2 (1.6)

where I(·) returns the intensity of a given pixel coordinate, W(·) warps a pixel under its depth
zi and the optimized motion parameters R, t. The optimal motion leads to the global minimum
of the objective function. When the residuals are measured in geometric distance (Kneip et al.
[2015]; Kuse and Shen [2016]; Zhou et al. [2017]), the objective function is denoted as,

R, t = arg min
R,t

∑
i
D(W(xi, zi; R, t)) (1.7)

where D(·) returns the distance to the closest point. The objective function is typically solved
as an 3D-2D ICP problem, which needs to repeatedly search for the closest point for each
warping pixel in each iteration. To accelerate the closest point searching, distance transform
(DT) is introduced by Felzenszwalb and Huttenlocher [2004]. A look-up table under a certain
distance metric is created to avoid repeated searching.

Geometric methods have a larger convergence basin than photometric methods, thus per-
form better when registering two frames under big transformation. As reported by Kuse and
Shen [2016], classical 3D-2D registration pipelines that are solved using the Gauss-Newton
method have no guarantee for convergence. This attributes to the fact that the objective function
in Eq. 1.7 is not smooth. Kuse and Shen [2016] solved this problem by using the sub-gradient
method. The nature of ICP determines that the geometric 3D-2D registration pipelines are
prone to local minimum, especially in the case of big motion or partial occlusion. To deal with
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big motion, a coarse-to-fine strategy is typically used (Kuse and Shen [2016]). Nurutdinova
and Fitzgibbon [2015] overcame the partial occlusion problem by using parametric curves
while increasing the dimension of unknowns. Furthermore, robust tracking requires to handle
outliers and noises effectively. Most of the exiting pipelines just empirically choose robust
weight function rather than looking into the real probabilistic characteristics of the sensor.

1.2.4 Beyond the Limits: Event-based VO

When applying VO/SLAM techniques in practical applications, more complicated and chal-
lenging scenarios than what we see in the laboratory could emerge. An example is illustrated in
Fig 1.7, in which a small UAV is performing a rescue task in a post-disaster environment. Fast
operations are very much expected to save more lives. Therefore, image blur induced by high-
speed motions must be handled. Besides, the drone may fly from indoor to outdoor, which can
lead to severe illumination changes. In extreme cases, over/under-exposure can make that sys-
tem temporarily blind. Thus, an ideal sensor needs to be capable of dealing with high dynamic
range (HDR) scenarios. Each of these challenging factors can easily fail existing VO/SLAM
solutions developed for traditional visual sensors. Accordingly, it is imperative to investigate
recently emerging sensors and to develop novel algorithms that fit their distinct characteristics.

(a) An outdoor case. (b) An indoor case.

(c) High-speed motion. (d) High dynamic range.

Figure 1.7: Illustration of challenging scenarios for classical vision based navigation. Images
are from http://rpg.ifi.uzh.ch/gallery.html.

http://rpg.ifi.uzh.ch/gallery.html
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Event cameras, such as the Dynamic Vision Sensor (DVS) (Lichtsteiner et al. [2008]), are
novel devices that output pixel-wise intensity changes (called “events”) asynchronously, at the
time they occur. As opposed to standard cameras, they do not acquire an entire image frame at
the same time, nor do they operate at a fixed frame rate. An illustration of the event camera’s
working mechanism is given in Fig. 1.8. The output of an event camera is a 3D spatial-temporal
signal, which is typically denoted as a tuple,

e = {u, v, t, p}, (1.8)

where u, v denotes the event coordinate on the sensor plane, t gives the timestamp when the
event occurs and p tells the sign of the intensity change. This asynchronous and differential
principle of operation reduces power and bandwidth requirements drastically. Endowed with
microsecond temporal resolution, event cameras are able to capture high-speed motions, which
would typically cause severe motion blur with standard cameras. In addition, event cameras
have a very high Dynamic Range (HDR) (e.g. 140 dB compared to 60 dB of most standard cam-
eras), which allows them to be used under a broad range of illumination. Hence, event cameras
open the door to tackle challenging scenarios that are inaccessible to standard cameras, such
as high-speed and/or HDR tracking (Mueggler et al. [2014]; Lagorce et al. [2015]; Zhu et al.
[2017]; Gallego et al. [2017]), control (Conradt et al. [2009]; Delbruck and Lang [2013]) and
Simultaneous Localization and Mapping (SLAM) (Kim et al. [2016]; Rebecq et al. [2017c];
Rosinol Vidal et al. [2018]).

The main challenge in visual processing with event cameras is to devise specialized algo-
rithms that can exploit the temporally asynchronous and spatially sparse nature of the image
data produced by DVS cameras, hence unlocking their full potential, whereas existing com-
puter vision algorithms designed for conventional cameras do not directly apply in general.
Some preliminary works on DVS addressed this issue by combining event cameras with other
sensors, such as standard cameras (Censi and Scaramuzza [2014]; Kueng et al. [2016]) or depth
sensors (Censi and Scaramuzza [2014]; Weikersdorfer et al. [2014]), in order to simplify the
task at hand. Although this approach obtained certain success, the true potential of an event
camera has not been fully exploited since parts of such combined systems are limited by the
lower dynamic range devices.

1.3 Thesis Outline and Contributions

In Chapter. 2, we look into the 2D geometrically constrained relative pose estimation in piece-
wise planar environments. More specifically, we focus on answering a classical geometry
question – how to determine the fundamental matrix from a collection of inter-frame homogra-
phies. The compatibility relationship between the fundamental matrix and any of the ideally
consistent homographies can be used to compute the fundamental matrix. Using the direct
linear transformation (DLT), the compatibility equation can be translated into a least squares
problem and can be easily solved via SVD decomposition. However, this solution is extremely
susceptible to imaging noise, hence rarely used. Inspired by the normalized eight-point al-
gorithm, we show that a relatively simple but non-trivial two-step normalization of the input
homographies achieves the desired effect, and the results are at last comparable to the less at-
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(a) Event camera. (b) Working mechanism.

Figure 1.8: Illustration of an event camera and its working mechanism. Unlike standard RGB
cameras that capture the scene at a fixed frame rate, the event camera only reports “events” —

intensity changes. The images are from (Rebecq et al. [2017b]).

tractive hallucinated points based method. The algorithm is theoretically justified and verified
by experiments on both synthetic and real data.

In Chapter. 3, an efficient 3D rotation estimation algorithm for depth cameras in piece-wise
planar environments is presented. It shows that by using surface normal vectors as an input,
planar modes in the corresponding density distribution function can be discovered and continu-
ously tracked using efficient non-parametric estimation techniques. The relative rotation from
the reference view to the current view can be estimated by registering entire bundles of pla-
nar modes. Robustness of the bundle registration process is achieved by performing a general
`1-norm regression instead of simply solving a least-squares problem. Piece-wise drift-free
performance is achieved as long as no bundle updates happen.

In Chapter. 4, we reply on the results of Chapter. 3 and make the further assumption about
the environment that three mutually orthogonal planes exit. A highly efficient motion esti-
mation framework is presented for 3D sensors such as the Microsoft Kinect v.2, based on
alignment of density distribution functions. Absolute rotation is estimated by exploiting the
properties of Manhattan Worlds, thus resulting in a manifold-constrained multi-mode tracking
scheme. The individual translational degrees of freedom is efficiently estimated through 1D
kernel density estimates. A real-time implementation is given, which is able to process dense
depth images with VGA resolution at more than 50Hz on a CPU.

In Chapter. 5, we investigate a more general structural regularity — edges (arbitrary 3D
curves) of structures and present a robust VO algorithm for RGB-D cameras. The method
tracks the camera’s 6 DoF motion with a 3D-2D geometric curve registration approach. In-
stead of using the classical Euclidean distance field, two novel alternatives are presented. The
resulting method does not depend on bilinear interpolation, and enables adaptive sampling,
parallel computation, and is capable of eliminating the registration bias. To improve robust-
ness against noise and outliers, the ICP-based pipeline is formulated as a maximum a posteriori
problem, which is subsequently transformed into a weighted least squares problem and solved
with IRLS. We study the statistical properties of the sensor model, which leads to the optimal
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choice from various robust M-Estimators. The proposed method outperforms state-of-the-art
edge-alignment based method in terms of accuracy, efficiency and robustness.

In Chapter 6, to deal with challenging scenarios that are beyond what standard RGB/RGB-
D cameras can handle, we investigate a recently emerging sensor — the event camera —
and focus on the problem of 3D reconstruction from data captured by a stereo event-camera
rig moving in a static scene, such as in the context of stereo Simultaneous Localization and
Mapping. The proposed method consists of the optimization of an energy function designed
to exploit small-baseline spatio-temporal consistency of events triggered across both stereo
image planes. To improve the density of the reconstruction and to reduce the uncertainty of the
estimation, a probabilistic depth-fusion strategy is also developed. The resulting method has no
special requirements on either the motion of the stereo event-camera rig or on prior knowledge
about the scene. Experiments demonstrate the proposed method can deal with both texture-rich
scenes as well as sparse scenes, outperforming state-of-the-art stereo methods based on event
data image representations.

1.3.1 Publication

The thesis is mainly based on the following publications during my PhD:

– Zhou et al. [2015] Y. Zhou, L. Kneip and H. Li, "A Revisit of Methods for Determin-
ing the Fundamental Matrix with Planes," 2015 International Conference on Digital
Image Computing: Techniques and Applications (DICTA), Adelaide, SA, 2015, pp. 1-7.

– Kneip et al. [2015] L. Kneip, Y. Zhou and H. Li. "SDICP: Semi-Dense Tracking based
on Iterative Closest Points". In Proceedings of the British Machine Vision Conference
(BMVC), pages 100.1-100.12. BMVA Press, September 2015.

– Zhou et al. [2016a] Y. Zhou, L. Kneip and H. Li, "Real-time rotation estimation for
dense depth sensors in piece-wise planar environments," 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 2271-
2278.

– Zhou et al. [2016b] Y. Zhou, L. Kneip, C. Rodriguez, and H. Li. "Divide and conquer:
Efficient density-based tracking of 3D sensors in Manhattan worlds." In Asian Con-
ference on Computer Vision (ACCV), pp. 3-19. Springer, Cham, 2016.

– Zhou et al. [2017] Y. Zhou, L. Kneip and H. Li, "Semi-dense visual odometry for RGB-
D cameras using approximate nearest neighbour fields," 2017 IEEE International
Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 6261-6268.

– Zhou et al. [2018b] Y. Zhou, H. Li, L. Kneip, "Canny-VO: Visual Odometry with
RGB-D Cameras based on Geometric 3D-2D Edge Alignment," accepted by IEEE
T-RO (published as Early Access by far).

– Zhou et al. [2018a] Y.Zhou, G. Gallego, H. Rebecq, L. Kneip, H. Li, D. Scaramuzza,
"Semi-Dense 3D Reconstruction with a Stereo Event Camera," European Conference
on Computer Vision. Vol. 2. Springer, Cham, 2018.
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Chapter 2

2D Geometrically Constrained
Relative Pose Estimation: Points on
Planes

In this chapter, we look into the problem of relative pose estimation in piece-wise planar en-
vironments. More specifically, we focus on answering a classical visual geometry question –
how to determine the fundamental matrix from a collection of inter-frame homographies (more
than two). The compatibility relationship between the fundamental matrix and any of the ide-
ally consistent homographies can be used to compute the fundamental matrix. Using the direct
linear transformation (DLT), the compatibility equation can be translated into a least squares
problem and easily solved via SVD decomposition. However, this solution is extremely sus-
ceptible to noise and motion inconsistencies, hence rarely used. Inspired by the normalized
eight-point algorithm, we show that a relatively simple but non-trivial two-step normalization
for the input homographies achieves the desired effect, and the results are at least comparable
to the less attractive hallucinated points method. The algorithm is theoretically justified and
verified by experiments on both synthetic and real data.

2.1 Related Work — Three Classical Methods

Szeliski and Torr discussed three methods that can be used for the estimation of the fundamen-
tal matrix given several (> 2) homographies in (Szeliski and Torr [1998]), which are reviewed
in the following.

• Hallucinating additional correspondences:

Hallucinated points refer to augmented sample points on planes. Theses points are also
called virtual control points. Hallucinated correspondences are generated by first creat-
ing several virtual 2D points x on image one which are assumed to be the projection of
virtual points on the plane. Their corresponding points x′ are then found by applying the
corresponding homography to points x. Then the fundamental matrix F is computed by
applying normalized 8-point algorithm on the obtained hallucinated correspondences.

• Direct linear method:

17
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The implicit compatibility relationship between inter-frame homographies and the fun-
damental matrix can be directly used for computing the fundamental matrix. The com-
patibility equation FTH + HTF = 0 gives six constraints (Luong and Faugeras [1993])
(for which only 5 are linearly independent). Therefore, at least 2 homographies are
needed for computing the fundamental matrix. The question can be translated to a least
squares problem by DLT and can be easily solved by SVD decomposition. However,
this straightforward method is unstable for inaccurate homographies, sometimes leading
to completely meaningless results. The reason given by Szeliski and Torr is that using
the compatibility equation directly corresponds to sampling homographies at locations
where their predictive power is very weak. The samples are far from having the normal
distribution required for total least squares to work reasonably well.

• Plane plus parallax:

Plane plus parallax techniques are always used to recover the depth (projective or Eu-
clidean) of the scene. To compute the fundamental matrix, one of the homographies
is chosen and used to warp all the feature points to the current frame. The epipole e′ is
computed by minimizing the sum of the weighted distance between the epipole and lines
passing through corresponding points xi and x′i. Then the fundamental matrix F can be
computed by F = [e′]×H. This method cannot work well when points are evenly dis-
tributed over several planes. The computation is also more complicated and expensive
compared to the former two methods.

2.2 A Robust Two-Step Linear Solution

The compatibility equation FTH+HTF = 0 gives only 6 linear equations (Luong and Faugeras
[1993]). In fact, as shown later, only 5 of them are independent. Therefore, at least 2 homo-
graphies are needed to compute the fundamental matrix. Applying the DLT transformation to
the compatibility equation leads to the least squares problem,

Af =


W1

W2
...

Wn

 f = 0, (2.1)

where f = ( f11, f21, f31, f12, f22, f32, f13, f23, f33)T denotes a vector obtained by rearranging
the entries of the fundamental matrix in a column vector. Matrix A is made up of several sub
matrices Wi of same dimension which is defined as,

Wi =


2h

πi
11 0 0 2h

πi
21 0 0 2h

πi
31 0 0

h
πi
12 h

πi
11 0 h

πi
22 h

πi
21 0 h

πi
32 h

πi
31 0

h
πi
13 0 h

πi
11 h

πi
23 0 h

πi
21 h

πi
33 0 h

πi
31

0 2h
πi
12 0 0 2h

πi
22 0 0 2h

πi
32 0

0 h
πi
13 h

πi
12 0 h

πi
23 h

πi
22 0 h

πi
33 h

πi
32

0 0 2h13 0 0 2h
πi
23 0 0 2h

πi
33

 . (2.2)
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The entries of the matrix Wi originate from the homography Hi =

hπi
11 hπi

12 hπi
13

hπi
21 hπi

22 hπi
23

hπi
31 hπi

32 hπi
33

 which

is induced by plane πi. The least squares problem described in Eq. (2.1) is seriously ill-
conditioned, which means that even under a tiny perturbation of any entry of matrix A, the solu-
tion quickly diverges from the groundtruth result. Thus, the matrix A should be re-conditioned
in order to stabilize its null space.

The presented method follows the idea of Hartley [1997] and introduces normalization in
order to stabilize the result. However, it is not trivial to directly normalize the matrix A as it
has been done in prior work for estimating the fundamental matrix or even the homography
from point correspondences. The reason is two-fold. First, the normalization includes two
parts, translation and scaling. The translation operation can only be performed by a linear
transformation when the normalized object is described in the homogeneous form. Second,
the normalization should be performed to data which have the same physical meaning.

The key to deal with the above two issues comes from the special structure of the matrix
FTH. The compatibility equation requires that FTH is a skew-symmetric matrix, and thus is
of the form

FTH =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (2.3)

The diagonal entries give three equations which describe an orthogonal relationship between
corresponding column vectors of the fundamental matrix and a homography,

fT
i hi = 0, i = 1, 2, 3. (2.4)

fi and hi denote the ith column vector of the fundamental matrix F =
(
f1 f2 f3

)
and the

homography H =
(
h1 h2 h3

)
. The other three equations enforce the skew symmetric prop-

erty. However, only two of them are independent. This makes sense because a homography
has 8 degrees of freedom (DoF). For the uncalibrated case, the intrinsic matrix is unknown
which removes three constraints. Thus, only five independent constraints can be obtained from
one homography, three from the orthogonal relationship described in Eq. (2.4) and the other
two from the skew-symmetric property.

Our two-step reconditioning method realizes the non-trivial normalization by fully using
the special structure of matrix FTH. First, by utilizing the orthogonal relationship, we decom-
pose the original least squares problem Af = 0 into three sub least squares problems Aifi = 0,
where matrix Ai =

(
hπ1

i hπ2
i · · · hπn

i

)T
and i = 1, 2, 3. Each column of the fundamen-

tal matrix fi is estimated individually. The relative scale factor for each estimated solution
fi can then be recovered by using the skew-symmetric property of matrix FTH in Eq. (2.3).
With this formulation, every column of matrix Ai has the same physical meaning. Besides,
in order to perform the translation, the matrix Ai should be extended by an additional column
13×1 = (1 1 1)T which leads to Ãi = [Ai|13×1]. Accordingly, the extended solution vec-

tor f̃i is defined as f̃i =

(
λ−1

i fi
0

)
, where λ denotes the relative scale factor of the individually

estimated solution. This extension turns each row of matrix Ai into the homogeneous form.
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The mathematical proof is given after the whole algorithm is introduced.
The normalization is then performed by inserting a 4× 4 linear transformation matrix Qi

and its inverse in between Ãi and f̃i, resulting in

ÃiQiQ−1
i f̃i = Âi f̂i = 0, (2.5)

where Âi = ÃiQi and f̂i = Qi
−1f̃i. The linear transformation Qi includes a translation

and a scaling. We regard each h
πj
i as a 3D point. Following the idea of Hartley [1997], the

coordinates are translated such that the centroid c of the set of all such points becomes the
origin. The coordinates are then scaled by applying an isotropic scaling factor s to all three
coordinates of each point. Finally, we choose to scale the coordinates such that the average
distance of a point h

πj
i from the origin is equal to

√
3. The linear transformation Qi and scaling

related variables are defined as,

Qi =


s 0 0 0
0 s 0 0
0 0 s 0
−c1s −c2s −c3s 1

 , (2.6)

c =
(
c1 c2 c3

)T
=

∑m
j=1 h

πj
i

m
, (2.7)

s =
√

3
d̄

, d̄ =
∑m

j=1‖h
πj
i − c‖F

m
. (2.8)

The solution of the three sub least squares problems Âi f̂i = 0 can be easily obtained via
SVD. Then f̃i = Qi f̂i. The only remaining task is to find the scale factors λi.

The skew-symmetric property of matrix FTH can be translated into another least squares
problem Aλλ = 0 via DLT, where λ =

(
λ1 λ2 λ3

)T
and Aλ is given by

Aλ =



f̃T
1,1:3hπ1

2 f̃T
2,1:3hπ1

1 0

f̃T
1,1:3hπ1

3 0 f̃T
3,1:3hπ1

1

0 f̃T
2,1:3hπ1

3 f̃T
3,1:3hπ1

2

...
...

...
f̃T

1,1:3hπm
2 f̃T

2,1:3hπm
1 0

f̃T
1,1:3hπm

3 0 f̃T
3,1:3hπm

1

0 f̃T
2,1:3hπm

3 f̃T
3,1:3hπm

2


. (2.9)

f̃i,1:3 in Aλ is defined as the first three rows of vector f̃i. h
πj
i is defined the same as before. The

full two-step linear method (TSL) is described in Algorithm 1.
It should be noted that in order to apply the normalization, the original least squares prob-

lem is modified. However, we will see in the following that solving the modified problem
Ãi f̃i = 0 is equivalent to solving the original problem Aifi = 0. Therefore, two questions
need to be answered in order to prove this claim:

1. After extending the matrix Ai by an additional column 13×1 = (1 1 1)T, what is the
null-space configuration of Ãi?
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Algorithm 1 Two-Step Linear Method (TSL)
1: Input: A collection of independently estimated homographies Hs
2: for i = 1:3 do
3: Ãi = [Ai|13×1]
4: Âi ← ÃiQi
5: f̂i ← solveÂi f̂i = 0
6: f̃i ← Qi f̂i
7: end for
8: λ =

(
λ1 λ2 λ3

)T ← solveAλλ = 0
9: Output: F =

(
f1 f2 f3

)

2. Why does the solution of problem Ãi f̃i = 0 have the structure as f̃i =

(
λ−1

i fi
0

)
?

The answers are given by proving the following two claims:

• Property 1

Rank(Ai) = 2, 1 ≤ dim(N(Ãi)) ≤ 2 when the number of planes m ≥ 3, , where N(·)
denotes the null space of (·)

• Property 2

N(Ãi) =

(
N(Ai)

0

)
.

Proof. Property 1
Assuming that two camera matrices are given by P1 = [I3×3|03×1] and P2 = [B|b], each

homography induced by a plane πj = [−vT
j , 1] observed by the two cameras can be denoted

as
Hπ

j ' B + bvT
j . (2.10)

Each row of matrix Ai contains the ith column of one homography, which gives

h
πj
i ' Bi + vj,ib, (2.11)

where Bi denotes the ith column of the matrix B and vj,i the ith element of the vector vj. It is
obvious to see that if we regard each row of matrix Ai as a general 3D point, all the points h

πj
i

are lying on the line with the direction of vj,ib passing point Bi. Thus Rank(Ai) = 2.
Since matrix Ãi is obtained by adding an additional column 13×1 to Ai, it is also obvious

to see that
Rank(Ai) ≤ Rank(Ãi) ≤ 3. (2.12)

Because
Rank(Ãi) + dim(N(Ãi)) = 4, (2.13)

thus we finally have
1 ≤ dim(N(Ãi)) ≤ 2.1 (2.14)

1If Rank(Ãi) = 3, Ãi has only a one dimensional null space which is the eigen vector corresponding to the
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Proof. Property 2
Assuming x ∈ N(Ai), and x̃ ∈ N(Ãi), we have Aix = 0, and Ãix̃ = 0.

Obviously, ∀x ∈ N(Ai), Ãi

(
x
0

)
= [Ai|13×1]

(
x
0

)
= 0.

Thus,
(

N(Ai)
0

)
∈ N(Ãi).

Necessary condition Q.E.D.

On the other hand, assume ∀x̃ =

(
x
ω

)
, ω 6= 0.

Since Ãix̃ = 0,

⇒ Aix + ω13×1 = 0,

⇒ ω13×1 = 0,

⇒ ω = 0,

⇒ contradiction,

Thus, N(Ãi) ∈
(

N(Ai)
0

)
.

Sufficient condition Q.E.D.

Summarizing, N(Ãi) =

(
N(Ai)

0

)
.

The mathematical proofs above explain why we can get the solution to the original problem
by solving the reconditioned least squares problems. One drawback of the proposed method
is that at least 3 planes (homographies) are needed for computing the fundamental matrix.
The reason lies in the normalization. The matrix Ai is extended by an additional column
11×3 = (1 1 1)T. Thus, with only two homographies, the rank of Ãi is always 2, and the
normalization cannot be applied.

2.3 Experiment

In this section, we compare the performances of DLT, HP and TSL on both synthetic and
real data. Numerical stability of DLT and TSL as well as algorithmic complexity of the three
methods are also discussed.

The input homographies can be derived from either point or line features as they are
dual geometric entities (Guerrero and Sagues [2001]; Guerrero and Sagüés [2003]; Dubrof-
sky [2009]). We use line features during the synthetic experiments, and point correspondences
during the experiment on real data.

smallest eigenvalue of matrix Ãi. Otherwise, if Rank(Ãi) = 2, the final solution of problem Ãi f̃i resides in a two
dimensional null space. However, during our experiment, we never observed the case of Rank(Ãi) = 2.
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2.3.1 Synthetic Experiment

For each single experiment, we construct two artificial views observing planes in a 3D envi-
ronment. Groundtruth motion and structure (planes) is generated in the same way as in (Szpak
et al. [2014]). Without loss of generality, the camera pose of the first view is assumed to be
identical with the world frame. The absolute pose of the second view is defined by motion
parameters lying within a certain range. The rotation angles along each axis (roll, pitch, yaw)
lie within (−5◦, 5◦) and the translation in each direction (X, Y, Z) is within (−100, 100). The
structure is randomly generated by creating N = 5 planes with known homographies. Four
groups of Gaussian noise (µ = 0, σ ∈ [0, 0.5]) contaminated points2 are created on each plane,
which are used for fitting the line features. The image size is 640× 480 and the focal length is
fx = fy = 250. The relative motion parameters are extracted from the estimated fundamental
matrix F (in fact from essential matrix E = KTFK).

As shown in Fig 2.1, both HP and TSL outperform DLT in the accuracy of the esti-
mated fundamental matrix and the motion parameters. We use max norm of the difference
between Fgroundtruth and Festimated as a criterion for assessing the accuracy of the estimated
F. The estimated rotation matrix is compared to the groundtruth by computing the angle

Θ = arccos(
trace(RT

groundtruthRestimated)−1
2 ). The estimated translation is compared against the

groundtruth by computing the angle between two translation vectors tgroundtruth and testimated.
TSL is more noise resilient in terms of the fundamental matrix estimation in comparison to
HP. Concerning the accuracy of the extracted motion parameters, TSL and HP perform equally
well.

2.3.2 Experiment on Real Images

The algorithm is tested on the famous Oxford Corridor sequence. Homographies are esti-
mated from Harris corner correspondences (Harris and Stephens [1988]). Points on each plane
are grouped manually and outliers are rejected by applying the Random sample consensus
(RANSAC) technique (Fischler and Bolles [1981]).

As shown in Fig. 2.2, the epipole estimated by TSL (i.e. the intersection point of blue lines)
is closest to the groundtuth. The epipole e is extracted from the null space of the fundamental
matrix. A small error in any entry of the fundamental matrix can easily cause the resulting
epipole to severly deviate from the groundtruth location.

We can easily see that our conclusions from the synthetic experiment are verified, namely
that the proposed method clearly outperforms DLT and shows advantages over HP as well.

2.3.3 Numerical Stability and Algorithmic Complexity

It is easy to understand why the performance of DLT can be dramatically improved by includ-
ing normalization. Without the normalization, as shown in Eq. (2.1) and Eq. (2.2), some of
the entries are smaller than the others by several orders of magnitude which directly causes the

2As shown in (Zeng et al. [2008]), when the line is close to or passing through the origin of the coordinate frame,
the quality of the estimated homographies decreases dramatically. This problem can be solved by performing a prior
normalization to the line parameters. For the sake of simplicity and without losing generality, the lines generated
in our experiment are forced to be away from the origin of the coordinate frame by at least 10 pixels.
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(a) Synthetic experiment configuration. (b) Max norm of difference between groundtruth and
estimated F.

(c) Error in rotation. (d) Error in translation.

Figure 2.1: Figure (a) shows the configuration of the experiment. The accuracy of the fun-
damental matrix estimation is shown in Fig (b) with the max norm as the assessing criterion.

Figures (c) (d) separately depict rotation and translation error of DLT, HP, TSL.

serious ill-conditioning of the original least squares problem. We record the numerical stability
of DLT and TSL. As can be seen in Fig 2.3, the condition numbers of the three normalized sub
least squares problem are far smaller than the one of the DLT solution. The average variance
of the condition number also demonstrates that TSL is numerically more stable. A simple
complexity comparison is given in Tab. 2.1. In our experiment, N = 80 and M = 5. TSL and
HP lead to similar performances under these conditions, while TSL needs less computational
resources than HP does.

Table 2.1: Algorithm Complexity Comparison
Method Input Matrix size to be solved
HP N points (not coplanar, N > 8) AN×9
TSL M planes (M > 3) 3×AM×4 + A3M×3

It is worth pointing out that, during the experiment, we discovered that if the consistency
among the inter-frame homographies is guaranteed, the estimated fundamental matrix is al-
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(a) Grouped point features in image
one

(b) Grouped point features in image
two

(c) Epipolar lines of groundtruth
and all three methods

Figure 2.2: Grouped point features which are used for estimating the homographies are
shown in Fig (a) and (b). Epipolar lines obtained by DLT(yellow), HP(green), TSL(blue)

and groundtruth (red) are shown in Fig (c).

ways accurate and robust no matter which method is used. Typically, perfect consistency
constraints are available only in an implicit form, which can only be achieved by iterative
non-linear methods, e.g. Joint Bundle Adjustment (BA-Joint) and AML (Szpak et al. [2014];
Chojnacki et al. [2015]). Explicit methods like (Shashua and Avidan [1996]; Zeinik-Manor
and Irani [2002]; Chen and Suter [2009]) use a low-rank approximation under the Frobenius
norm or the Mahalanobis norm to enforce the rank-four constraint. However, the explicit form
is derived from a relaxed consistency constraint which means the consistency cannot be per-
fectly guaranteed. This discovery in fact gives an alternative explanation to why the direct
estimation of the fundamental matrix by the compatibility equation is not stable.

(a) Average condition number of DLT and TSL (b) Average variance of condition number

Figure 2.3: The average condition number under each noise level is shown in Figure (a). TSL1,
TSL2 and TSL3 are the three sub least squares problems of TSL. Figure (b) shows the corre-

sponding average variance of the condition number.
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2.4 Conclusion

This chapter revisits an old topic: accurately and robustly estimating the fundamental matrix
given a collection of independently estimated homograhies. We first review three classical
methods and then show that a simple but non-trivial two-step normalization within the direct
linear method achieves similar performance than the more computationally intensive halluci-
nated points based method. We verify the correctness and robustness of our method by giving
a mathematical proof and an experimental evaluation on both synthetic and real data. The
numerical stability analysis and algorithm complexity discussion finally demonstrates our im-
provement and further advantages of the proposed technique.



Chapter 3

Real-time Rotation Estimation for
Depth Sensors in Piece-wise Planar
Environments

In the previous chapter, we have seen how to solve epipolar geometry between two perspectives
captured by an uncalibrated camera. In this chapter, we look into more practical solutions and
start our investigation of efficient algorithms for RGB-D cameras, and in particular look at the
case of an RGB-D camera exploring a piece-wise planar environment.

3D depth sensors such as RGB-D cameras are a popular alternative to classical cameras for
the purpose of autonomous navigation and robotic perception. Active sensors are particularly
advantageous when it comes to structures with homogeneously colored surfaces, textureless
environments, or even operation in darkness. The point clouds produced by these sensors
come in metric scale. They can be used directly to perform point registration via the iterative
closest point method (ICP) (Besl and McKay [1992]), thus resulting in motion estimation in
absolute scale. However, ICP-based motion estimation is either too easy to get trapped in local
minima, or too computationally expensive to meet the requirements of real-time applications.
Considering the fact that rotational drift is an important part of the inaccuracy of position esti-
mation, the goal of this chapter is to develop an efficient and piece-wise drift-free 3D rotation
estimation method for RGB-D cameras operating in man-made environments.

Our approach relies on surface normal vectors, which can be extracted directly from point
clouds, and convey rich geometric information for applications like scene segmentation and
object classification (Wei et al. [2014]), structure and pose estimation (Glover et al. [2012];
Schwarz et al. [2015]), and even grasping or manipulation (Stückler et al. [2011]). Normal
vector distributions typically contain a special structure due to the vast availability of planar
surfaces in man-made environments. These structural regularities notably lead to modes in the
normal vector density distribution.

Rotation estimation for depth cameras by exploiting the organized structure of surface
normal vector distributions has been studied previously. However, existing works are limited
to either strict Manhattan World (MW) environments (Coughlan and Yuille [1999]; Straub
et al. [2015b]) or the further relaxed Mixture of Manhattan Frames (MMF) case (Straub et al.
[2014]). Following the idea of (Straub et al. [2014, 2015b]), we also exploit surface normal
vector distributions, but extend it to the more general case of piece-wise planar environments

27
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Figure 3.1: Overview of the proposed 3D rotation estimation algorithm for depth cameras in
piece-wise planar environments.

with arbitrary pieces of slanted planes.
The contribution of this chapter is three-fold:

• Assuming that there are several dominant planes in the environment, we present a non-
parametric method for discovering and tracking planar modes in the density distribution
of the surface normal vectors. It is a mean-shift algorithm that operates on the unit
sphere, and avoids the need of estimating the parameters of a complete explicit model of
the density distribution function.

• Second, we present a robust and piece-wise drift free rotation estimation method which
solves the joint registration of pairs of corresponding planar modes in a general `1-norm
regression scheme. This algorithm works robustly with up to 50% of badly tracked
modes.

• We introduce a basic memory scheme that remembers dying planar modes. We show
that the memory is capable of further compensating drift when previously visited pla-
nar structures are reobserved. This functionality has similarities with loop closures in
classical SLAM.

The result is a simple but accurate, robust and highly efficient strategy for online tracking
of the rotation of a depth camera. The remaining part is organized as follows: Related work
on this topic are reviewed in Section 3.1. Section 3.2 declares all mathematical notations used
in this chapter as well as all underlying assumptions. Section 3.3 presents the core of our
method. Section 3.4 finally gives a performance and robustness analysis on both synthetic and
real datasets. We conclude with a summary and a discussion.
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3.1 Related Work

Online rotation estimation is related to odometry or motion estimation in general. We limit
the discussion to solutions that utilize active sensors such as LIDARs and RGB-D cameras be-
cause we only use depth information in this work. The most commonly used method is given
by the ICP algorithm (Besl and McKay [1992]) which performs registration through iterative
minimization of the sum of squared distances between spatial neighbors in two point clouds.
Classical ICP based methods are prone to local minima as soon as the displacement increases
and thus the point cloud structure is subjected to intensive changes. In order to tackle situa-
tions of large view-point changes, the community has therefore investigated globally optimal
solutions to the point set registration problem, such as (Yang et al. [2013]). These methods
are however inefficient and thus not suited for real-time applications on CPU. Even the most
recent local ICP methods (Pomerleau et al. [2011, 2013]) achieve real-time frame rate for the
QVGA resolution only (e.g. 320× 240 pixel).

The upcoming of RGB-D cameras has however led to a new generation of 2D-3D regis-
tration algorithms that exercise a hybrid use of both depth and RGB information. Kerl et al.
[2013b] for instance uses the depth information along with the optimized relative transforma-
tion to warp the image from one frame to the next, thus permitting direct and dense photometric
error minimization. Our algorithm is evaluted on datasets captured by a Microsoft Kinect. A
comparison of our results to the method presented in (Kerl et al. [2013b]) is also provided.

There are some recent works that directly build on top of surface normal vectors. By
exploiting the structural regularity of man-made environments, Straub et al. [2015b] present
a real-time maximum a posteriori (MAP) inference of the local Manhattan Frame (MF). This
work heavily relies on GPU resources for a real-time inference of a parametric model, and is
furthermore strictly limited to the Manhattan world scenario. More general, non-parametric
model estimation is presented in (Straub et al. [2014]), which can handle the arbitrary piece-
wise planar case. While strongly related to our work, the method in (Straub et al. [2014]) is
more computationally expensive and aims at scene understanding and segmentation rather than
accurate rotation estimation.

3.2 Problem Definition and Prerequisites

Our main assumption is that the environment is static and consists of multiple pieces of planar
structures. Under this assumption, the surface normal vectors NC = [n1, . . . , nM] distribute
in an organized and distinctive manner on the unit sphere1. Given surface normal vectors
extracted from point clouds by using the method in (Holz et al. [2012]), our goal is two-fold:

• Discover and keep track of the planar modes F := [f1, f2, ..., fN ] on the unit sphere. F is
a 3× N matrix which defines a bundle of planar direction vectors fi. For simplicity, we
call F a bundle.

• Estimate the relative rotation R between the reference and the current frame such that
Fcur ' RFre f . ' means that the equality is valid up to noise or outliers.

1Superscript C denotes that the surface normal vectors are described in the coordinate system of the sensor.
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By a reference frame, we refer to a frame that is

• the very first frame in the sequence where planar modes are initially discovered.

• a frame further in the sequence selected upon a bundle update. During tracking, existing
modes may die or new modes may be discovered which leads to a so-called bundle
update.

3.3 Normal-vector based Rotation Estimation

The surface normal vectors NC of piece-wise planar structures always have some organized
distribution on the unit sphere S2 which can be exploited to track the orientation of the depth
camera. It is reasonable to assume that these unit vectors ni are samples of a probability density
function, as they are more likely to be distributed around the normal vectors of the plane pieces.
The process of finding these planar direction vectors is therefore equivalent to mode-seeking in
this density distribution (i.e. finding the local maximum in the density distribution function).

A popular, fast, and notably non-parametric method to seek modes is given by the mean
shift algorithm (Carreira-Perpiñán [2015]). Given an approximate location for a mode, the
algorithm applies local Kernel Density Estimation (KDE) to iteratively take steps in the direc-
tion of increasing density. We apply this idea to our unit normal vectors on the manifold S2

using a Gaussian kernel over conic section windows of the unit sphere. The result is optimal
under the assumption that the angles between the normal vectors and their corresponding mode
centres have a Gaussian distribution. We track the bundle by simply tracking each individual
mode independently. Each mode is tracked by starting from its previous position on the unit
sphere. While this means that we allow inter-mode angle variation during the tracking of the
bundle Fcur, we follow the mode-tracking by registering the entire bundle with respect to a
fixed bundle Fre f in a reference frame, thus avoiding drift-effects.

3.3.1 Mean-shift on the Unit Sphere

The core of our method is a single mean shift iteration for each planar mode given a set of
normal vectors on S2. It works as follows:

• We start by finding all normal vectors that are within a neighbourhood of the considered
centre fj. The range of this neighbourhood is notably defined by the width of our kernel
for the KDE. In our case, the window is a conic section of the unit sphere and the apex
angle of the cone θwindow defines the size of the local window. Relevant normal vectors
ni for mode j need to lie inside the respective cone, and thus pass the condition

∠(ni, fj) <
θwindow

2
. (3.1)

Let us define the index ij which iterates through all ni that fulfill the above condition.

• We then project all contributing nij into the tangential plane at fj in order to compute
a mean shift. Let Q represent the rotation matrix that rotates fj to [0, 0, 1]T. Q can be
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obtained by

Q = I + [v]× + [v]2×
1− c

s2 , (3.2)

where v = fj × [0, 0, 1]T, s = ‖v‖, c = fT
j [0, 0, 1]T, and [v]× is the skew-symmetric

matrix of v. Then
n′ij = Qnij (3.3)

represents the normal vectors rotated such that the last coordinate is along the direction
of fj. In order for the distances in the tangential plane to represent proper geodesics on
S2 (or equivalently angular deviations), we apply the Riemann exponential map. The
rescaled coordinates in the tangential plane are given by

m′ij =
sin−1(λ) sign(n′ij,z

)

λ

[
n′ij,x

n′ij,y

]
, (3.4)

where λ =
√

n′2ij,x + n′2ij,y.

Note that—due to the factor sign(n′ij,z
)—this projection has the advantage of correctly

projecting normal vectors from either direction sense into the same tangential plane.

• We compute the mean shift in the tangential plane

s′ j =
∑ij

e−c‖m′ ij‖
2

m′ij

∑ij
e−c‖m′ ij‖

2 . (3.5)

c is a design parameter that defines the width of the kernel in the tangential plane. It can
be derived from θwindow.

• To conclude, we transform the mean shift back onto the unit sphere using the Riemann
logarithmic map. The update mode f?j is finally obtained by compensating the rotation
Q.

f?j = QT
[

tan(‖s′ j‖)
‖s′ j‖ s′Tj 1

]T
, (3.6)

where [·] returns the input 3-vector divided by its norm.

3.3.2 Robust Rotation Estimation

Once the new location of each mode of the bundle F has been tracked, the rotation from the
reference frame to the current frame can be obtained by applying a least-squares fitting method
(Arun et al. [1987]). Each mode of Fre f and Fcur is regarded as a 3D point. This reduces the
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Figure 3.2: Illustration of the geometry of the problem. Three modes exist in both the reference
view (left) and the current view (right). The chordal distance di between each corresponding
pair of modes is indicated with a black line segment. The relative rotation from the reference
view to the current view is the solution that minimizes the sum of the chordal distances (in a

general sense of `1-norm regression).

problem to finding a rotation R that minimizes the cost function

Σ2 =
N

∑
i=1

(fcur
i −Rfre f

i )T(fcur
i −Rfre f

i )

=
N

∑
i=1

(fcur
i

Tfcur
i + fre f

i
T

fre f
i − 2fcur

i
TRfi

re f )

(3.7)

This cost function has a geometric meaning as shown in Fig. 3.2. Each item of the cost
function is the square of the chordal distance between a pair of corresponding modes on the
unit sphere. Minimizing Σ2 therefore is equivalent to finding the closest bundle near Fcur that
has same inter-mode angles than Fre f , and notably under an `2-metric (i.e. squared chordal
distances).

We apply Arun’s method (Arun et al. [1987]). Minimizing Σ2 is equivalent to maximizing
the third cost term because the previous terms are constant. The original minimization problem
therefore turns into maximizing

L =
N

∑
i=1

fcur
i

TRfi
re f

= Trace(
N

∑
i=1

Rfi
re f fcur

i
T) = Trace(RH)

(3.8)

where H := ∑N
i=1 fi

re f fcur
i

T. Let the SVD of H be H = UΛVT. The best rotation matrix
is R = VUT. A reflection check is necessary for the case of det(R) = −1. A detailed
mathematical proof can be found in (Arun et al. [1987]).
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Figure 3.3: Initialial mode seeking. The first figure shows the pattern that defines the starting
coordinates for the mean-shift clustering. The second figure shows a mean-shift in a tangen-
tial plane starting from a given coordinate. The histogram-based non-maximum suppression
is shown in the third figure. It splits off mode centres by picking one mode and creating
a histogram of rotation distances with respect to all other modes. The final result after non-
maximum suppression is shown in the last figure. Four planar modes are found and highlighted

with different colors.

For the sake of robustness, we replace the least-squares method with a robust general `1-
norm regression scheme. The new optimization problem becomes

R = arg min
R

n

∑
i=1
|fcur

i −Rfre f
i | (3.9)

where | · | returns the length of a given vector. The most common tool for solving `p-norm
regression problems with an objective function format like Eq. 3.9 is the iteratively reweighted
least squares (IRLS) method (wikipedia.org). In our case, iterative reweighting is easily done
by iteratively finding the rotation matrix Rk that maximizes

L = Trace(
N

∑
i=1

wiRkfi
re f fcur

i
T), where (3.10)

wi = |fcur
i −Rk−1fre f

i |
−1.

As this remains a linear problem in each iteration, Arun’s method (Arun et al. [1987]) remains
applicable. Section 3.4.2 illustrates the benefit of the `1-extension. The pseudo code of bundle
tracking and robust rotation estimation is given in Alg. 2.

3.3.3 Initialization and Bundle Update

We use mean-shift clustering to initialize the algorithm, and thus build on top of our planar
mode tracking scheme. The procedure is summarized in Fig. 3.3. In order to guarantee that
the mode-seeking covers the whole space, the unit sphere is divided equally along longitudes
and latitudes which gives a set of starting coordinates for the mean-shift tracking. Mean-shift
iterations starting from neighboring coordinates may converge to the same mode, which is why
we clean the identified set of modes by a histogram-based non-maximum suppression.

New modes may appear or disappear as the view-point changes. If the density of surface
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Algorithm 2 Bundle tracking and rotation estimation.

1: function BundleTracking(NC,Fre f ,Ft)
2: Ft+1 = ∅
3: for each ft

i do
4: if ft

i is not dying then
5: ft+1

i ←Mean-shift based mode update.
6: Push back ft+1

i to Ft+1

7: end if
8: end for
9: if numel(Ft+1) < 2 then

10: return []. . Tracking lost.
11: end if
12: wi = 1, i = 1, 2, ..., N . N = number of mode pairs.
13: while R does not converge do
14: H = ∑N

i=1 wif
re f
i ft+1

i
T

15: URΣRVt
R ← svd(H)

16: R = VRUR
T . Validity Check, see (Arun et al. [1987]).

17: wi =
1

max(δ,|ft+1−Rfre f | ), i = 1, 2, ..., N . δ is a small number
18: end while
19: if New born mode appears then
20: Push back f? to Ft+1

21: Update Fre f ← Ft+1

22: end if
23: return R,Ft+1,Fre f .
24: end function

normal vectors in one mode decreases to less than a designed threshold, the mode is deemed
dying and removed from the reference bundle Fre f . We find new modes by a mode discovery
module, and update the reference bundle Fre f each time a new mode is found2. The mode-
discovery module continuously monitors the number of surface normal vectors in each cell of
the above mentioned grid. If a new mode appears, the number of the surface normal vectors in
that direction will grow substantially, thus triggering mean-shift tracking from the center of the
cell. Note that this operation is much more expensive than simple mode tracking. We therefore
run this monitoring in a separate thread and at a lower frame rate, thus maintaining real-time
performance for the actual rotation estimation.

3.3.4 Memory Function

Instead of simply removing dying modes, we keep forecasting their directions in the current
frame using the estimated rotation (even if no normal vectors are currently associated to it).
We call the set of inactive modes a mode memory. If a new planar piece is discovered, and
the new-born mode is close to an inactive mode in the memory, we reactivate this mode rather

2Note that—in order to reduce drift—we simply rotate persisting modes forward rather than replacing them by
their tracked equivalent.
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than replacing it with a new one. This association compensates drift since the mode became
inactive (and notably about the axis that this mode corresponds to). We will see in Section
3.4.3 that this reduces long-term drift.

3.4 Experimental Evaluation

Now we proceed to the evaluation of the presented algorithm. The parameter values chosen
in our experiments are first provided. Then a dedicated simulation experiment is presented
showing the importance of the general `1-norm regression scheme towards the robustness of
the rotation estimation. We also test the algorithm on a custom synthetic dataset which demon-
strates the piece-wise drift-free property and long-term drift resilience with activated mem-
ory function. Finally we evaluate the proposed algorithm on a set of publicly available, real
datasets and compare our results directly to another two state-of-the-art depth camera tracking
solutions.

3.4.1 Parameter Configuration

The apex angle of the conic section corresponding to the width of the kernel for the mode
tracking is set to 40◦ during initialization, and 20◦ during tracking. By using a larger apex angle
in initialization, it is more likely that more seeking trials starting from different coordinates
in a neighborhood would converge to the same local maximum which will be picked as a
mode in the following. The reduction of the cone apex angle in tracking is justified by the
assumption that the orientation of the bundle does not change too much under smooth motion.
Each iterative mean-shift procedure terminates once the angle between two successive updates
falls below a threshold angle θconverge, which we set to 1◦. The factor c in Eq. 4.5 is set to
20. Mean-shift updates are furthermore required to have a minimum number Nmin of surface
normal vectors within the conic window, which is set to 10% of the total number of surface
normal vectors. Nmin is also the threshold for checking dying modes.

3.4.2 Simulation Experiments

We provide a dedicated simulation to show that our algorithm can work robustly in a situation
where some of the modes are badly tracked. The first part of this simulation consists of a
series of three experiments during which we perform a registration of bundles with 2, 3, and
4 modes. In each experiment, all the modes are perturbed by Gaussian noise. In addition, an
elevated amount of noise is added to one of the modes only, which simulates a situation in
which the tracking of that particular mode fails. The case of disturbed surface normal vector
measurements may happen for various reasons, including heavily inclined planar pieces, a
reflection on a smooth surface, or a moving element in the scene. We each time compare the
performance of our general `1-norm regression scheme to that of the original least-squares
method in (Arun et al. [1987]). It can be seen in the Fig. 3.4(b) and (c) that our method
maintains robustness while the original method deteriorates. It is worth noting that the general
`1-norm regression based method cannot help if only two plane pieces are present in the scene
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(a) 2 modes case.
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(b) 3 modes case.
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(c) 4 modes case.
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Figure 3.4: Robustness of the rotation estimation. (a) (b) and (c) compare the performance of
the least-squares and the `1-norm regression based methods for the case of 2, 3 and 4 modes,
respectively. Note that in (a), the red line and the green line coincide with each other. The
horizontal axes of (a), (b), and (c) denote the standard deviation of the noise that is imposed
on the "badly tracked mode". (d) demonstrates the outlier resilience of the two methods for an
increasing outlier fraction (10 modes in total). All the results (rotation error under each noise
level and outlier number) are the average of 1000 trials with combination of arbitrary bundle

structure and groundtruth rotation.

(cf. Fig. 3.4(a)). It is not possible to solve for the rotation with less than two robustly perceived
planar modes being observed, as this represents the minimal case.

The second part of our simulation experiments is shown in Fig. 3.4(d), where we register
bundles of 10 modes. This experiment evaluates the overall outlier-resilience by perturbing an
increasing amount of modes by heavy noise. We compare the performance of our `1-extension
against Arun’s original solution. As can be observed, the rotation error stays rather low if at
least 50% of the modes are tracked with moderate noise only. This phenomenon confirms the
common observation that the `1-norm scheme can resist up to about 50% of outliers.

3.4.3 Evaluation on a Synthetic Dataset

We created a synthetic dataset using the open-source 3D computer graphics software Blender
to demonstrate two important properties of our algorithm:

1. Piece-wise drift-free performance between bundle or reference updates.

2. Ability to compensate drift when a previously discovered mode is revisited.

The scene in the dataset is composed of a pyramid with four faces on a ground plane. Two
types of sensor motion are added to individually confirm the above two properties. In the first
case, the sensor orbits in a back-and-forth fashion around the pyramid while the principal axis
of the depth camera keeps pointing towards the centre of the pyramid. In the second case, the
sensor orbits smoothly and continuously for several complete loops around the pyramid. The
groundtruth depth map and the trajectory of the camera are given each time. Realistic noise is
added to the depth map before extracting the surface normal vectors.

The dataset and the results concerning the first property are shown in Fig. 3.5. The blue
dashed lines in Fig. 3.5 (b) divide the sequence into three parts. They represent the time instants
when reference bundle updates happen. We can see that our algorithm returns piece-wise drift
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(b) Rotation estimation error.
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Figure 3.5: Performance evaluation on the synthetic dataset “Pyramid”. (a) shows the synthetic
scene which contains a ground plane and the four faces of a pyramid. The rotation estimation

error is shown in (b). The estimated roll, pitch, and yaw angles are shown in (c).

free performance in parts 1 and 3 during which no bundle updates happen, meaning that modes
are neither dying nor discovered. The drift keeps increasing in the middle part between the
dashed lines, where only one planar mode is robustly tracked. As explained in Section 3.4.2,
even the general `1-norm regression scheme cannot help in this situation because only one
planar mode is tracked without gross errors.

The results of the long-term drift experiment are illustrated in Fig. 3.6. The two subfigures
show the rotation estimation performance of the proposed algorithm without and with the mode
memory scheme, respectively. In the first figure, the stair-behaviour again shows the piece-wise
drift-free performance, however, an accumulated drift over a longer term exists. In the second
figure, we can clearly see that the long-term drift stays bounded as soon as at least one of the
pyramid surfaces has been revisited for the first time (i.e. after the completion of the first loop).
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Figure 3.6: The rotation estimation performance of the proposed algorithm without and with
the mode memory scheme. An obvious step-like curve in the top figure again demonstrates
the piece-wise drift-free behavior. The long-term drift compensation is shown in the bottom
figure, where the blue dashed lines denote the time instants when planar modes are revisited

and the accumulated rotational drift gets compensated.



38 Real-time Rotation Estimation for Depth Sensors in Piece-wise Planar Environments

3.4.4 Evaluation on Real Data

We compare the performance of our method against two state-of-the-art, open-source mo-
tion estimation framework for depth cameras, namely DVO (Kerl et al. [2013b]) and FastICP
(Pomerleau et al. [2011]). All methods are evaluated on two published and challenging bench-
mark datasets from the ETH RGB-D (Pomerleau et al. [2011, 2013]) and TUM RGB-D (Sturm
et al. [2012]) series. A qualitative evaluation on the TAMU RGB-D (Lu and Song [2015])
dataset is also given (no groundtruth provided). The datasets we picked for evaluation are
listed below and the results are summarized in Table 3.1 as well as illustrated in Fig 3.7.

• ETH 1: 0low_0slow_0fly.

• TUM 1: freiburg3_cabinet.

• TUM 2: freiburg4_structure_texture_near.

• TUM 3: freiburg3_structure_notexture_near.

• TUM 4: freiburg3_structure_notexture_far.

• TAMU 1: corridor_A_const.

• TAMU 2: corridor_B_const.

It is necessary to mention that in some cases our algorithm cannot process the entire se-
quence.This is due to algorithm limitations that are discussed in the following section. In
order to remain fair, we evaluate the performance of all algorithms on the same segments of
each sequence. We provide root-mean-square (RMS) and median errors ẽ per second for the
rotation estimation. The best performing method’s error is each time indicated in bold. It can
be seen that our method outperforms both FastICP and DVO in most situations. The relatively
bad performance of our method on the ETH 1 dataset is related to the low resolution of this
dataset, which leads to a low-quality surface normal vector result. DVO returns a slightly better
performance on the TUM 4 sequence, in which plenty of distinctive texture can be observed.
Missing numbers in Table 3.1 indicate that the algorithm was not able to successfully process
the sequence. Our method handles most of the cases, and remains computationally efficient
even on depth images with VGA resolution. Our real-time C++-implementation processes
frames at 50 Hz on a laptop with 8 cores. While DVO is real-time capable as well, FastICP
quickly drops in computational efficiency as the number of the points increases, and ultimately
operates far from real-time on VGA imagery (1 Hz).

3.4.5 Limitations and Failure Cases

Limitations and failure cases of the proposed method are listed as follows:

• The initialisation takes about 1 s. The sensor should not be subjected to substantial
motion during this period.

• When only one planar structure is present or can be recognized, the registration of the
planar modes based rotation estimator does not work.
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Figure 3.7: Illustration of the proposed algorithm running on a set of real sequences. Note that
images shown here are just to illustrate the scenes but are not used in the proposed algorithm.
A unit sphere in the bottom-left corner of each image illustrates the planar mode bundle. Cor-
responding planes in each image of each sequence are denoted with the same color (e.g. the
ground plane is always shown in red). We do not show results of TUM 3 because it has a
similar scene as TUM 4. We also don’t show images for the ETH 1 dataset because it provides

only point clouds.

Table 3.1: Performance comparison on several indoor datasets.

Dataset
DVO FastICP Our Method

rms(eR) ẽR rms(eR) ẽR rms(eR) ẽR

ETH 1 × × 2.030 1.749 2.892 1.920

TUM 1 4.911 4.456 2.849 1.816 1.582 1.054
TUM 2 0.938 0.740 × × 1.572 1.292

TUM 3 10.898 3.888 8.885 4.920 1.233 0.968
TUM 4 2.209 1.590 3.674 2.497 0.983 0.683
Average 4.739 2.669 4.360 2.746 1.652 1.183
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• When two planar modes have a small inscribed angle, the mode seeking may converge
to the centre of these two modes and mis-recognize them as a single mode. Such bad
initialization can affect the sub-sequent mode tracking iterations as well as the rotation
estimation.

3.5 Conclusion

This chapter presented a highly efficient 3D rotation estimation algorithm for depth cameras
in piece-wise planar environments. It shows that by using surface normal vectors as an input,
planar modes in the corresponding density distribution function can be discovered and continu-
ously tracked using efficient non-parametric estimation techniques. The relative rotation from
the reference view to the current view can be estimated by registering entire bundles of pla-
nar modes. Robustness of the bundle registration process is achieved by performing a general
`1-norm regression instead of simply solving a least-squares problem. Piece-wise drift-free
performance is achieved as long as no bundle updates happen. The chapter furthermore shows
that by introducing a mode memory scheme, drift can be avoided even if certain modes are tem-
porally unobserved. Extensive evaluations on simulated, synthetic and real data demonstrate
the robustness and effectiveness of the proposed algorithm. Note that our synthetic dataset as
well as our code are ready for public release.

The present work unseals an interesting analogy between classical 6 DoF simultaneous lo-
calization and mapping (SLAM) of 3D points, and our 3 DoF rotation estimation scheme which
shows that—given surface normal vectors—we are able to perform decoupled, simultaneous
orientation estimation and mapping of planar modes. In SLAM, long-term drift is eliminated
as soon as the 3D points are no longer updated. This corresponds to our drift-free performance
in case the reference bundle stays unchanged. Furthermore, our mode-memory scheme has
analogies with loop-closure in SLAM, which is well-known to compensate for long-term drift.
The analogy with SLAM suggests immediate directions for interesting future work around ef-
ficient normal-vector based, decoupled rotation estimation. For instance, we plan to rely on
graph-optimization methods leading to a more accurate, multi-frame mode-initialization pro-
cedure. Furthermore, the inclusion of appearance information would robustify the reactivation
of modes from the memory even in the presence of more significant drift.



Chapter 4

Efficient Density-Based Tracking of
3D Sensors in Manhattan Worlds

Depth sensors produce point cloud measurements. The fundamental problem behind incremen-
tal motion estimation with depth sensors therefore is the registration of two point sets A and B.
The by far most popular technique is given by the Iterative Closest Point (ICP) method (Besl
and McKay [1992]). The basic idea is straightforward: We find approximate correspondences
between pairs of points between A and B by simply associating the spatially nearest neighbor
of set B to each point of set A. We then minimize the sum of squared distances over a euclidean
transformation in closed form. We finally iterate over these two steps until convergence. The
complexity of the algorithm is an immediate consequence of the need to find the closest point
for each point in each iteration. Even the fastest implementations (Pomerleau et al. [2011,
2013]) therefore fail to deliver real-time performance as soon as we consider modern sensors
returning dense depth images at VGA resolution.

The community therefore investigated alternative registration principles that are preceded
by a transformation of data into lower dimensional, spatial density distribution functions (Jian
and Vemuri [2011]). The general advantage of density alignment based methods is that they
do no longer depend on the establishment of one-to-one or even weighted, fuzzy one-to-many
point correspondences (Chui and Rangarajan [2000b]). Our work lifts this concept to a gen-
eral, real-time motion estimation framework for 3D sensors. The key of our approach consists
of exploiting the structure of man-made environments, which often contain sets of orthogonal
planar pieces. We furthermore rely on efficient dense surface normal vector computation in
order to estimate the rotation independently of the translation. As will be shown, the exploita-
tion of this prior furthermore allows us to split up the translational alignment of the density
distribution functions into three independent steps, namely one for each dimension.

In summary, a highly efficient motion estimation framework is proposed for popular 3D
sensors such as the Microsoft Kinect v.2, based on alignment of density distribution functions.
Our contributions are listed as follows:

• Estimation of absolute rotation by exploiting the properties of Manhattan worlds, thus
resulting in a manifold-constrained multi-mode tracking scheme.

• Efficient decoupled estimation of individual translational degrees of freedom through
1D kernel density estimates.

41



42 Efficient Density-Based Tracking of 3D Sensors in Manhattan Worlds

Figure 4.1: Overview of the proposed, decoupled motion estimation framework for 3D sensors
in Manhattan worlds.

• Integration into a real-time framework able to process dense depth images with VGA
resolution at more than 50Hz on a CPU.

This chapter is organized as follows: We first review related work. Section 4.2 then in-
troduces our main idea for motion estimation in Manhattan worlds based on 3D sensors. The
decoupled estimation of rotation and translation are respectively presented in Sections 4.3 and
4.4, respectively. Section 4.5 finally presents our extensive experimental evaluation on both
simulated and real data. We test and evaluate our algorithm against existing alternatives on
publicly available datasets, showcasing outstanding performance at the lowest computational
cost.

4.1 Related Work

Point set registration is a traditional problem that has been investigated extensively in the com-
puter vision community. We are limiting the discussion to methods that process mainly rigid,
geometric information. The most commonly used method is given by the ICP algorithm (Besl
and McKay [1992]), which performs registration through iterative minimization of the SSD
distance between spatial neighbors in two point sets. In order to avoid the costly repetitive
derivation of point-to-point correspondences, the community has also investigated the repre-
sentation and alignment of point clouds using density distribution functions. The idea goes
back to Chui and Rangarajan [2000a] and Tsin and Kanade [2004], who represent point clouds
as explicit Gaussian Mixture Models (GMM) or implicit Kernel Density Estimates (KDE),
and then find the relative transformation (not necessarily Euclidean) by aligning those den-
sity distributions. Jian and Vemuri [2011] summarizes the idea of using GMMs for finding
the aligning transformation, and notably derives a closed-form expression for computing the
L2 distance between two GMMs. Yet another alternative which avoids the establishment of
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point-to-point correspondences is given by Fitzgibbon [2003], which utilizes a distance trans-
formation in order to efficiently and robustly compute the cost of an aligning transformation.
The distance transformation itself, however, is again computationally intensive.

Classical ICP or even density alignment based methods are prone to local minima as soon
as the displacement and thus also the point cloud structure is subjected to too intensive changes.
In order to tackle situations of large view-point changes, the community has therefore inves-
tigated globally optimal solutions to the point set registration problem, such as (Yang et al.
[2013]). These methods are however inefficient and thus not suited for real-time applications,
where the frame-to-frame displacement anyway remains small enough for a successful appli-
cation of local methods.

From a more modern perspective, the ICP algorithm and its close derivatives (Pomerleau
et al. [2011, 2013]) still represent the algorithm of choice for real-time LIDAR tracking. The
upcoming of RGB-D cameras has however led to a new generation of 2D-3D registration
algorithms that exercise a hybrid use of both depth and RGB information. Kerl et al. [2013b]
for instance uses the depth information along with the optimized relative transformation to
warp the image from one frame to the next, thus permitting direct and dense photometric error
minimization. Newcombe et al. [2011b]; Engel et al. [2013, 2014]; Schoeps et al. [2014] apply
a similar idea to RGB camera tracking. More recently, Kneip et al. [2015] even apply ICP
and distance transforms to semi-dense 2D-3D registration. While the focus of our work is
tracking of pure 3D sensors, we evaluate our method on datasets captured by Microsoft Kinect
sensors, and thus include a comparison of our results against the method presented in (Kerl
et al. [2013b]), which also takes appearance information into account.

The special structure of man-made environments can be exploited to simplify or even ro-
bustify the formulation of motion estimation with exteroceptive sensors. Weingarten and Sieg-
wart [2006] and Trevor et al. [2012] introduce planar surfaces into the mapper which are often
contained in our man-made environments. Taguchi et al. [2013] combine point and plane
features towards fast and accurate 3D registration. In our work, we additionally exploit the
fact that indoor environments such as corridors frequently contain orthogonal structure in the
surface arrangement. The property was coined as Manhattan World (MW) in (Coughlan and
Yuille [1999]), where they formulated vanishing point estimation from a single RGB image as
a Bayesian inference problem. Košecká and Zhang [2002] present a video compass using a
similar idea. Tracking the Manhattan Frame can be regarded as absolute orientation estima-
tion, and thus leads to a significant reduction or even complete elimination of the rotational
drift. Silberman et al. [2012] improve MW orientation estimation by introducing depth and
surface normal information obtained from 3D sensors. More recently, Straub et al. [2014]
propose the inference of an explicit probabilistic model to describe the world as a mixture of
Manhattan frames. They employ an adaptive Markov-Chain Monte-Carlo sampling algorithm
with Metropolis-Hasting split/merge moves to identify von-Mises-Fisher distributions of the
surface normal vectors. In (Straub et al. [2015a]), they adapt the idea to a more computation-
ally friendly approach for real-time tracking of a single, dominant MF. Our work is closely
related, except that our mean-shift tracking scheme (Fukunaga and Hostetler [1975]) is sim-
pler and more computationally efficient than the MAP inference scheme presented in (Straub
et al. [2015a]), which depends on approximations using the Karcher mean in order to achieve
real-time performance. We furthermore extend the idea to full 6DoF motion estimation.
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4.2 Overview of the Proposed Algorithm

Our method is summarized in Figure 4.1, and consists of three main steps:

• Using the same method as performed in Chapter 3, we extract surface normal vectors ni
from the measured point clouds, which later allows us to compute the orientation of the
sensor independently of the translation.

• We then rely on the assumption that there is a dominant MF in the environment. This
allows us to simply track a number of modes in the density distribution of the surface
normal vectors, which can be done in a non-parametric way by employing the mean shift
algorithm on the unit sphere. It prevents us from having to identify the parameters of
a complete explicit model of the density distribution function. We present a manifold-
constrained mean-shift algorithm that takes the orthogonal prior into account. Note that
the optimization of the rotation is not a classical registration step, but a simple tracking
procedure that takes only the information of a single frame into account in order to come
up with a drift-free estimate of the absolute orientation.

• By knowing the absolute orientation in each frame, we can easily unrotate the point
clouds of a frame pair and assume that the transformation that separates them is a pure
translation. A further beneficial consequence is that the principal directions of a Gaus-
sian Mixture Model of the point cloud can be constrained to align with the basis axes. In
other words, the covariance matrices become diagonal by which the purely translational
alignment cost can effectively be split up into three independent terms, namely one for
each dimension. We are therefore allowed to simply solve for each translational degree
of freedom independently. We notably do so by extracting kernel density distributions
of the point clouds projected onto the basis axes, and by performing three simple 1D
alignments. Again note that—due to the unrotation—the obtained relative displacement
is immediately expressed in the world frame.

We will in the following explain the details of the rotation and translation alignment.

4.3 Absolute Orientation Based on Manifold-Constrained Mean-
Shift Tracking

We estimate the absolute orientation by tracking a dominant Manhattan Frame (MF) in the
surface normal vector distribution of each frame. We will start by introducing the mean-shift
tracking scheme that operates under the assumption that a sufficiently close initialization point
is known. We then conclude by explaining the initialization in the very first frame, which
builds on top of our mean-shift extension.

4.3.1 Basic Idea

For structures that obey the Manhattan World (MW) assumption, the surface normal vectors ni
have an organized distribution on the unit sphere S2, which can be exploited for recognizing
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the MW orientation. It is reasonable to assume that the unit vectors ni are samples of a prob-
ability density function, as they are more likely to be distributed around the basis axes of the
MW (in both directions). The process of finding the dominant axes is therefore equivalent to
mode seeking in this density distribution (i.e. finding local maxima in the density distribution
function). The modes are additionally constrained to be orthogonal with respect to each other.
We therefore express the MF by a proper 3D rotation matrix R ∈ SO(3) of which each col-
umn rj captures the direction of one of the dominant axes of the MF. Note that this contrasts
with (Straub et al. [2014]) where the MF is denoted by six signed axes. Our notation is more
compact and natural to deal with, as it immediately expresses the pose of the camera as well.
Special care however needs to be taken in order to deal with the non-uniqueness of the repre-
sentation, as each rj could in principle be replaced by its negative (although we ensure that R
always remains a right-handed matrix).

The mean shift based method is applied as in Chapter 3 to seek planar modes. For each
basis vector rj, one mean shift vector is simply computed, which potentially results in a non-
orthogonal updated MF R̂. We therefore finish each overall iteration by reprojecting R̂ onto
the nearest R ∈ SO(3). To clearly demonstrate the application of the mean-shift method in
the case of MW, the following first revisits the update of each mode within a single mean-shift
iteration, then discusses the projection back onto SO(3).

4.3.2 Seeking the Dominant Axes

The mean-shift iteration for a dominant axis given a set of normal vectors on S2 works as
follows:

• First we find all normal vectors that are within a neighbourhood of the considered centre
rj. The window is a conic section of the unit sphere and the apex angle of the cone
θwindow defines the size of the local window. Relevant normal vectors for mode j need to
lie inside the respective cone, and thus pass the condition

‖ni × rj‖ < sin(
θwindow

2
). (4.1)

Let us define the index ij which iterates through all ni that fulfill the above condition.
Note that—if choosing θwindow < π

2 —every ni contributes to at most one mode.

• Then all contributing nij are projected into the tangential plane at rj in order to compute
a mean shift. Let

Q =
[
rmod(j+1,3) rmod(j+2,3) rmod(j+3,3)

]
. (4.2)

Then
n′ij = QTnij (4.3)

represents the normal vector rotated into the MF, with a cyclic permutation of the co-
ordinates such that the last coordinate is along the direction of axis j. A transformation
similar to the Riemann exponential map is applied in order for the distances in the tan-
gential plane to represent proper geodesics on S2 (or equivalently angular deviations).
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The rescaled coordinates in the tangential plane are given by

m′ij =
sin−1(λ) sign(n′ij,z

)

λ

[
n′ij,x

n′ij,y

]
, (4.4)

where λ =
√

n′2ij,x + n′2ij,y.

Note that this projection has the advantage of correctly projecting normal vectors from
either direction into the same tangential plane.

• We compute the mean shift in the tangential plane

s′ j =
∑ij

e−c‖m′ ij‖
2

m′ij

∑ij
e−c‖m′ ij‖

2 . (4.5)

c is a design parameter that defines the width of the kernel.

• Finally, the mean shift is transformed back onto the unit sphere using the Riemann log-
arithmic map, and then it is rotated back into the camera frame

sj = Q
[

tan(‖s′ j‖)
‖s′ j‖ s′Tj 1

]T
, (4.6)

where [·] returns the input 3-vector divided by its norm.

4.3.3 Maintaining Orthogonality

After computing a mean shift for each mode rj, we effectively obtain an expression for the
updated rotation matrix

R̂ =
[
r̂0 r̂1 r̂2

]
, where (4.7)

r̂j = rj + sj, j = 0, 1, 2. (4.8)

This update may however violate the orthogonality constraint on our rotation matrix. We
easily circumvent this problem by re-projecting R̂ onto the closest matrix on SO(3) under the
Frobenius norm. If

[U, D, V] = SVD(R̂), (4.9)

the final updated rotation matrix is easily given by

R = UVT. (4.10)

As illustrated in Figure 4.2, our method thus represents a double, cascaded manifold-constrained
mean-shift extension, where the update of each mode is enforced to remain on the S2 mani-
fold, and the combination of all three modes is each time enforced to remain an element on the
SO(3) manifold. In other words, in each iteration we compute the SO(3)-consistent update
that is closest to the individual mean-shift updates.
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Figure 4.2: Illustration of our cascaded manifold-constrained mean-shift implementation. We
first compute updates sj for each mode on S2, which brings us from the black to the blue
modes. The blue modes however do no longer represent a point on the underlying manifold
SO(3). We find the nearest rotation through a projection onto the manifold (green arrow),
thus returning the red modes which are closest and at the same time fulfill the orthogonality

constraint.

4.3.4 Initialization in the First Frame

We use mean-shift clustering to initialize the algorithm, and thus build on top of our MF
tracking scheme. The procedure is summarized in Figure 4.3. We simply run the MF tracking
procedure for 100 times, each time starting from a random initial rotation. This returns a
redundant set of candidate MFs, within which we need to identify the most dominant cluster
in order to complete the initialization. In fact, typically only a very small number of trials will
not converge to the dominant MF if there is only one MF in the observed scene. However, the
MF estimates are not directly comparable since one and the same MF may indeed be found or
represented by any permutation or negation of individual basis vectors, as long as the result
remains a right-handed matrix. In fact, there are 24 possible representations for one and the
same MF. In order to render the results comparable and identify the dominant MF cluster, we
convert the matrices into a canonical form based on a set of simple rules. For instance, the
number of possible representations can already be reduced to 4 by simply requiring the basis
vector with the potentially highest z-coordinate to be the one corresponding to the z-axis. To
finally identify the dominant cluster, we simply group them based on a simple distance metric
between rotation matrices, as well as a fixed threshold.

4.4 Translation Estimation through Separated 1-D Alignments

Taking advantage of the Manhattan World properties, the translation in each dominant direction
can be estimated separately. In this section, the 1D alignments that rely on kernel density
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distribution functions are first discussed. A convergence analysis is given in the following.

4.4.1 Independence of the Three Translational Degrees of Freedom

Although we are not using an explicit model for representing the density distributions, let
us assume for a moment that it is given by a simple Gaussian (i.e. a toy GMM) to see the
implications of a Manhattan world and a known absolute orientation of the Manhattan frame.
A Gaussian in 3D with mean µ and covariance Σ is simply given by:

φ(x|µ, Σ) =
exp[−0.5(x− µ)TΣ−1(x− µ)]√

(2π)3|det(Σ)|
. (4.11)

Figure 4.3: The mechanism of the initial Manhattan frame seeking. The first figure shows the
start from a random rotation. Each dominant direction is refined by performing a mean-shift
iteration on the tangential space. The second figure shows the redundant result obtained by
tracking 100 times from random starts. The redundancy of the estimated rotation matrices
R is removed by first converting all the R to canonical form followed by a histogram-based
non-maximum suppression. The final result is shown in the fourth figure. For the sake of clear
visualization, the illustrated example contains a significant part of uniformly distributed noisy
normal vectors. Note that the proposed seeking strategy is even able to find multiple MFs in

the environment, and thus come up with a mixture of Manhattan frames.
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There are two Gaussians in two frames and—using the known absolute orientations to unrotate
the point clouds—they are separated by a pure translation t. By adding t to the mean of
the Gaussian in the second frame, the kernel correlation between the two Gaussians can be
calculated by:

D =
∫

φ(x|µ1, Σ1)φ(x|(µ2 + t), Σ2)dx

= φ(0|µ1 − µ2 − t, Σ1 + Σ2). (4.12)

We now simplify the case by assuming that the unrotated point clouds can be expressed by
a 3D Gaussian distribution with a diagonal covariance matrix. This is reasonable since the
unrotated point clouds will indeed contain sets of points that are parallel to the basis axes. Let
Σd = Σ1 +Σ2 = diag(σdx, σdy, σdz), and µd = µ1− µ2. Then the kernel correlation becomes

D =
exp[−0.5( (tx−µdx)

2

σdx
+

(ty−µdy)
2

σdy
+ (tz−µdz)

2

σdz
)]√

(2π)3σdxσdyσdz

= k · e
(tx−µdx)

2

−2σdx e
(ty−µdy)

2

−2σdy e
(tz−µdz)

2

−2σdz . (4.13)

The goal of the alignment in this toy example is to find t such that D is maximized. It is clear
that the above expression involves the product of three independent and positive elements,
which means that maximizing each one independently will also maximize the overall distance
between the Gaussians.

4.4.2 Alignment of Kernel Density Distribution

Now we move over to our translation alignment procedure, which relies on implicit kernel
density distribution functions. Assuming that the absolute orientation with respect to the MF
is given, thus each degree of freedom can be solved independently, as in our toy GMM-based
example. We therefore compensate for the absolute rotation of the point clouds, and project
them onto each basis axis to obtain three independent 1D point sets. Inspired by popular
point-set registration works, we then express the 1D point sets via kernel density distribution
functions. We sample the function at regular intervals between the minimal and the maximal
value. A Gaussian kernel with constant width is used to extract the density at each sampling
position. Finally, the alignment between pairs of discretely sampled 1D signals seeks the
1D shift that minimizes the correlation distance between the two signals. It is worth to note
that minimizing the correlation distance is equivalent to maximizing the kernel correlation as
discussed above. The correlation distance for each pair of 1-D discrete signals is defined as

F =
n

∑
i=1

( f (xi + t)− g(xi))
2 , xi ∈ X, (4.14)

where X denotes a set of sampling positions for which a density is extracted using a Gaussian
kernel. The functions f and g record the density at discrete sampling positions. The correlation
distance is the sum over the squared differences at each sampling position. However, the



50 Efficient Density-Based Tracking of 3D Sensors in Manhattan Worlds

[m]

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

E
n

e
rg

y

# 109

0

0.5

1

1.5

2

2.5
Minimization of Correlation Distance

Figure 4.4: The left figure shows an example of discretly sampled distribution truncated on the
left and right sides (see red dashed lines). The right figure shows the convergence performance.
After the truncation, the minimization problem has only one local minimum with a reasonably

large convergence basin.

variable t is continuous which leads to the problem of obtaining density values in between the
sampled positions. We solve this problem by employing linear interpolation to obtain values
in between neighboring samples.

4.4.3 Convergence Analysis

In order to guarantee the convergence of the minimization of the correlation distance between
two discretely sampled distributions f and g, several issues need to be taken into account.
First, it is of course vital for f and g to provide density information of the same structure
which we call the overlap region. The correlation distance will notably reach its minimum
when the overlapping regions align with each other. However, due to the motion of the sensor,
the observed structures in successive viewpoints are different, especially along the border of
the depth map. This leads to differences in the sampling positions and values. Our solution is
to truncate the distribution f , as shown in Fig 4.4. This ensures that the sampling positions of
the distribution g fully include the ones of the truncated f .

The second issue occurs when the sensor moves orthogonally to the structure, in which case
the sampling density changes. A simple solution is to apply a normalization of the distribution.
As we observed during experiments on real data, this is not really needed, except if the sensor
moves very close to the structure.

The last issue concerns the choice of the distance function. It is well known that the L1-
distance performs better than the L2-distance in the presence of outliers. However, there is no
noticeable difference in the accuracy of the translation estimation between both norms. This
can be attributed to the kernel density distribution alignment, which is robust by nature.

4.5 Experiment

This section evaluates the proposed algorithm. First, the parameter configuration is discussed.
Then two simulation experiments are provided to show 1) the robustness of our manifold-
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constraint mean-shift based MF seeking algorithm and 2) the benefit to the estimation of trans-
lation by aligning the density distribution along the axes of the MF. We conclude with com-
paring our algorithm against two other state-of-the-art visual odometry solutions on several
publicly available datasets. A discussion of the limitations and failure cases of the proposed
method is given at last.

4.5.1 Parameter Configuration

In the MF seeking (i.e. the initialization of the absolute rotation), the total number of random
starts is set to Ntrial = 100. The apex angle is set to 90◦ during the initialization and 20◦

during later tracking. This reduction of the cone apex angle is justified by the assumption
that the orientation of the MF does not change too much under smooth motion. Each iterative
mean-shift procedure terminates once the angle of the update rotation within one iteration falls
below a threshold angle θConverge, which we set to 1◦. The factor c in (4.5) is set to 20. Mean-
shift updates are furthermore required to have a minimum number Nmin of surface normal
vectors within the dual-cone. The value of Nmin depends on the resolution of the input depth
map. For low resolution sensors (e.g. Kinect v.1, 160× 120), Nmin = 30. For high resolution
sensors (Kinect v.2, 640× 480), Nmin = 100.

The parameters for the translation estimation contain two parts. The first part concerns
the extraction of the density distributions. The sampling between the minimum and maximum
value along each basis axis is done in constant intervals of δs = 0.01m. The width of the Gaus-
sian kernel for the KDEs is set to 0.03m. The second part concerns the actual minimization
of the correlation distance between each pair of 1D distributions. We simply employ gradi-
ent descent with an initial step size of 0.0001m. The search range is furthermore restricted to
±0.1m.

4.5.2 Simulation

4.5.2.1 Manhattan Frame Seeking in Difficult Cases

In this first simulation experiment we show that our manifold-constrained Manhattan frame
tracking (including the initialization) can work robustly in challenging cases that may occur on
real data as well:

• In the first experiment, the sensor observes additional planar structures for which the
normal vector does not align with any of the Manhattan frame’s dominant directions.
In this case, there will be more than three modes in the distribution on the unit sphere,
as shown in Fig 4.5 (a). The three cyan modes represent the MF structure while the
red one represents an additional slanted plane. Due to the underlying SO(3) manifold-
constrained mean-shift updates, which enforce orthogonality in the mode directions, our
algorithm ignores the additional mode and converges to the dominant Manhattan frame.

• Another challenging case is when only two dominant directions of the MF can be ob-
served. In this case, the lost direction can be recovered by exploiting orthogonality and
right-handedness between all dominant directions. Fig 4.5 (b) shows an example of such
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(a) (b) (c)

Figure 4.5: Robust MF seeking performance in several challenging cases. (a): Seeking the
dominant MF when an additional mode/slanted plane exists. (b): Seeking the dominant MF in
the case where only two modes can be observed. (c): The success rate of MF seeking under

different levels of noise.

a situation. Only the two cyan modes are found by the algorithm, the third direction
(indicated with a blue dotted line) is hallucinated.

• In Fig 4.5 (c), we finally demonstrate how the tracking of a MF from a random ini-
tial rotation performs under increasing levels of noise. The horizontal axis indicates
the overall proportion of noisy normal vectors. It can be observed that as the noise in-
creases, the success rate of the algorithm gradually drops (averaged over many trials).
During our initialization procedure, the initial MF orientation is selected from a peak in
a histogram over 100 trials. If this peak counts more than a certain threshold percentage
of all initialization trials (0.2 in our experiments), the initial MF is likely to be picked
up. Therefore, with 100 trials, our algorithm can successfully initialize the MF even if
90% of the normal vectors represent uniformly distributed noise.

4.5.2.2 Translation Estimation in the Manhattan Frame

Here we demonstrate the benefit of performing the 1D distribution alignment in the Manhat-
tan frame rather than an arbitrary frame. Without loss of generality, we imagine the two-
dimensional example shown in Figure 4.6 (a). It shows the observation of a simple structure
which is perturbed by Gaussian noise. The structure aligns with the x or y axis of the Manhat-
tan frame. The observation of two arbitrary sensor viewpoints can be simulated by rotating the
original structure inside the plane. Figures 4.6 (c) and (d) show the discrete density distribution
along the x-axis of the sensor frame, once from a view-point that is aligned with the Manhat-
tan frame, and once with a rotation of 0.6 rad. It is obvious to see that the distribution inside
the Manhattan frame conveys more distinct information than that in an arbitrary sensor view,
which is essential for accurate estimation of the translational displacement. The groundtruth
displacement in this experiment is 0.1m. Figure 4.6 (b) illustrates the mean alignment error
for different sensor frame orientations (each time averaged over various noise levels). It can be
observed that error-free estimation can only be performed if the sensor frame is aligned with
the Manhattan frame. In other words, the point cloud needs to be unrotated into the Manhat-
tan frame before establishing the 1D density distribution signals and estimating the translation.
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Severe differences caused by occlusions would typically represent a challenging case, in which
the proposed method may be limited to small baseline scenarios. Nonetheless, it would be seen
in the real experiments that the presented approach works effectively.

4.5.3 Evaluation on Real Data

We compare the performance of our method to two state-of-the-art, open-source motion es-
timation implementations for 3D sensors, namely DVO (Kerl et al. [2013b]) and FastICP
(Pomerleau et al. [2011]). We evaluate the methods on several challenging benchmark datasets
from the TUM RGB-D (Sturm et al. [2012]) and ETH RGB-D (Pomerleau et al. [2011, 2013])
series. The datasets we picked for evaluation are listed below and the results are summarized
in Table 4.1.

• TUM 1: freiburg3_cabinet.

• TUM 2: freiburg3_structure_notexture_far.

• TUM 3: freiburg3_structure_notexture_near.
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Figure 4.6: Simulation to demonstrate the benefit of performing the distribution alignment in
the MF.
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• ETH 1: 0low_0slow_0fly.

It is worth to note that for some of the datasets, our algorithm cannot process the entire
sequence due to the limitations that are discussed in the following section. In order to be fair,
we evaluate the performance of all algorithms on the same segments of each sequence. A
detailed result of the TUM 1 dataset is shown in Figure 4.7. We also provide root-mean-square
errors (RMSE) and median errors ẽ per second for both rotation and translation estimation in
Table 4.1. The best performing method’s error is each time indicated in bold.

It can be seen that in most cases, once the MW assumption is sufficiently met, our result
provides very low drift in both rotation and translation. It is outperforming both FastICP and
DVO in most situations, and DVO especially in texture-less situations such as the TUM 1
dataset. On the other hand, our method remains computationally efficient even on depth images
with VGA resolution, and processes frames at about 50Hz. While DVO is real-time capable as
well, FastICP quickly drops in computational efficiency as the number of points increases, and
ultimately operates far from real-time on VGA imagery (1 Hz).

4.5.4 Limitations and Failure Cases

The existence of a MW structure in the environment is key to the proposed method. Therefore,
the effectiveness of our work currently has the following limitations:

• When only one mode of a MF is observed, the MF tracking will stop and the algorithm
terminates.

• When only two orthogonal planes are observed, the MF tracking can continue. How-
ever, due to the loss of structural information, the density distribution in the unobserved
direction becomes very homogeneous, and the estimation of the respective translation
becomes unstable or inaccurate.

• In the case where two MFs on the unit sphere are very close to each other (which could
happen in the so-called Atlanta world scenario), our mean-shift tracking may converge
in between the two modes, which leads to inaccurate rotation estimation and thus also
potentially wrong translation estimation.

Note that the first two failure cases also affect the ICP algorithm.

4.6 Conclusion

In this chapter, an efficient alternative to the iterative closest points algorithm for real-time
tracking of modern depth cameras is presented. We exploit efficient surface normal vector
extraction as well as the common orthogonal structure of man-made environments in order to
decouple the estimation of the rotation and the three degrees of freedom of the translation.
The derived camera orientation is furthermore absolute and thus free of long-term drift. Our
method relies on the alignment of density distribution functions, a concept which has linear
complexity in the number of points. We therefore achieve not only competitive accuracy, but
also superior computational efficiency at the same time.
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(a) RGB image. (b) Depth map.
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Figure 4.7: Evaluation of our method on the TUM dataset cabinet and comparison to two
alternative odometry solutions (FastICP and DVO). Our method (red curve) works at 50 Hz on
a CPU for VGA resolution depth images. It outperforms both DVO(blue curve, 30 Hz) and
FastICP(cyan curve, 1 Hz) in terms of drift in rotation and translation. More detailed results

can be found in Table 4.1



Chapter 5

Visual Odometry with RGB-D
Cameras based on Geometric 3D-2D
Edge Alignment

In the previous chapter we have seen how to construct an efficient pipeline for RGB-D cameras
exploring Manhattan worlds. While this works impressively well, there is also a clear limitation
to this approach in terms of the explorable environments. In this chapter, we look at an efficient
method to track RGB-D cameras in general environments.

Over the past decade, we have witnessed a number of successful works, such as salient
feature based sparse methods (Klein and Murray [2007]; Mur-Artal et al. [2015]), direct meth-
ods (Tykkälä et al. [2011]; Steinbrücker et al. [2011]; Audras et al. [2011]; Kerl et al. [2013b])
that employ all intensity information in the image, semi-dense pipelines (Engel et al. [2013,
2014]) and other systems like (Newcombe et al. [2011a]; Whelan et al. [2012b]; Pomerleau
et al. [2011, 2013]) which track the camera using an ICP algorithm over the depth informa-
tion. The present work focusses on edge-based registration, which finds a good compromise
between the amount of data used for registration and computational complexity.

Considering that edge detectors have been discovered before invariant keypoint extractors,
it comes as no surprise that pioneering works in computer vision such as Larry Robert’s idea
of a block’s world (Roberts [1965]) envisage the mapping and registration of entire 3D curves
rather than “just” sparse 3D points. While sparse point-based methods have proven to be
very effective at subtracting the correspondence problem from the inverse problem of structure
from motion, curve-based estimation remains interesting due to the following, geometrically
motivated advantages:

• Edges in images make up for a significantly larger amount of data points to be regis-
tered to a model, hence leading to superior signal-to-noise ratio and improved overall
accuracy.

• Edges represent a more natural choice in man-made environments, where objects are
often made up of homogeneously coloured (i.e. texture-less) piece-wise planar surfaces.

• Lines and curves lead to more meaningful 3D representations of the environment than
points. Curve-based 3D models may for instance ease the inference of object shapes,
sizes and boundaries.

57
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It is the correspondence problem and the resulting computational complexity which how-
ever prevented practical, edge or curve-based tracking and mapping pipelines from appearing
in the literature until only very recently. Knowing which point from a 3D curve reprojects
to which point from a 2D curve measured in the image plane is only easy once the regis-
tration problem is solved. Therefore, the correspondence problem has to be solved as part
of the 3D-2D registration. Research around the iterative closest point paradigm (Chen and
Medioni [1992]), distance transformations (Kiryati and Bruckstein [1996]), and more recent
advances such as continuous spline-based parametrisations (Xiao and Li [2005]; Nurutdinova
and Fitzgibbon [2015]) nowadays alleviate the iterative computation of putative correspon-
dences, thus rendering online free-form curve-based registration possible.

The contributions of this chapter read as follows:

• A detailed review of 3D-2D free-form edge alignment, summarizing the difficulties of
the problem and the solutions given by existing real-time edge alignment methods in
robotics.

• Two alternatives to distance transformations — Approximate Nearest Neighbour Fields
and Oriented Nearest Neighbour Fields — with properties that improve the registration
in terms of efficiency and accuracy.

• A real-time RGB-D visual odometry system based on nearest neighbour fields, which
achieves robust tracking by formulating the 3D-2D ICP based motion estimation as a
maximum a posteriori problem.

• An extensive evaluation on publicly available RGB-D datasets and a performance com-
parison that demonstrates the improvements over previous state-of-the-art edge align-
ment methods.

The chapter is organized as follows. More related work is discussed in Section 5.1. Section 5.2
provides a review of geometric 3D-2D edge alignment, the problems resulting from employing
Euclidean distance fields, and the corresponding solutions of existing methods. Sections 5.3
and 5.4 detail the proposed novel distance transformation alternatives — Approximate Nearest
Neighbour Fields and Oriented Nearest Neighbour Fields. Section 5.5 outlines our complete
Canny-VO system with an emphasis on robust weighting for accurate motion estimation in the
presence of noise and outliers. Section 5.6 concludes with extensive experimental evaluation.

5.1 Related Work

Curve-based structure from motion has a long-standing tradition in geometric computer vision.
Early work by Porrill and Pollard [1991] has discovered how curve and surface tangents can be
included into fundamental epipolar geometry for stereo calibration, an idea lateron followed
up by Feldmar et al. [1995] and Kaminski and Shashua [2004]. However, the investigated
algebraic constraints for solving multiple view geometry problems are known to be very easily
affected by noise. In order to improve the quality of curve-based structure from motion, further
works by Faugeras and Mourrain [1995] and Kahl and Heyden [1998] therefore looked at
special types of curves such as straight lines and cones, respectively.
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In contrast to those early contributions in algebraic geometry, a different line of research
is formed by works that investigate curve-based structure from motion from the point of view
of 3D model parametrisation and optimisation. Kahl and August [2003] are among the first
to show complete, free-form 3D curve reconstruction from registered 2D images. Later works
then focus on improving the parametrisation of the 3D curves, presenting sub-division curves
(Kaess et al. [2004]), non-rational B-splines (Xiao and Li [2005]), and implicit representations
via 3D probability distributions (Teney and Piater [2012]). These works, however, mostly
focus on the reconstruction problem, and do not use the curve measurements in order to refine
the camera poses.

Complete structure-from-motion optimisation including general curve models and camera
poses has first been shown by Berthilsson et al. [2001]. The approach however suffers from
a bias that occurs when the model is only partially observed. Nurutdinova and Fitzgibbon
[2015] illustrate this problem in detail, and present an inverse data-to-model registration con-
cept that transparently handles missing data. Fabbri and Kimia [2010] solve the problem by
modelling curves as a set of shorter line segments, and Cashman and Fitzgibbon [2013] model
the occlusions explicitly. The successful inclusion of shorter line segments (i.e. edglets) has
furthermore been demonstrated in real-time visual SLAM (Eade and Drummond [2009]). Fur-
ther related work from the visual SLAM community is given by Engel et al. [2013, 2014], who
estimate semi-dense depth maps in high-gradient regions of the image, and then register sub-
sequent images based on a photometric error criterion. As common with all direct photometric
methods, however, the approach is difficult to combine with a global optimization of structure,
and easily affected by illumination changes.

The core problem of projective 3D-to-2D free-form curve registration goes back to the
difficulty of establishing correspondences in the data. The perhaps most traditional solution to
this problem is given by the ICP algorithm (Chen and Medioni [1992]; Besl and McKay [1991];
Pomerleau et al. [2013]). Yang et al. [2016] even developed a globally optimal variant of the
ICP algorithm, which is however too slow for most practically relevant use-cases. Pomerleau
et al. [2011] and Tykkälä et al. [2011] present real-time camera pose registration algorithms
based on the ICP algorithm, where the latter work minimises a hybrid geometry and appearance
based cost function. Both works however cast the alignment problem as a 3D-3D registration
problem. More recently, Kneip et al. [2015] show how to extend the idea to 3D-2D registration
of edge-based depth maps in a reference frame.

The caveat of the ICP algorithm is given by the repetitive requirement to come up with
putative correspondences that still can help to improve the registration. Zhang [1994] investi-
gated how this expensive search can be speeded up by pre-structuring the data in a K-D-tree.
The biggest leap with respect to classical ICP was however achieved through the introduction
of distance fields (Kiryati and Bruckstein [1996]). Newcombe et al. [2011a] and Bylow et al.
[2013] for instance rely on distance fields to perform accurate real-time tracking of a depth
sensor. Steinbrücker et al. [2013] furthermore push the efficiency by adaptive sampling of the
distance field (Frisken and Rockwood [2000]). More recently, distance-field based registration
has also been introduced in the context of 3D-to-2D registration. Kneip et al. [2015] and Kuse
and Shen [2016] show the successful use of 2D distance fields for projective registration of
3D curves. The proposed work follows up on this line of research, and proposes a yet more
efficient alternative to distance fields for 3D-2D, ICP-based curve registration. The present ori-
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ented nearest neighbour fields notably do not suffer from the previously identified registration
bias in the case of partially observed models.

5.2 Review of Geometric 3D-2D Edge Registration

This section reviews the basic idea behind geometric 3D-2D curve alignment. After a clear
problem definition, we discuss the limitations of existing Euclidean distance-field based meth-
ods addressed through this chapter.

5.2.1 Problem Statement

Let PF = {pFi } be a set of pixel locations in a frame F defining the edge map. As illustrated
in Fig. 5.1, it is obtained by thresholding the norm of the image gradient, which could, in the
simplest case, originate from a convolution with Sobel kernels. Let us further assume that the
depth value zi for each pixel in the edge map is available as well. In the preregistered case,
they are simply obtained by looking up the corresponding pixel location in the associated depth
image. For each pixel, a local patch (5× 5 pixels) is visited and the smallest depth is selected
in the case of a depth discontinuity1. This operation ensures that we always retrieve the fore-
ground pixel despite possible misalignments caused by extrinsic calibration errors (between the
depth camera and the RGB camera) or asynchronous measurements (RGB and depth) under
motion. An exemplary result is given in Figure 5.1(b). We furthermore assume that both the
RGB and the depth camera are fully calibrated (intrinsically and extrinsically). Thus, we have
accurate knowledge about a world-to-camera transformation function π(λfi) = pi projecting
any point along the ray defined by a unit vector fi onto the image location pi. The inverse
transformation π−1(pi) = fi which transforms points in the image plane into unit direction
vectors located on the unit sphere around the center of the camera is also known. If the RGB
image and the depth map are already registered, the extrinsic parameters can be omitted. The
discussion will be based on this assumption from now on.

Consider the 3D edge map (defined in the reference frame Fref) as a curve in 3D, and its
projection into the current frame Fk as a curve in 2D. The goal of the alignment step is to
retrieve the pose at the current frame Fk (namely its position t and orientation R) such that the
projected 2D curve aligns well with the edge map PFk extracted in the current frame Fk. Note
that—due to perspective transformations—this is of course not a one-to-one correspondence
problem. Also note that we parametrize our curves by a set of points originating from pixels
in a reference image. While there are alternative parameterizations (e.g. splines), the objective
function outlined in this work will remain applicable to any parametrization of the structure.

1The depths of all pixels in the patch are sorted and clustered based on a simple Gaussian noise assumption. If
there exists a cluster center that is closer to the camera, the depth value of the current pixel will be replaced by the
depth of that center. This circumvents resolution loss and elimination of fine depth texture.



§5.2 Review of Geometric 3D-2D Edge Registration 61

(a) Image gradient’s norm map. (b) 3D edge map.

Figure 5.1: Image gradients are calculated in both horizontal and vertical direction at each
pixel location. The euclidean norm of each gradient vector is calculated and illustrated in (a)
(brighter means bigger while darker means smaller). Canny-edges are obtained by thresholding
gradient norms followed by non-maximum suppression. By accessing the depth information
of the edge pixels, a 3D edge map (b) is created, in which warm colors mean close points while

cold colors represent faraway points.

5.2.2 ICP-based Motion Estimation

The problem can be formulated as follows. Let

SFref =

{
sFref

i

}
=

{
dFref

i π−1(pFref
i

)}
(5.1)

denote the 3D edge map in reference frame Fref, where di =
zi

fi,3
denotes the distance of point

si to the optical center. Its projection onto the current frame Fk results in the edge map

OFk =

{
oFk

i

}
=

{
π
(

RT(sFref
i − t

))}
. (5.2)

We define
n(oFk

i ) = argmin
p
Fk
j ∈P

Fk

‖pFk
j − oFk

i ‖ (5.3)

to be a function that returns the nearest neighbour of oFk
i in PFk under the Euclidean distance

metric. The overall objective of the registration is to find

θ̂ = argmin
θ

N

∑
i=1
‖oFk

i − n(oFk
i )‖2, (5.4)



62 Visual Odometry with RGB-D Cameras based on Geometric 3D-2D Edge Alignment

where θ := [c1, c2, c3, tx, ty, tz]T represents the parameter vector that defines the pose of
the camera. c1, c2, c3 are Cayley parameters (Cayley [1846]) for orientation R2, and t =
[tx, ty, tz]T. The above objective is of the same form as the classical ICP problem, which
alternates between finding approximate nearest neighbours and registering those putative cor-
respondences, except that in the present case, the correspondences are between 2D and 3D
entities. A very similar objective function has been already exploited by Kneip et al. [2015]
for robust 3D-2D edge alignment in a hypothesis-and-test scheme. It proceeds by iterative
sparse sampling and closed-form registration of approximate nearest neighbours.

5.2.3 Euclidean Distance Fields

As outlined in (Kneip et al. [2015]), the repetitive explicit search of nearest neighbours is too
slow even in the case of robust sparse sampling. This is due to the fact that all distances need
to be computed in order to rank the hypotheses, and this would again require an exhaustive
nearest neighbour search. This is where distance transforms come into play. The explicit
location of a nearest neighbour does not necessarily matter when evaluating the optimization
objective function (Eq. 5.4), the distance alone may already be sufficient. Therefore, we can
pre-process the edge map in the current frame and derive an auxiliary image in which the
value at every pixel simply denotes the Euclidean distance to the nearest point in the original
edge map. Euclidean distance fields can be computed very efficiently using region growing
techniques. Chebychev distance is an alternative when faster performance is required. For
further information, the interested reader is referred to (Fabbri et al. [2008]).

Let us define d(oFk
i ) as the function that retrieves the distance to the nearest neighbour by

simply looking up the value at oFk
i inside the chosen distance field. The optimization objective

(Eq. 5.4) can now easily be rewritten as

θ̂ = argmin
θ

N

∑
i=1

d(oFk
i )2. (5.5)

Methods based on Eq. 5.5 cannot provide state-of-the-art performance in terms of efficiency,
accuracy and robustness because of the following problems:

• Efficiency: As pointed out by Kuse and Shen [2016], the objective function (Eq. 5.5)
is not continuous due to the spatial discretization of the distance field. This problem is
bypassed by for example sampling the distances using bi-linear interpolation. However,
even with bi-linear interpolation, the distance remains only a piece-wise smooth (i.e. bi-
linear) function, as the parametrization changes depending on which interpolation points
are chosen. Kuse and Shen [2016] propose to solve this problem by employing the
sub-gradient method, which succeeds in the presence of non-differentiable kinks in the
energy function. Rather than employing the more popular Gauss-Newton or Levenberg-
Marquardt method, they also rely on a less efficient steepest descent paradigm. While

2Note that the orientation is always optimized as a change with respect to the previous orientation in the refer-
ence frame. The chosen Cayley parametrization therefore is proportional to the local tangential space at the location
of the previous quaternion orientation and, therefore a viable parameter space for local optimization of the camera
pose.
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solving the problem, the bi-linear interpolation and the sub-gradient computation in-
crease the computational burden, and the steepest descent method requires more itera-
tions as the inter-frame disparity becomes larger. To guarantee real-time performance,
e.g. (Kuse and Shen [2016]) sacrifies accuracy by working on QVGA resolution. In this
work, we advocate the use of nearest neighbour fields, which removes the problem of
non-differentiable kinks in the energy function.

• Accuracy: As explained in (Nurutdinova and Fitzgibbon [2015]), the model-to-data
paradigm is affected by a potential bias in the presence of only partial observations.
They propose to replace it by a data-to-model concept where the summation runs over
the measured points in the image. The work parametrizes curves using B-splines, and
an additional curve parameter is required for every data point to define the nearest lo-
cation on the B-spline. This parameter is simply lifted to an additional optimization
variable. Nurutdinova and Fitzgibbon [2015] argue that the data-to-model objective is
advantageous since it avoids the potentially large biases occurring in the situation of par-
tial occlusions. While the data-to-model objective may indeed provide a solution to this
problem, it is at the same time a more computational-resource demanding strategy with
a vastly blown up parameter space, especially given that the number of automatically
extracted pixels along edges can be significantly larger than the number of points in a
sparse scenario, and one additional parameter for every data point is needed. Further-
more, the lifted optimization problem in (Nurutdinova and Fitzgibbon [2015]) depends
on reasonably good initial pose estimates that in turn permit the determination of suf-
ficiently close initial values for the curve parameters. In this work, we show how an
orientation of the field based on the image gradients effectively counteracts this problem
while still enabling the more efficient model-to-data paradigm.

• Robustness: Even ignoring the above two problems, a simple minimization of the L2-
norm of the residual distances would fail because it is easily affected by outlier associa-
tions. In (Kneip et al. [2015]), this problem is circumvented by switching to the L1-norm
of the residual distances. In this work, we provide a complete analysis of the statistical
properties of the residuals, from which we derive an iterative robust reweighting formu-
lation for 3D-2D curve-registration.

5.3 Approximate Nearest Neighbour Fields

To solve the first problem, we replace the Euclidean distance fields with approximate nearest
neighbour fields. As indicated in Figure 5.2, the nearest neighbour field consists of two fields
indicating the row and the column index of the nearest neighbour, respectively. In other words,
the ANNF simply precomputes the expression n(oi) in our optimization objective (Eq. 5.4)
for every possible pixel location in the image. Using ANNFs enables us to fix the nearest
neighbours during the Jacobian computation, thus removing the problems of discontinuities
or non-smoothness during energy minimization. At the same time, the residual evaluation
remains interpolation-free, which relieves the computational burden.

From an implementation point of view, it is important to note that the computation of the
nearest neighbour field is equally fast as the derivation of the distance field. The reason lies
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Figure 5.2: Example of a distance field for a short edge in a 7×7 image, plus the resulting
nearest neighbour field. ir and ic contain the row and column index of the nearest neighbour,

respectively.

in the concept of distance field extraction methods (Fabbri et al. [2008]; Felzenszwalb and
Huttenlocher [2012]), which typically perform some sort of region growing, all while keeping
track of nearest neighbours in the seed region when propagating pixels. Whether we extract a
distance field or a nearest neighbour field is merely a question of which information is retained
from the computation.

5.3.1 Point-to-Tangent Registration

The ICP algorithm and its variants commonly apply two distance metrics in the registration of
3D point cloud data — the point-to-point distance (Champleboux et al. [1992]) and the point-
to-plane distance (Chen and Medioni [1992]). ICP using the point-to-plane distance metric is
reported to converge faster than the point-to-point version, especially in the so-called sliding
situation. In the case of 3D-2D edge alignment, a similar idea to the point-to-plane distance is
the point-to-tangent distance. An example is given in Figure 5.3, in which the 2D blue curve
is the reprojection of the 3D model while the 2D red curve is the data observed in the current
frame. Given a point (green) on the blue curve, the coordinate of its closest point (one of the
red points) is returned by the ANNF. The point-to-point residual vector is denoted by vr and
the point-to-tangent distance is obtained by projecting vr to the local gradient direction at the
green point. Note that for EDF based methods, only ‖vr‖ is available. Thus, the point-to-
tangent distance is not applicable in EDFs. Strictly speaking, the gradient direction needs to be
recomputed at the beginning of each iteration. However, as we see through the experiments,
the gradient direction of each model point can be assumed constant if there is no big rotation
between the reference and the current frame. Note that the image gradient information is
already computed during the edge detection process, thus it does not involve any additional
computational burden.
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Figure 5.3: Illustration of the point-to-tangent distance. The projected distance r is finally
calculated by projecting vr onto the direction of the local gradient g.

5.3.2 ANNF based Registration

Using the ANNF, the function n(oFk
i ) from Eq. 5.3 now boils down to a trivial look-up fol-

lowed by a projection onto the local gradient direction. This enables us to go back to objective
(Eq. 5.4), and we attempt a solution via efficienct Gauss-Newton updates. Let us define the
point-to-tangent residuals

r =


g(pFref

1 )T
(

oFk
1 − n(oFk

1 )
)

. . .

g(pFref
N )T

(
oFk

N − n(oFk
N )
)


N×1

, (5.6)

By applying Eq. 5.6 in Eq. 5.4, our optimization objective can be reformulated as

θ̂ = argmin
θ

‖r‖2. (5.7)

Supposing that r were a linear expression of θ, it is clear that solving Eq. 5.7 would be
equivalent to solving r(θ) = 0. The idea of Gauss-Newton updates (or iterative least squares)
consists of iteratively performing a first-order linearization of r about the current value of θ,
and then each time improving the latter by solving the resulting linear least squares problem.
The linear problem to solve in each iteration therefore is given by

r(θi) +
∂r(θ)

∂θ

∣∣∣∣
θ=θi

∆ = 0, (5.8)
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and, using J = ∂r(θ)
∂θ

∣∣∣
θ=θi

, its solution is given by

∆ = −(JTJ)−1JTr(θi). (5.9)

The motion vector is finally updated as θi+1 = θi + ∆.
While evaluating the Jacobian J in each iteration, the closest points simply remain fixed.

This simplification is based on the fact that typically n(oi(θ)) = n(oi(θ + δθ)) if δθ is a
small increment. Furthermore, the equality may not hold when oi locates exactly at the border
of two pixels. This may lead to gross errors in the Jacobian evaluation, which is why we simply
fix the nearest neighbour. The Jacobian J simply becomes

J =
[(

∂
(

g(pFref
1 )To

Fk
1

)
∂θ

)T
. . .

(
∂
(

g(pFref
N )To

Fk
N

)
∂θ

)T
]T

θ=θi

. (5.10)

Details on the analytical form of the Jacobian are given in Appendix. A.1.1.

5.4 Oriented Nearest Neighbour Fields

This section explains the idea behind oriented nearest neighbour fields (ONNF) and how
they help to improve the performance of model-to-data based projective registration of non-
parametric curves. We start by giving a clear definition of the field orientation for distance
fields, then show how this design is easily employed to nearest neighbour fields. Finally, a
sequence of modifications to this concept is introduced, which gradually improve the accuracy
and efficiency of the registration process.

5.4.1 Field Orientation

One of the core contributions of this chapter is on orienting the nearest neighbour fields. How-
ever, special care is needed to define what orientation in the present case means. We explain
the concept with distance fields. The most common type of oriented distance field in the 3D
computer vision literature is a truncated signed distance field for dense 3D surface reconstruc-
tion (Newcombe et al. [2011a]; Bylow et al. [2013]; Steinbrücker et al. [2013]). Given by
the fact that the world is always observed from a certain perspective, it makes sense to define
the front and back of a continuous reconstructed surface, which in turn defines the sign of the
distances in the field (positive = in front of the surface, negative = behind the surface). In the
context of curves in the image, the equivalent would be to define the inside and outside of
contours. This representation, however, would only be unique for a single, closed contour in
the image.

A more flexible orientation can be achieved by considering the gradient inclination along
the edge. Taking Figure 3 in (Nurutdinova and Fitzgibbon [2015]) as an example, it is also
obvious that the registration bias due to partial occlusions in the model-to-data approach could
easily be detected or even avoided by considering the “disparity” between the reprojected gra-
dient vector inclinations and the gradient vector inclinations of the nearest neighbours in the
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data. We therefore move to oriented distance fields for curves in the image, where the orienta-
tion depends on the actual gradient vector inclination.

(a) Discretization bins for gradient vector inclination.

(b) Example oriented distance fields.

Figure 5.4: (a) Orientation bins chosen for the discretisation of the gradient vector inclination
(8 bins of 45◦ width). (b) Example oriented distance fields for edges extracted from an image of
a football. Distinct edge segments are associated to only one of the 8 distance fields depending

on the local gradient inclination and the corresponding bin.
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The idea is straightforward. The distance field is split up into multiple distance fields fol-
lowing a quantisation of the gradient vector inclination. The gradient quantisation adopted is
indicated in Figure 5.4(a). It consists of dividing the set of possible gradient vector inclinations
into 8 equally wide intervals, each one spanning an angle of 45◦. Based on this quantisation
table and the local image gradient vector inclination, every pixel along an edge can be associ-
ated to exactly one of 8 distance fields. We finally obtain a seed region in each one of 8 distinct
distance fields, and can grow each one of them individually, thus resulting in 8 distance fields
with exclusively positive numbers (cf. Figure 5.4(b)). Upon registration of a 3D curve, we
only need to transform the local gradient of the 3D curve in order to identify the distance field
from which the distance to the nearest neighbour of a particular image point has to be retrieved.
This formulation has the clear advantage of being less affected by ambiguous associations aris-
ing from nearby edges: the distance to the region of attraction of neighbouring edges in the
distance field is much larger than in the non-oriented case where all edges appear in the same
distance field. In consequence, oriented distance fields also provoque an enlargement of the
convergence basin during registration.

Note that the usage of oriented distance fields does not involve any substantial additional
computation load. First, the image gradient information is already computed by the edge
extraction algorithm. Second, since the complexity of extrapolating a distance field depends
primarily on the number of edge points in the seed region, computing the oriented distance
fields is similarly fast as computing the non-oriented one. Furthermore, the orientation makes
it very easy to parallelise the distance field computation, we merely have to associate one core
to each bin of the discretisation.

5.4.2 ONNF based Registration

As shown in Section 5.3, distance fields can be seamlessly replaced by nearest neighbour fields.
Thus, the concept of the field orientation is readily applicable to nearest neighbour fields, thus
leading to Oriented Nearest Neighbour Fields (ONNF).

Let us define the nearest neighbour in the oriented nearest neighbour field to be

ηMG(oi)
(oi) = argmin

mj∈MG(oi)

‖mj − oi‖2, (5.11)

with G (oi) taking the gradient at the model point corresponding to oi and the current camera
pose to find the index of the relevant orientation bin (i.e. the index of the relevant nearest
neighbour field), and MG(ri) representing the subset of edge pixels that have fallen into this
bin. Similar to what has been proposed in 5.3.2, the residual vectors are projected onto the
local gradient direction. Since we are already working in an oriented nearest neighbour filed,
this gradient direction is simply approximated by the centre of the corresponding orientation
bin, denoted eG(oi) (as in Figure 5.4(a), the possible eG(ri) are given by the coloured vectors,
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normalised to one). The residuals can finally be defined as

r =


eT
G(o1)

(
o1 − ηMG(o1)

(oi)
)

...
eT
G(on)

(
on − ηMG(on)

(on)
)
 , (5.12)

and the resulting Jacobian becomes

J =
[(

eT
G(o1)

∂o1
∂θ

)T
. . .

(
eT
G(on)

∂on
∂θ

)T
]T

θ=θk

(5.13)

The derivation of the analytical Jacobian is similar to Appendix. A.1.1.

5.4.3 Performance Boost through Adaptive Sampling

Our final modification consists of moving from standard nearest neighbour fields to adaptively
sampled nearest neighbour fields (Frisken and Rockwood [2000]). Nearest neighbours at the
original image resolution are only computed within a small neighbourhood of the seed region
given by the pixels along edges. With reference to Figure 5.5, this corresponds to layer 0. The
next step consists of iterating through all edge pixels and keeping track of the closest one to
each adjacent location in sub-sampled image grids. Again with reference to Figure 5.5, this
corresponds to all higher octaves (i.e. layer 1, layer 2, ...). Note that limiting the filling in
higher octaves to adjacent grid locations leads to an implicit truncation of the neighbour field.
The concluding step then consists of concatenating the layers by copying the nearest neigh-
bours from all layers to the corresponding locations in the concatenated output matrix, starting
from the highest one. Values taken from higher octaves are hence simply overwritten if a lower
octave contains more fine-grained information. Figure 5.5 only shows a single nearest neigh-
bour field, but it is clear that the derivation has to be done for each one of the 8 orientation
bins, possibly through parallel computation. The adaptively sampled nearest neighbour fields

Figure 5.5: Adaptively Sampled Nearest Neighbour Fields. In practice, the concatenated result
is just an n× m matrix where the connected blue and green regions simply contain identical

elements.
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Table 5.1: Comparison on the properties of different distance transformations
EDF ANNF ONNF

Free of interpolation × X X
Enable point-to-tangent distance × X X

Enable adaptive sampling × X X
Enable registration bias

recognition and elimination
× × X

do not involve any loss in accuracy, as the nearest neighbours have maximal resolution within
a sufficiently large band around the global minimum. Furthermore, the loss in effective reso-
lution further away from the global minimum does not have a noticeable impact on the ability
to bridge even larger disparities. In particular, the fact that the residual vectors are projected
onto the direction vector of the corresponding orientation bin causes the approximation error
with respect to the exact nearest neighbour to be relatively small. While adaptive sampling is
also applicable to distance fields, it would severly complicate the implementation of bi-linear
interpolation and hence the definition of continuous residual errors.

A comparison of the properties of all discussed distance transformations is given in Ta-
ble. 5.1, which helps to highlight the advantages of the proposed distance transformations over
the classical Euclidean distance field.

5.5 Robust Motion Estimation

In this section, we discuss how to improve the robustness of the method. A probabilistic
formulation is employed in the motion estimation to deal with noise and outliers, which takes
the statistical characteristics of the sensor or measurement model into account. Then a simple
but effective operation of point culling is introduced, which helps to refine the 3D structure
in the reference frame, and thus brings benefits to successive motion estimations. Finally, the
whole visual odometry system is outlined.

5.5.1 Learning the Probabilistic Sensor Model

To improve the robustness in the presence of noise and outliers, the motion estimation is for-
mulated as maximizing the posteriori p(θ|r). Following the derivation in (Kerl et al. [2013b]),
the Maximum A Posteriori (MAP) problem is translated into the weighted least squares mini-
mization problem,

θ = arg min
θ

∑
i

ω(ri)(ri(θ))
2. (5.14)

The weight is defined as ω(ri) = − 1
2ri

∂ log p(ri |θ)
∂ri

, which is a function of the probabilistic
sensor model p(ri|θ). IRLS is used for solving Eq. 5.14.

The choice of the weight function depends on the statistics of the residual, which is identi-
fied in a dedicated experiment. We investigate several of the most widely used robust weight
functions including Tukey3, Cauchy, Huber (Zhang [1997]) and the T-distribution (Kerl et al.

3The Tukey-Lambda distribution is used here rather than the Tukey Biweight function. The closed form of the
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(a) Sensor model of freiburg1.
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(b) Sensor model of freiburg2.
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(c) Sensor model of freiburg3.

Figure 5.6: Sensor model is obtained by fitting the histogram with different probabilistic dis-
tributions.

Table 5.2: Robust weight functions and their parameters fitted on each sub dataset
Type ω(r) freiburg1 freiburg2 freiburg3

Tukey

{ 1
2k2(er/k+1) , if|r| ≤ ε

er/k−1
2kr(er/k+1) , if|r| > ε

k = 0.9609 k = 0.9045 k = 0.7425

Cauchy 1
1+(r/k)2 k = 1.1510 k = 1.0827 k = 0.8754

Huber

{
1, if|r| ≤ k
k
|r| , if|r| > k k = 1.2502 k = 1.2754 k = 1.6999

T-distribution ν+1
ν+( r

σ )
2

ν = 2.2875
σ = 1.1050

ν = 2.7104
σ = 1.0682

ν = 2.4621
σ = 0.8330

[2013b]). The final choice is based on the evaluation in 5.6.2.

5.5.2 Point Culling

Although the probabilistic formulation can deal with noise and outliers, an accurate 3D edge
map for each reference frame is still preferred to reduce the risk of an inaccurate registration.
Once a new reference frame is created by loading the depth information, the 3D edge map
might be not accurate enough because of low-quality depth measurements (e.g. by reflective
surfaces) or inaccurate Canny edge detections (e.g. caused by image blur). The successive
tracking is possibly affected if the error in the map is not carefully handled. For the sake of
computational efficiency, we do not optimize the local map using windowed bundle adjustment
as this is commonly done for sparse methods. The number of points used by our method
typically lies between 103 and 104, which is at least one order of magnitude higher than the
amount of points used in sparse methods. Therefore, rather than optimizing the inverse depth
of such a big number of 3D points, a much more efficient strategy is proposed. All 3D points
in the new reference frame are reprojected to the nearest keyframe and those whose geometric
residuals are larger than the median of the overall residuals are discarded. We find that this
operation significantly improves the accuracy of the motion estimation during the experiments.

Tukey-Lambda distribution requires to set shape parameter lambda = 0, which leads to the Logistic distribution.
The derivation of the robust weight function is given in Appendix. A.1.2.
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5.5.3 Visual Odometry System

Our complete RGB-D visual odometry system is illustrated in Fig. 5.7. There are two threads
running in parallel. The tracking thread estimates the pose of the current frame, while the other
thread generates new keyframes including the depth initialization. In the tracking thread, only
the RGB image of the current frame is used for the Canny edge detection and the subsequent
computation of the nearest neighbour field. The objective is constructed and then optimized via
the Levenberg-Marquardt method. The reference frame is updated whenever the current frame
moves too far away. The distance criterion here is the median disparity between the edges in
the reference frame and the corresponding reprojections in the registered current frame. If this
value grows larger than a given threshold, a new reference frame is created by the keyframe
preparation thread.

rgb

depth
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Depth Extraction

rgb

depth

Edge Map

CE Extraction

Edge Map
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Figure 5.7: Flowchart of the Canny-VO system. Each independent thread is bordered by a
dashed line. CE refers to the Canny edge and DT is the abbreviation of distance transformation,

which could be one of EDF, ANNF and ONNF.
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To deal with large displacement, we apply a pyramidal coarse-to-fine scheme as in (Kerl
et al. [2013b]; Engel et al. [2013]) et al. . A three-level (from 0 to 2) image pyramid is created.
The radius of the distance transformation is adjusted according to the applied level. The regis-
tration is performed from the top to the bottom level sequentially. Besides, a motion model is
implemented to predict a better starting position for the optimization. This strategy has been
widely used in VO and SLAM (Klein and Murray [2007]; Kerl et al. [2013b]; Tanskanen et al.
[2013]) and improves the robustness by effectively avoiding local minima in the optimzation.
Instead of assuming a prior distribution for the motion as in (Kerl et al. [2013b]), we follow
(Klein and Murray [2007]) and implement a simple decaying velocity model, which effectively
improves the convergence speed and the tracking robustness.

5.6 Experimental Results

We start with an analysis of the registration bias in the case of partially observed data. We then
move over to the optimal parameter choice in the present system, which primarily discusses the
choice of the robust weight function. The main experiment compares the quantitative results
of trackers that use EDF, ANNF and ONNF, respectively. All variants employ Levenberg-
Marquardt optimization. Two publicly available benchmark datasets (Sturm et al. [2012];
Handa et al. [2014]) are used for the evaluation. Finally, we provide a challenging RGB-D
sequence to qualitatively evaluate the performance of the present VO system in a relatively
large-scale indoor environment.

Note that the trajectory evaluation results listed in the following tables, including relative
pose errors (RPEs) and absolute trajectory errors (ATEs) are given as root-mean-square errors
(RMSEs). The units for RPEs are deg /s and m/s and the ATEs are expressed in m. The best
result is always highlighted in bold.

5.6.1 Handling Registration Bias

The present section contains an important result of this chapter, namely a dedicate experiment
on a controlled synthetic sequence to prove the beneficial properties of the presented oriented
nearest neighbour fields. We define an artificial circular shape in a reference frame which has
a virtual perspective camera model with a focal length of 500.0 and VGA resolution. Let’s
furthermore assume that the reference view is pointing straight down at the horizontal plane
on which the observed image has a width of 28.0 cm. The pose of the reference frame is
therefore given by t = (0, 0, 218.75)T and R = diag (1,−1,−1). Once the 3D edge points are
extracted, the position of the reference frame is disturbed and re-optimised using either EDF,
ANNF or ONNF. To reproduce an example very similar to the one introduced in (Nurutdinova
and Fitzgibbon [2015]), only a small continuous part of the circular edge in the image covering
π
4 rad is retained (randomly positioned along the circle). Each method is tested for 1000 times.
Note that the tests are not using a robust weight function in order not to hide potential biases in
the estimation, which is what we are after. Also note that we do not add any noise to the data
as the purpose here is to demonstrate the size of convergence basins, numerical accuracy, and
estimation biases. As seen in Fig. 5.8, ONNF reports an almost zero bias after optimization,
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thus clearly demonstrating its superiority in handling partially observed data over the other two
methods.

(a) Circle pattern and the partially observed data.
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(b) Median translation errors of each method for
1000 trials.

Figure 5.8: Analysis of registration bias in case of only partially observed data.

5.6.2 Exploring the Optimal Configuration

An accurate extraction of Canny edges is key to accurate motion estimation. The quality of
the gradient map makes the difference. We therefore investigate Sobel filters with different
kernel sizes, and find that a symmetric 5× 5 kernel outperforms a 3× 3 filter and is sufficient
for a good estimation. Advance smoothing of the images further helps to improve the edge
detection.

To determine the optimal robust weight function, we start by defining reference frames in
a sequence by applying the same criterion as in our full pipeline (cf. Fig. 5.7), however using
ground truth poses. Residuals are then calculated using the ground truth relative poses between
each frame and the nearest reference frame. The residuals are collected over several sequences
captured by the same RGB-D camera (i.e. freiburg 1, freiburg 2, freiburg 3, respectively), and
then summarized in histograms. As an example, all fitting results on the residuals using the
ANNF distance metric are illustrated in Fig. 5.6, and the parameters of each model are reported
in Table 5.2. The fitting results on the residuals using EDF and ONNF can be obtained in the
same way. In general, the T-distribution is the best on fitting the histograms, especially for
large residuals.

5.6.3 TUM RGB-D benchmark

The TUM RGB-D dataset collection (Sturm et al. [2012]) contains indoor sequences captured
using a Microsoft Kinect v.1 sensor with VGA resolution along with ground truth trajectories
of the sensor and a set of tools for easily evaluating the quality of the estimated trajectories.
The proposed methods are evaluated on almost all the sequences in the dataset except for those
in which scenes are beyond the range of the sensor. The main purpose is to demonstrate the
advantage of the proposed ANNF and ONNF over the classical EDF in terms of accuracy
and robustness. Since one of the state-of-the-art implementations (Kuse and Shen [2016])
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(a) freiburg2_xyz. (b)
freiburg3_nostructure_texture_near.

Figure 5.9: Semi-dense reconstruction of two sequences from the TUM RGB-D benchmark
datasets.

terminates the optimization on the QVGA resolution, its results are not as good. To achieve a
fair comparison, we implement our own EDF based tracker which outperforms (Kuse and Shen
[2016]). Besides, to comprehensively assess the performance, a sparse feature based solution
ORB-SLAM2 (RGB-D version) (Mur-Artal and Tardós [2017]) is included in the evaluation.
Note however that we only use the tracker of (Mur-Artal and Tardós [2017]) in order to fairly
asses pure tracking performance (by setting mbOnlyTracking=true) in the experiment.

As shown in Tables 5.3 and 5.4, the ANNF based paradigm achieves better accuracy than
EDF (which we attribute to the use of the signed point-to-tangent distance), and ONNF based
tracking significantly outperforms other methods due to bias-free estimation. Since edge align-
ment methods rely on accurate Canny edge detections, it is not surprising to see (Mur-Artal
and Tardós [2017]) performs better on several sequences in feiburg 1, in which significant im-
age blur due to aggressive rotations occurs. This problem would be less apparent if using a
more advanced device, e.g. Kinect V2, which is equipped with a global shutter RGB camera.
Large RMSEs of edge alignment based methods are also witnessed in other sequences such
as fr3_str_tex_near, which is caused by an ambiguous structure. Only one edge is detected
in the conjunction of two planes with homogeneous color, which notably leads to a tracking
failure, as at least one degree of freedom of the motion simply becomes unobservable4. In
general, however, ANNF and ONNF based trackers work outstandingly well, since the me-
dian errors remain reasonably small. To conclude, semi-dense reconstruction results for the
sequences fr2_xyz and fr3_nostructure_texture are given in Fig. 5.9. Since no global optimiza-
tion is performed, the crispness of these reconstructions again underlines the quality of the
edge alignment.

4Note furthermore that—in order to achieve a fair comparison—all methods are evaluated up until the same
frame if one of the methods loses tracking. Since all methods are equally affectable by failure situations, this does
not give preference to any of the methods.
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5.6.4 ICL-NUIM Dataset

A high-quality indoor dataset for evaluating RGB-D VO/SLAM systems is provided by Handa
et al. [2014]. Although it is synthetic, the structure and texture are realistically rendered using
a professional 3D content creation software. Illumination and reflection properties are properly
taken into account. The algorithm is evaluated using the living room collection which contains
four sequences composed of different trajectories within the same room. The scene has several
challenging elements for VO/SLAM systems, including reflective surfaces, locally texture-
poor regions, and multiple illumination sources. The evaluation results are given in Table 5.5
and 5.6. We see that the ONNF based tracker again easily outperforms in the comparison.
Since image blur effects do not exist in the synthetic dataset, the advantages of the ONNF
based tracking scheme are even more clearly demonstrated. To conclude, we again provide a
semi-dense reconstruction of the living room 2 using ONNF based tracking in Fig. 5.10.

(a) Aerial view of the living room. (b) Horizontal view of the living room.

(c) A manually selected perspective.

Figure 5.10: Semi-dense reconstruction of the ICL_NUIM living room sequence kt2.
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5.6.5 ANU-RSISE Sequence

We captured and analyzed our own large-scale indoor RGB-D sequence, a scan of a complete
level of the Research School of Engineering at the Australian National University (ANU). It
is more challenging than most of the TUM datasets for at least two reasons. First, the scene
is an open-space office area of approximately 300 m2, with highly self-similar locations. A
footprint of the building is shown in Fig. 5.11. The illumination is not as consistent as in small-
scale environments, such as a desk or a small office room. Second, the sequence contains a
combination of challenging structures such as reflecting surfaces (window glass) and cluttered
objects (plants). We use the Microsoft Kinect v2 for data collection, and the RGB and depth
images are prealigned and resized to VGA resolution, similar to what has been done in the
TUM benchmark sequences.

All algorithms are evaluated qualitatively by visualizing the reconstruction results in Fig.
5.12. The global BA module of (Mur-Artal and Tardós [2017]) is again disabled to underline
pure tracking performance. Although (Mur-Artal and Tardós [2017]) performs very well along
straight parts, severe problems are witnessed in the corners. The bad tracking is due to the
reflection imaging on the window glass, which generates false features. All edge alignment
based trackers still perform well in the corner taking advantage of good signal-to-noise ratio
and the proposed robust weighting strategies. The advantages of the ANNF and ONNF over
the EDF are clearly seen over the straight parts. By looking at the two recycle bins (blue and
red) near the starting point, ONNF performs the best in terms of start-to-end error. A more
detailed map and some close-up shots occurring during the exploration using ONNF based
tracking are given in Fig. 5.13.

5.6.6 Efficiency Analysis

Real-time performance is typically required for any VO system in a practical application. To
see the improvement in terms of efficiency, we compare the computation time of each method
on a desktop with a Core i7-4770 CPU. As seen in Fig. 5.14, the computation in the tracking
thread consists of four parts: Canny edge detection (CE), distance transformation (DT), opti-
mization (Opt), and others. As claimed before, the DT computation of the ANNF is almost
as fast as the EDF5, while the ONNF is the most efficient due to the adaptive sampling and
the parallel computation. Another significant difference occurs in the optimization. The EDF
based method takes more time than the ANNF because of the requirement for bilinear interpo-
lation during the evaluation of the objective function. ONNF based tracking is basically as fast
as ANNF based tracking. The difference in the optimization time for nearest neighbour field
based approaches is due to another modification that could be equally applied as a speed-up
factor to all other fields. We include a stochastic optimization strategy, which starts with a
small number of 3D points and gradually increases the amount until reaching the minimum,
where optimization over all points is performed. Note that the result in Fig. 5.14 is normal-
ized over the number of points (at most 6500) and it includes the computation on the whole
image pyramid (from level 0 to level 2). The keyframe generation thread runs at about 10 Hz
in parallel.

5The adaptive sampling function is switched off for ANNF in the efficiency analysis.
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(a) Floorplan of level 3 of the ANU Research School of Engineering.

(b) Typical snapshots of the environment.

Figure 5.11: The schematic trajectory of the sensor when collecting the sequence is illustrated
in (a). The sequence starts from the position highlighted with a green dot. Structures such as
window glass, plants, dark corridor caused by inconsistent illumination that make the sequence

challenging are shown in (b).
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Even using three pyramid levels, our method achieves 20Hz and thus real-time processing
on a standard CPU. The main bottleneck in the computation is the image processing. Con-
sidering that this could be offloaded into embedded hardware, we believe that our method
represents an interesting choice that ultimately could make semi-dense processing accessible
to computationally constrained devices.

5.7 Conclusion

The chapter introduces approximate nearest neighbour fields as a valid, at least equally accurate
alternative to euclidean distance fields in 3D-2D curve alignment with clear benefits in compu-
tational efficiency. We furthermore prove that the bias plaguing distance field based registration
in the case of partially observed models is effectively encountered through an orientation of
the nearest neighbour fields, thus re-establishing the model-to-data registration paradigm as
the most efficient choice for geometric 3D-2D curve alignment. We furthermore prove that
efficient sub-sampling strategies are readily accessible to nearest neighbour field extraction.

The geometric approach to semi-dense feature-based alignment has the clear advantages
of resilience to illumination changes and the ability to be included in a curve-based bundle
adjustment that relies on a global, spline-based representation of the structure. With a focus
on the efficient formulation of residual errors in curve alignment, we believe that the present
investigation represents an important addition to this line of research.



84 Visual Odometry with RGB-D Cameras based on Geometric 3D-2D Edge Alignment

(a) Rconstruction result by ORB-SLAM2 (RGB-D
version with local BA enabled).

(b) Reconstruction result by smoothed EDF based
tracker.

(c) Reconstruction result by ANNF based tracker. (d) Reconstruction result by ONNF based tracker

Figure 5.12: Evaluation on our own indoor sequence. The figures show different perspectives
of the result obtained with and without loop closure enabled.

Figure 5.13: Close-up perspectives during the exploration of level 3 of the ANU Research
School of Engineering.
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Figure 5.14: Efficiency analysis on EDF, ANNF and ONNF based tracker.
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Chapter 6

Semi-Dense 3D Reconstruction with a
Stereo Event Camera

Compared to the proposed pipelines that take advantage of piece-wise planar and Manhattan
World environments, the edge alignment based method proposed in Chapter. 5 expands the
range of exploration by utilizing the more general structural regularity — edges. However,
in many practical robotic applications, exiting pipelines including the proposed ones in the
previous chapters may come across challenges such as aggressive motion, high dynamic range,
etc. . These challenging scenarios typically go beyond the limitation of standard cameras.
Thus, a new camera architecture is investigated in this chapter, and a novel 3D reconstruction
method is developed.

Event cameras are bio-inspired sensors that offer several advantages such as low latency,
high-speed and high dynamic range to tackle challenging scenarios in computer vision. This
chapter presents a solution to the problem of 3D reconstruction from data captured by a stereo
event-camera rig moving in a static scene, such as in the context of stereo Simultaneous Lo-
calization and Mapping. The proposed method consists of the optimization of an energy func-
tion designed to exploit narrow-baseline spatio-temporal consistency of events triggered across
both stereo image planes. To improve the density of the reconstruction as well as to reduce the
uncertainty of the estimation, a probabilistic depth fusion strategy is also developed. The re-
sulting method has no special requirements on either the motion of the stereo event-camera rig
or on prior knowledge about the scene. Experiments demonstrate our method can deal with
both texture-rich scenes as well as sparse scenes, outperforming state-of-the-art stereo methods
based on event data image representations.

6.1 Introduction

Event cameras, such as the Dynamic Vision Sensor (DVS) (Lichtsteiner et al. [2008]), are
novel devices that report pixel-wise intensity changes (called “events”) asynchronously, at the
time they occur. As opposed to standard cameras, they do not acquire an entire image frame
at the same time nor do they operate at a fixed frame rate. This asynchronous and differential
principle of operation reduces power and bandwidth requirements drastically. Endowed with
microsecond temporal resolution, event cameras are able to capture high-speed motions, which
would typically cause severe motion blur with standard cameras. In addition, event cameras

87
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have a very high dynamic range (HDR) (e.g. 140 dB compared to 60 dB of most standard
cameras), which allows them to be used under broad illuminations. Hence, event cameras open
the door to tackle challenging scenarios that are inaccessible to standard cameras, such as high-
speed and/or HDR tracking (Mueggler et al. [2014]; Lagorce et al. [2015]; Zhu et al. [2017]),
control (Conradt et al. [2009]; Delbruck and Lang [2013]) and Simultaneous Localization and
Mapping (SLAM) (Kim et al. [2016]; Rebecq et al. [2017c]).

The main challenge in visual processing with event cameras is to devise specialized algo-
rithms that can exploit the temporally asynchronous and spatially sparse nature of the image
data produced by DVS cameras, hence unlock their full potentials, whereas existing computer
vision algorithms designed for conventional cameras do not directly apply in general. Some
preliminary works on DVS addressed this issue by combining event cameras with other sen-
sors, such as standard cameras (Censi and Scaramuzza [2014]; Kueng et al. [2016]) or depth
sensors (Censi and Scaramuzza [2014]; Weikersdorfer et al. [2014]), in order to simplify the
task at hand. Although this approach obtained certain success, the true potential of an event
camera has not been fully exploited since parts of such combined systems are limited by the
lower dynamic range devices. In this work, we tackle the problem of stereo 3D reconstruc-
tion for visual odometry (VO) or SLAM using event cameras alone. Our goal is to unlock the
potential of event cameras by developing a method that directly works on the DVS principles
using raw DVS signals.

6.1.1 Related work on Event-based Depth Estimation

The majority of works on depth estimation with event cameras target the problem of “instan-
taneous” stereo, i.e., 3D reconstruction using events from a pair of synchronized cameras in
stereo configuration (i.e., with a fixed baseline), during a very short time (ideally on a per-event
basis). Some of these works (Kogler et al. [2011]; Rogister et al. [2012]; Camunas-Mesa et al.
[2014]) follow the classical paradigm of solving stereo in two steps: epipolar matching fol-
lowed by 3D point triangulation. Temporal coherence (e.g., simultaneity) of events across both
left and right cameras is used to find matching events, and then standard triangulation (Hartley
and Zisserman [2003]) recovers depth. Other works, such as (Piatkowska et al. [2013]), extend
cooperative stereo (Marr and Poggio [1976]) to the case of event cameras. These methods are
typically demonstrated in scenes with static cameras and few moving objects, so that event
matches are easy to find due to uncluttered event data.

Works (Schraml et al. [2016, 2015]) also target the problem of “instantaneous” stereo
(depth maps produced using events over very short time intervals), but they use two non-
simultaneous event cameras. These methods exploit a constrained hardware setup (two rotat-
ing event cameras with known motion) to either (i) recover intensity images on which con-
ventional stereo is applied (Schraml et al. [2016]) or (ii) match events across cameras using
temporal metrics and then use triangulation (Schraml et al. [2015]).

Recently, depth estimation with a single event camera has been shown in (Rebecq et al.
[2016]; Kim et al. [2016]; Rebecq et al. [2017a]). These methods recover a semi-dense 3D
reconstruction of the scene by integrating information from the events of a moving camera
over a longer time interval, and therefore, require information of the relative pose between
the camera and the scene. Hence, these methods do not target the problem of “instantaneous”
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depth estimation but rather the problem of depth estimation for visual odometry and SLAM.

6.1.2 Contribution

This chapter, the problem of 3D reconstruction (in the SLAM context) with a pair of event
cameras in stereo configuration is addressed. The proposed approach is based on temporal
coherence of events across left and right image planes. However, it differs from previous ef-
forts, such as the “instantaneous” stereo methods (Kogler et al. [2011]; Rogister et al. [2012];
Camunas-Mesa et al. [2014]; Schraml et al. [2016, 2015]), in that: (i) we do not follow the
classical paradigm of event matching plus triangulation, but rather a forward-projection ap-
proach that allows us to estimate depth without explicitly solving the event matching problem,
(ii) we are able to handle sparse scenes (events generated by few moving objects) as well as
cluttered scenes (events constantly generated everywhere in the image plane due to the motion
of the camera), and (iii) we use camera pose information to integrate observations over time
to produce semi-dense depth maps. Moreover, our method computes continuous depth values,
as opposed to other methods, such as (Rebecq et al. [2016]), which discretize the depth range.
Finally, in contrast to monocular methods that target the same depth-for-SLAM problem, we
are able to recover the absolute scale of the scene.

Outline. Section 6.2 presents the 3D reconstruction problem considered and our solution,
formulated as the minimization of an objective function that measures the temporal incon-
sistency of event history maps across left and right image planes. Section 6.3 presents an
approach to fuse multiple event-based 3D reconstructions into a single depth map. Section 6.4
evaluates our method on both synthetic and real event data, showing the good performance of
our method.

6.2 3D Reconstruction by Event Time-History Maps Energy
Minimization

Our method is inspired by multi-view stereo pipelines for conventional cameras, such as
DTAM (Newcombe et al. [2011b]), which aim at maximizing the photometric consistency
through a number of narrow-baseline video frames. However, since event cameras do not
output absolute intensity but rather intensity changes (the “events”), the direct photometric-
consistency-based method cannot be applied readily. Instead, we exploit the fact that event
cameras encode visual information in the form of microsecond-resolution timestamps of in-
tensity changes.

For a stereo event camera, a detectable1 3D point in the overlapping field of view (FOV)
of the cameras will generate an event on both left and right cameras. Ideally, these two events
should spike at the exact same time and their coordinates should be corresponding to each
other defined by the epipolar geometry between the two cameras in stereo configuration. This

1A point at an intensity edge (i.e., non-homogeneous region of space), so that intensity changes (i.e., events) are
generated when the point moves relative to the camera.
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Figure 6.1: Left: output of an event camera when viewing a rotating dot. Right: Time-surface
map (6.1) at a time t, T (x, t), which essentially measures how far in time (with respect to t)
the last event spiked at each pixel x = (u, v)T. The brighter the color, the more recently the

event was generated.

property actually enables us to apply (and modify) an idea similar to DTAM, simply by re-
placing the photometric consistency with the stereo temporal consistency. However, as shown
in (Benosman et al. [2011]), the stereo temporal consistency does not strictly hold at the pixel
level because of signal latency and jitter effects. Thus, we define our stereo temporal consis-
tency by aggregating measurements over spatio-temporal neighborhoods, rather than by com-
paring the event timestamps at two individual pixels. Technical details will be given in the
sequel.

6.2.1 Event Time-History Maps

We propose to apply patch-match to compare a pair of spike-history maps, in place of the
photometric warping error as used in the conventional DTAM method. Specifically, to create
two distinctive maps, we advocate the use of Time-Surface inspired by (Lagorce et al. [2016])
for event-camera based pattern recognition. As illustrated in Fig. 6.1, the output of an event
camera is a stream of temporal events, where each event ek = (uk, vk, tk, pk) consists of the
space-time coordinates where the intensity change of predefined size happened and the sign
(polarity pk ∈ {+1,−1}) of the change2. The time-surface map at time t is defined by
applying an exponential decay kernel on the last spiking time tlast at each pixel coordinate
x = (u, v)T:

T (x, t) .
= exp

(
− t− tlast(x)

δ

)
, (6.1)

where δ, the decay rate parameter, is a small constant number (e.g. , 30ms in our experiments).
For convenient visualization and processing, (6.1) is further rescaled to the range [0, 255]. Our
objective function is constructed on a set of time-surface maps (6.1) at different observation
times t = {ts}.

2Event polarity is not used, as Rebecq et al. [2017a] show that it is not needed for 3D reconstruction.
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Figure 6.2: Illustration of the geometry of the proposed problem and solution. The reference
view (RV) is on the left, in which an event with coordinates x is back-projected into 3D space
with a hypothetical inverse depth ρ. The optimal inverse depth ρ?, lying inside the search
interval [ρmin, ρmax], corresponds to the real location of the 3D point which fulfills the temporal

consistency in each neighbouring stereo observation s.

6.2.2 Problem Formulation

We follow a global energy minimization framework to estimate the inverse depth mapD in the
reference view (RV) from a number of stereo observations s ∈ SRV nearby. A stereo observa-
tion at time t refers to a pair of time-surface maps created using (6.1),

(
Tleft(·, t), Tright(·, t)

)
.

A stereo observation could be triggered by either a pose update or at a constant rate. For
each pixel x in the reference view, its inverse depth ρ?

.
= 1/z? is estimated by optimizing the

objective function:

ρ? = arg min
ρ

C(x, ρ),

C(x, ρ)
.
=

1
|SRV| ∑

s∈SRV

‖τs
left(x1(ρ))− τs

right(x2(ρ))‖2
2,

(6.2)

where |SRV| denotes the number of involved neighboring stereo observations, which is used
for averaging. The function τs

left/right(x) returns the temporal information Tleft/right(·, t) inside a
w× w patch centered at image point x. The residual,

rs(ρ)
.
= ‖τs

left(x1(ρ))− τs
right(x2(ρ))‖2, (6.3)

denotes the temporal difference in l2 norm between patches centered at x1 and x2 in the left
and right event cameras, respectively.

The geometry behind the proposed objective function is illustrated in Fig. 6.2. Since
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we assume the calibration (intrinsic and extrinsic parameters) as well as the pose of the left
event camera at each observation are known, the points x1 and x2 are given by x1(ρ) =
π(Tsrπ−1(x, ρ)) and x2(ρ) = π(TETsrπ−1(x, ρ)), respectively, where function π : R3 →
R2 projects a 3D point onto the camera’s image plane, while its inverse function π−1 : R2 →
R3 back-projects a pixel into 3D space given the inverse depth ρ, and TE denotes the transfor-
mation from the left to the right event camera. Note that all event coordinates x are undistorted
and rectified.

To verify that the proposed objective function does lead to the optimum depth for a generic
event in the reference view (Fig. 6.3(a)), a number of stereo observations from a real stereo
event-camera sequence (Zhu et al. [2018]) have been created (Figs. 6.3(c) and 6.3(d)), and are
used to visualize the overall energy at the event location (Fig. 6.3(b)). The size of the patch is
w = 25pixel in this work.

Observe that our approach significantly departs from classical two-step event-processing
methods (Kogler et al. [2011]; Rogister et al. [2012]; Camunas-Mesa et al. [2014]) that solve
the stereo matching problem first and then triangulate the 3D point, which is prone to errors due
to the difficulty in establishing correct event matches during very short time intervals. These
two-step approaches work in a “back-projection” fashion, mapping 2D event measurements to
3D space. Instead, our approach combines matching and triangulation in a single step, operat-
ing in a forward-projection manner (from 3D space to 2D event measurements). As shown in
Fig. 6.2, an inverse depth hypothesis ρ yields a 3D point, π−1(x, ρ), whose projections on both
stereo image planes for all times “s” gives curves xs

1(ρ) and xs
2(ρ) that are compared in the ob-

jective function (6.2). Hence, an inverse depth hypothesis ρ establishes candidate stereo event
matches, and the best matches are obtained once the objective function has been minimized
with respect to ρ.

6.2.3 Inverse Depth Estimation

The proposed objective function (6.2) is optimized using non-linear least squares methods.
The Gauss-Newton method is used here, which iteratively discovers the root of the necessary
optimality condition

∂C
∂ρ

=
2
|SRV| ∑

s∈SRV

rs
∂rs

∂ρ
= 0. (6.4)

Substituting the linearization of rs at ρk using the first order Taylor formula, rs(ρk + ∆ρ) ≈
rs(ρk) + Js(ρk)∆ρ, in (6.4) we obtain

∑
s∈SRV

Js(rs + Js∆ρ) = 0, (6.5)

where both, residual rs ≡ rs(ρk) and Jacobian Js ≡ Js(ρk), are scalars. Consequently the
inverse depth ρ is iteratively updated by adding the increment

∆ρ = −∑s∈SRV
Jsrs

∑s∈SRV
J2
s

. (6.6)
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(a) Events in the reference view (RV).

0 0.5 1 1.5 2 2.5 3 3.5

Inverse Depth 

0

0.5

1

1.5

2

2.5

3

E
n
e
rg

y

10 6

(b) Objective function (6.2) (in red).

(c) Time-Surface Map (left DVS). (d) Time-Surface Map (right DVS).

Figure 6.3: Verification of the proposed objective function. A randomly selected event in the
reference view (RV) is marked by a red circle in (a). The overall energy is visualized in (b),
with a red curve obtained by averaging the cost of all valid neighbouring observations (indi-
cated by curves with random colors). The vertical dashed line (black) indicates the groundtruth
inverse depth. The time-surface map of the left and the right event cameras at one of the ob-
servation times are shown in (c) and (d), respectively, where the patches for measuring the

temporal residual are marked by red rectangles.

The Jacobian is computed by applying the chain rule,

Js(ρ)
.
=

∂

∂ρ
‖τs

left(x1(ρ))− τs
right(x2(ρ))‖2

=
1

‖τs
left − τs

right‖2 + ε

(
τs

left − τs
right
)T

1×w2

(
∂τs

left
∂ρ
−

∂τs
right

∂ρ

)
w2×1

,
(6.7)

where, for simplicity, the pixel xi(ρ) is omitted in the last equation. To avoid division by
zero, a small number ε is added to the length of the residual vector. Actually, as shown by
an investigation on the distribution of the temporal residual rs in Section 6.3.1, the temporal
residual is unlikely to be close to zero for valid stereo observations (i.e. , patches with enough
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Algorithm 3 Inverse Depth Estimation at a Reference View (RV)
1: Input: pixel x, stereo event observations T s

left, T s
right and poses Tsr, TE.

2: ρ0 ← ρinitial (by coarse search over a range [ρmin, ρmax]).
3: while not converged do
4: for each observation s do
5: Compute rs(ρk) in (6.3).
6: Compute Js(ρk) using (6.7).
7: end for
8: Update: ρk ← ρk + ∆ρ, using (6.6).
9: end while

10: return Inverse depth ρk.

events occurred). The derivative of the time-surface map with respect to the inverse depth is
calculated by

∂τs

∂ρ
=

∂τs

∂x
∂x
∂ρ

=

(
∂τs

∂u
,

∂τs

∂v

)
w2×2

(
∂u
∂ρ

,
∂v
∂ρ

)T

. (6.8)

The computation of ∂u
∂ρ and ∂v

∂ρ are given in Appendix. A.2.1.
The overall procedure is summarized in Algorithm 3. The inputs of the algorithm are,

respectively, the pixel coordinate x of an event in the RV, a set of stereo observations (time-
surface maps) T s

left/right (s ∈ SRV), the relative pose Tsr from the RV to each involved stereo
observation s and the constant extrinsic parameters between both event cameras, TE. The
inverse depths of all events in the RV are estimated independently. Therefore, the computation
is parallelisable. The convergence basin is first localized by a coarse search over the range
of plausible inverse depth values followed by a nonlinear refinement using the Gauss-Newton
method.

6.3 Semi-Dense Reconstruction

The 3D reconstruction method presented in Section 6.2 produces a sparse depth map at the
reference view (RV). To improve the density of the reconstruction while reducing the uncer-
tainty of the estimated depth, we run the reconstruction method (Algorithm 3) on several RVs
along time and fuse the results. To this end, the uncertainty of the inverse depth estimation is
studied in this section. Based on the derived uncertainty, a fusion strategy is developed and is
incrementally applied as sparse reconstructions of new RVs are obtained.

6.3.1 Uncertainty of Inverse Depth Estimation

In the last iteration of Gauss-Newton’s method, the inverse depth is updated by

ρ? ≡ ρk ← ρk + ∆ρ(r), (6.9)
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Figure 6.4: Distribution of the temporal residuals and Gaussian fit N (µ, σ2).

where ∆ρ is a function of the residuals r .
= {r1, r2, . . . , rs | s ∈ SRV} as defined in (6.6).

The variance σ2
ρ? of the inverse depth estimate can be derived using uncertainty propagation

(Mur-Artal and Tardos [2015]). For simplicity, only the noise in the temporal residuals r is
considered:

σ2
ρ? ≈

(
∂ρ?

∂r

)T


σ2

r
σ2

r
. . .

σ2
r

 ∂ρ?

∂r
=

σ2
r

∑s∈SRV
J2
s

. (6.10)

The derivation of this equation can be found in Appendix. A.2.2. Instead of assigning σr

arbitrarily, we determine it empirically by investigating the distribution of the temporal resid-
uals r. Using the ground truth depth, we sample a large number of temporal residuals r =
{r1, r2, ..., rn}. The variance σ2

r is obtained by fitting a Gaussian distribution to the histogram
of r, as illustrated in Fig. 6.4.

6.3.2 Inverse Depth Fusion

In order to improve the density of the reconstruction, inverse depth estimates of multiple RVs
are incrementally transferred to a selected reference view, RV?, and fused. Assuming the
inverse depth of a pixel in RVi follows a distribution N (ρa, σ2

a ), its corresponding location
in RV? is typically a non-integer pixel coordinate x f , which will have an effect on the four
neighbouring pixel coordinates xi

1, xi
2, xi

3, xi
4. Using xi

1 as an example, the fusion is performed
based on the following rules:

1. Assign N (ρa, σ2
a ) to xi

1 if no previous distribution exists.

2. If there is an existing inverse depth distribution assigned at xi
1, e.g. , N (ρb, σ2

b ), the
compatibility between the two inverse depth hypotheses is checked to decide whether
they are fused. The compatibility is evaluated by using the χ2 test at 95% (Mur-Artal
and Tardos [2015]):

(ρa − ρb)
2

σ2
a

+
(ρa − ρb)

2

σ2
b

< 5.99. (6.11)
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Figure 6.5: Illustration of the fusion strategy. All stereo observations (T s
left, T s

right) are denoted
by hollow circles and listed in chronological order. Neighbouring RVs are fused into a cho-
sen RV (e.g. , RV3). Using the fusion from RV5 to RV3 as an example, the fusion rules are
illustrated in the dashed square, in which a part of the image plane is visualized. The blue
dots are the reprojections of 3D points in RV5 on the image plane of RV3. Gray dots represent
unassigned pixels which will be assigned by blue dots within one pixel away. Pixels that have
been assigned, e.g. the green ones (compatible with the blue ones) will be fused. Pixels that
are not compatible (in red) will either remain or be replaced, depending on which distribution

has the smaller uncertainty.

If the two hypotheses are compatible, they are fused into a single inverse depth distribu-
tion by:

N
(

σ2
a ρb + σ2

b ρa

σ2
a + σ2

b
,

σ2
a σ2

b
σ2

a + σ2
a

)
, (6.12)

otherwise the distribution with a smaller variance remains.

An illustration of the fusion strategy is given in Fig. 6.5

6.4 Experiment

The proposed stereo 3D reconstruction method is evaluated in this section. We first introduce
the configuration of our stereo event-camera system and the information of the datasets used
in the experiments. Afterwards, both quantitative and qualitative evaluations are given. Addi-
tionally, the depth fusion process is illustrated to give an impression on how it improves the
density of the reconstruction while reducing depth uncertainty.

6.4.1 Stereo Event-camera Setup

To evaluate our method, we use sequences from publicly available simulators (Mueggler et al.
[2017]) and datasets (Zhu et al. [2018]), and we also collect our own sequences using a stereo
event-camera rig (Fig. 6.6). The stereo rig consists of two Dynamic and Active Pixel Vision
Sensors (DAVIS) (Brandli et al. [2014]) of 240× 180pixel resolution, which are calibrated in-
trinsically and extrinsically using Kalibr (Furgale et al. [2013]). Since our algorithm is working
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(a) System information. (b) Stereo event-camera
rig.

(c) Event map on the left
camera.

(d) Event map on the right
camera.

Figure 6.6: Left, (a) and (b): the stereo event-camera rig used in our experiment, consisting
of two synchronized DAVIS (Brandli et al. [2014]) devices. Right, (c) and (d): rectified event

maps at one time observation.

on rectified and undistorted coordinates, the joint undistortion and rectification transformation
are computed in advance.

As the stereo event-camera system moves, a new stereo observation (T s
left, T s

right) is gener-
ated when a pose update is available. The generation consists of two steps. The first step is
to generate a rectified event map by collecting all events that occurred within 10ms (from the
pose’s updating time to the past), as shown in Fig. 6.3(a). The second step is to refresh the
time-surface maps in both left and right event cameras, as shown in Figs. 6.3(c) and 6.3(d).
One of the observations is selected as the RV. The rectified event map of the RV together with
the rest of the observations are fed to the inverse depth estimation module (Algorithm 3). We
use the rectified event map as a selection map, i.e. we estimate depth values only at the pixels
with non zero values in the rectified event map (as shown in Fig. 6.6 (c) and (d)). As more and
more RVs are reconstructed and fused together, the result becomes both more dense and more
accurate.

6.4.2 Results

The evaluation is performed on six sequences, including a synthetic sequence from the sim-
ulator (Mueggler et al. [2017]), three sequences collected by ourselves (hand-held) and two
sequences from Zhu et al. [2018] (with a stereo event camera mounted on a drone). A snapshot
of each scene is given in the first column of Fig. 6.7. In the synthetic sequence, the stereo
event-camera system looks orthogonally towards three frontal parallel planes while perform-
ing a pure translation. Our three sequences showcase typical office scenes with various office
supplies. The stereo event-camera rig is hand-held and performs arbitrary 6-DOF motion,
which is recorded by a motion-capture system. The other two sequences are collected in a
large indoor environment using a drone (Zhu et al. [2018]), with pose information also from a
motion-capture system. These two sequences are very challenging for two reasons: (i) a wide
variety of structures such as chairs, barrels, a tripod on a cabinet, etc. can be found in this
scene, and (ii) the drone undergoes relatively high-speed motions during data collection.

Quantitative evaluation on datasets with groundtruth depth are given in Table 6.1, where we
compare our method with two state-of-the-art instantaneous stereo matching methods, “Fast
Cost-Volume Filtering” (FCVF) (Hosni et al. [2013]) and “Semi-Global Matching” (SGM)
(Hirschmuller [2008]), working on pairs of time-surface images. We report the mean depth
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Table 6.1: Quantitative evaluation on sequences with groundtruth depth.
Dataset simulation_3planes (Mueggler et al. [2017]) Indoor_flying1 (Zhu et al. [2018]) Indoor_flying3 (Zhu et al. [2018])
Depth range 2.76 m 4.96 m 5.74 m

Mean error 0.03 m 0.13 m 0.33 m
Our Method Median error 0.01 m 0.05 m 0.11 m

Relative error 1.17 % 2.65 % 5.79 %
Mean error 0.05 m 0.99 m 1.03 m

FCVF (Hosni et al. [2013]) Median error 0.03 m 0.25 m 0.11 m
Relative error 1.84 % 20.8 % 17.3 %
Mean error 0.08 m 0.93 m 1.19 m

SGM (Hirschmuller [2008]) Median error 0.03 m 0.31 m 0.20 m
Relative error 3.22 % 18.7 % 20.8 %

error, the median depth error and the relative error (defined as the mean depth error divided
by the depth range of the scene (Rebecq et al. [2017a])). In fairness to the comparison, the
fully dense depth maps returned by FCVF and SGM are masked by the non-zero pixels in the
time-surface images. Besides, the boundary of the depth maps are cropped considering the
block size used in each implementation. The best results per sequence are highlighted in bold
in Table 6.1. Our method outperforms the other two competitors on all sequences. Although
FCVF and SGM also give satisfactory results on the synthetic sequence, they do not work well
in more complicated scenarios in which the observations are either not dense enough, or the
temporal consistency does not strictly hold in a single stereo observation.

Reconstruction results on all sequences are visualized in Fig. 6.7. Images on the first
column are raw intensity frames from the DAVIS. They convey the appearance of the scenes
but are not used by our algorithm. The second column shows rectified and undistorted event
maps in the left event-camera of a RV. The number of the events depends on not only on the
motion of the stereo rig but also on the amount of visual contrast in the scene. Semi-dense
depth maps (after fusion with several neighbouring RVs) are given in the third column, in
which hot colors refer to close while cold colors mean far. The last column visualizes the 3D
point cloud of each sequence at a chosen perspective. Note that only points whose uncertainty
(σρ) are smaller than 0.8× σmax

ρ are visualized in 3D.
The reconstruction of the rectified events in one RV is sparse and full of noise typically.

To show how the fusion strategy improves the density of the reconstruction as well as reduces
the uncertainty, we additionally perform an experiment that visualizes the fusion process in-
crementally. As shown in Fig. 6.8, the first column visualizes the uncertainty maps before the
fusion. The second to the fourth column demonstrates the uncertainty maps after fusing the
result of a RV with its neighbouring 4, 8 and 16 estimations, respectively. Hot colors refer
to high uncertainty while cold colors mean low uncertainty. The result becomes increasingly
dense and accurate as more and more RVs are fused. Note that the remaining highly uncer-
tain estimates generally correspond to events that are caused by either noise or low-contrast
patterns.

6.5 Conclusion

This chapter has proposed a novel and effective solution to 3D reconstruction using a pair
of temporally-synchronized event cameras in stereo configuration. This is, to the best of the
author’s knowledge, the first one to address such a problem allowing stereo SLAM applica-
tions with event cameras. The proposed energy minimization method exploits spatio-temporal
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consistency of the events across cameras to achieve high accuracy (between 1% and 5% rela-
tive error in depth), and it outperforms state-of-the-art stereo methods using the same spatio-
temporal image representation of the event stream. Future work includes the development of
a full stereo visual odometry system, by combining the proposed 3D reconstruction strategy
with a stereo-camera pose tracker.
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Figure 6.7: Results of the proposed method on several datasets. Images on the first column are
raw intensity frames (not rectified nor lens-distortion corrected). The second column shows the
events (undistorted and rectified) in the left event camera of a reference view (RV). Semi-dense
depth maps (after fusion with several neighbouring RVs) are given in the third column, colored
according to depth, from red (close) to blue (far). The fourth column visualizes the 3D point
cloud of each sequence at a chosen perspective. No post-processing, such as regularization

through median filtering (Rebecq et al. [2017a]), was performed.
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Figure 6.8: Illustration of how the fusion strategy increasingly improves the density of the
reconstruction while reducing depth uncertainty. The first column shows the uncertainty maps
σρ before the fusion. The second to the fourth columns report the uncertainty maps after fusing

with 4, 8 and 16 neighbouring estimations, respectively.
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Chapter 7

Summary and Future Work

Visual Odometry remains one of the fundamental research topics in robotic vision. As its
application domain becomes larger, we witness new challenging scenarios where application-
specific conditions occur. This drives us to develop more accurate, efficient and robust systems
based on new, tailormade theories and smart implementations.

7.1 Summary and Contributions

This dissertation is devoted to developing high-performance vision based motion estimation
pipelines by exploiting the structural regularity in man-made environments. The results push
the limits of the state-of-the-art in various aspects, such as efficiency, accuracy and robustness.
Beyond that, to be prepared for more challenging scenarios in high-speed robotic applications,
we investigate the event-based camera — a sensor that recently attracts huge attention in the
community. A summary of the contributions is given in the following.

7.1.1 Improving Efficiency, Accuracy and Robustness

To answer the old question — how to determine the fundamental matrix from planes -, we have
presented a novel two-step linear method, which demonstrates that the compatibility equation
can be used for calculating the fundamental matrix in a linear way. Even in the presence of
noise in the homographies, the proposed method can provide numerically stable and accurate
results.

In piece-wise planar environments, we have presented an efficient method of rotation esti-
mation for depth cameras in Chapter 3. It tracks planar modes from the distribution of surface
normal vectors and estimates the relative rotation by registering the bundle of planar modes in
the current frame to that of the reference frame. Based on this idea, a full 6 DoF motion estima-
tion pipeline is developed in Chapter 4 for depth sensors in Manhattan Worlds. Thanks to the
spatial regularity in Manhattan Worlds, the estimations of the rotation and translation can be
decoupled, even for each degree of freedom in the translation. The derived camera orientation
is furthermore absolute and thus free of long-term drift. Our method relies on the alignment of
density distribution functions, a concept which has linear complexity in the number of points.
We achieve not only competitive accuracy but also superior computational efficiency at the
same time. The algorithm runs at 50 Hz on a laptop with a CPU. Live demos can be found on
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Youtube 1 and an exemplary implementation is open sourced on my Github repository 2.
In Chapter 5, two novel distance transform alternatives to the classical Euclidean distance

fields are presented. They bring clear benefits to 3D-2D curve alignment in terms of accu-
racy and efficiency. The bias plaguing distance filed based registration in the case of partially
observed models is proved to be effectively encountered through an orientation of the nearest
neighbour fields, thus re-establishing the model-to-data registration paradigm as the most effi-
cient choice for geometric 3D-2D curve alignment. Furthermore, an adaptive sampling strategy
is employed to the computation of nearest neighbour fields, which significantly boosts the com-
putational performance. Additionally, to improve the robustness of the motion estimation, the
registration is formulated as a maximum a posteriori problem. The statistical characteristics of
the sensor model are learned to suppress noise and outliers.

7.1.2 Exploration of Novel Camera Architectures

Event-based cameras provide a few outstanding properties, such as low latency, high dynamic
range and low bandwidth requirement. These advantages are key to dealing with challenging
scenarios in practical robotic applications. The main challenge in visual processing with event
cameras is to devise specialized algorithms that can exploit the temporally asynchronous and
spatially sparse nature of the image data produced by DVS cameras, hence unlock their full po-
tential. In chapter 6 we focus on the problem of event-based local mapping — one of the main
challenges of event-based VO systems, and present a pipeline of semi-dense 3D reconstruction
with a stereo event camera. To the best of the author’s knowledge, the proposed method is
the first work to address this problem allowing stereo SLAM applications with event cameras.
A video regarding this work can be found on Youtube 3 and an exemplary implementation is
open sourced on my Github repository 4.

It is worth recording the real inspiration to this work (not discussed in the regarding publi-
cation to avoid misleading readers) when I read the work by Benosman et al. [2011], although
not focusing on the depth estimation. In fact, it demonstrates how the epipolar geometry is dis-
covered from events and their co-activation sets. The paper shows that the temporal correlation
is hard to be verified by a single observation because of outliers originating from non-negligible
effects of latency and jitter. Therefore, they introduce a new concept called co-activation prob-
ability field, which is created by accumulating the occurrence of temporal neighbors when the
stereo DVS is placed at different distances away from a planar monitor. The epipolar line is
consequently determined by a set of activated models and the fundamental matrix is able to be
worked out. The success of this method is attributed to the theory of Hebb observation, which
states “If the inputs to a system cause the same pattern of activity to occur repeatedly, the set
of active elements constituting that pattern will become increasingly strongly inter-associated”
(Hebb [2005]). Following this logic, in the case of event-based depth estimation, stereo ob-
servations are the inputs to the system (i.e. the “pattern” determining the depth of an event)
and the outputs (i.e. “active elements constituting the pattern”) refer to some activities that are

1https://www.youtube.com/watch?v=W06ZZki0rTA&t=5s
2https://github.com/Ethan-Zhou/MWO
3https://www.youtube.com/watch?v=Qrnpj2FD1e4&t=3s
4https://github.com/Ethan-Zhou/SDR-ECCV-2018-

https://www.youtube.com/watch?v=W06ZZki0rTA&t=5s
https://github.com/Ethan-Zhou/MWO
https://www.youtube.com/watch?v=Qrnpj2FD1e4&t=3s
https://github.com/Ethan-Zhou/SDR-ECCV-2018-
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consistent with a uniform model under a latent constraint. The task of solving the event-based
depth estimation turns to exploiting a proper constraint among multiple stereo observations.
This lateral thinking ultimately led me to try a strategy of the event-based multi-view stereo,
rather than an instantaneous method.

7.2 Future Work

The proposed methods are certainly possible to be further refined. Discussions on the poten-
tial improvements have already been provided in the conclusion part of each chapter. Three
particularly meaningful extensions to the proposed systems are discussed in the following.

7.2.1 Towards an Agile and Robust VO System for RGB-D Cameras

VO systems that use standard RGB(-D) cameras suffer from blurry images when sudden mo-
tion occurs. To deal with this problem, the most mature strategy is to fuse vision and iner-
tial information. An inertial measurement unit (IMU) provides noisy but high-frequent and
outlier-free measurements for translational acceleration and angular velocity. Due to the upper
bound on the random walk as a function of the integration time, IMUs can provide relatively
accurate position and orientation changes over short integration periods. In fact, the combi-
nation of any vision system with an IMU is believed to be able to provide reliable tracking
of even aggressive motion due to the complementary nature of these sensors. At the begin-
ning of the extension work, we plan to implement a loosely-coupled method, which would
fuse pre-integrated IMU measurements and the relative pose measurements from the Canny-
VO. Besides, we will simultaneously work on accelerating the registration part of Canny-VO.
Since our proposed nearest neighbour fields report the coordinates of closest points, the idea
of EPnP (Lepetit et al. [2009]) is possibly applicable. By updating the pose via a closed-form
solution during each iteration, this PnP based solution will make the registration much faster
than the non-linear optimization.

Due to the limited sensing range of an RGB-D camera, the current Canny-VO system is
restricted to indoor environments. When changing to outdoor environments, the RGB-D are
only occasionally valid, thus no longer supporting the introduced 3D-2D registration approach.
This leads to a tracking failure. Since a VO system typically does not have a re-localization
module, it has to be re-initialized which will almost inevitably lead to severe drift in form of a
jump in the pose. In order to make the Canny-VO system work outdoors, the mapping thread
must be able to reconstruct edges that are out of the sensing range of the depth camera. To
estimate the depth of edge pixels, a multi-view stereo based method can be implemented. For
an edge pixel (with unknown depth) in a keyframe, the method tracks its location along the
epipolar line. At each neighbouring perspective (with known relative pose), a depth estimate
can be obtained through triangulation and as presented in (Engel et al. [2013]), the respective
uncertainty may also be derived. The final depth estimation of each edge pixel is obtained
by fusing all compatible estimates together. A regularization operation may be required to
enhance the smoothness of the depth estimates along edges.



106 Summary and Future Work

Figure 7.1: Illustration of the dynamic (piece-wise rigid) case. Three independent motions
exist in the scene: two cars having uncorrelated motion and the camera’s motion with respect

to the static background (e.g. the traffic light and the traffic lines).

7.2.2 Detection and Tracking of Independent Motions Using 3D Edges

The ability to work in dynamic scenes is a cornerstone for any SLAM/VO systems. Although
it is possible by using pure visual information as shown by Tan et al. [2013], a more robust
solution, from the perspective of engineering, is given by adding additional sensors such as
an IMU (Lynen et al. [2015]). This type of device senses the ego-motion of the platform, and
that is exactly why it increases the system’s ability to distinguish static background features
from the rest. However, the ability of estimating ego motion even in a dynamic environment is
not enough for a machine that claims to be able to perceive its surroundings. Perhaps equally
important ability is to recognize independently moving objects and what exact motion (piece-
wise rigid) they are performing. This ability of dynamic perception is of utmost importance
in autonomous driving scenario where an intelligent vehicle needs to make decisions not only
based on its own dynamic state in the environment, but also based on the dynamic state of other
vehicles. An exemplary scene is illustrated in Fig.7.1.

Following the idea of the proposed Canny-VO system, we model the environment with
3D curves. Given two RGB-D frames I1 and I2 as the reference frame and the current frame,
respectively, the goal is to detect and estimate all piece-wise rigid movements of subsets of the
3D edges. To achieve the goal, we need to solve two sub problems: motion segmentation and
motion estimation. Motion segmentation refers to clustering 3D curves (or their 2D projections
inside a reference frame) into different groups according to the rigid motion they comply with.
Motion estimation consists of computing the relative motion of the independent moving objects
with respect to the camera using 3D-2D edge alignment. The overall problem is a classical
chicken and egg problem, as finding the optimal motions requires having identified all the
segments that belong to its cluster, and finding all the segments requires knowing the motion.
Inspired by a optical flow work (Yang and Li [2015]) that uses piecewise parametric model, the
overall problem is formulated as a multi-model fitting problem, which can be solved through a
scheme of discrete-continuous optimization. The discrete part is a combinatorial optimization
problem where each curve segment is assigned with a label, while the continuous part consists
of updating the label pool (namely the motion models that each label refers to). A potential
formulation of this idea is given in the following.
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7.2.2.1 Energy function

Let L = {1, . . . , K} be a set of discrete labels representing the set of motion models, denoted
as Θ = {θk}, 5k = 1, . . . , K. Let PE be the 3D edge map domain, ΩE be the corresponding
2D edge pixel domain, and L : PE → L be a labelling function. Assigning label k to a 3D
edge point p in the reference frame means that the reprojection of p to the current frame is
determined by motion θk ∈ Θ. The overall energy function is defined as,

E(Θ, L) = ED(Θ, L) + λPEP(L) + λCEC(L), (7.1)

which consists of a data term ED(Θ, L), an inter-curve compatibility term EC(L) and a Potts
model term EP(L).

• Data term

ED(Θ, L) = ∑
x∈ΩE

r(π(T(θL(p), p))) = ∑
p∈PE

r(θL(p), p) (7.2)

where p := d(x)π−1(x), T(·, ·) transforms p to the current frame with the given mo-
tion θL(p), π(·) is the world-to-camera function projecting a 3D point onto the image
plane, and r(·) is the geometric residual error returned by a distance field (defined in the
current frame). For simplicity, T(·, ·) and π(·) are dropped off in Eq. 7.2. The data term
assesses how well an edge point complies with a motion model geometrically.

• Potts model term
To encourage spatially coherent labelling, a pairwise Potts model is used. The term is
defined on the discrete labelling variables as,

EP(L) = ∑
x,x′∈EE

δ(L(p)− L(p′)) (7.3)

where δ(·) is the 0-1 indicator function which takes 1 if the input argument is true, and
0 otherwise.

• Inter-edge compatibility term
When two edges complying with different motion intersect at a point in the image plane
(e.g. a “T” conjunction), the Potts model tends to unify the labelling for better spatial
coherence. To have a fine labelling result, we introduce a term that does not penalize the
variations (even if they may be large) between neighbouring pixels within a single edge
segment. It only penalizes motion discontinuities at edge intersections. Let EE denotes
two connected edge pixels, the inter-edge compatibility term is defined as,

EC(L) = ∑
x,x′∈EE

ρ(|r(θL(p), p̄)− r(θL(p′), p̄)|), (7.4)

where p̄ = d(x̄)π−1(x̄), x̄ denotes the midpoint of (x, x′).
5θ := {R, t} represents the motion parameters.
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7.2.2.2 Alternated Optimization

• Labeling: Solve for L with fixed Θ
With a fixed motion set Θ, the energy minimization reduces to a labeling problem with
energy

E(L) = ED(L) + λPEP(L) + λCEC(L). (7.5)

The energy is a standard Markov Random Filed (MRF). The α−expansion based graph-
cut method Boykov et al. [2001] can be used for fast approximate energy minimization.

• Fitting: Solve for Θ with fixed L
The motion Θ appears only in data term ED. With a fixed label set L, the energy min-
imization turns to a number of registration problems as we perform in the Chapter 5.
Each rigid motion θk could be estimated independently by optimizing

E(θk) = ED(θk) = ∑
p∈PE

r(θk, p). (7.6)

7.2.3 Semi-Dense Visual Odometry Using a Stereo Event Camera

The work discussed in Chapter 6 only provides an event-based mapping solution. In order to
create a full event-based VO system, a tracker is needed. Since the output of our mapper is
a 3D semi-dense map with no appearance information, a tracker that is based on the 3D-2D
geometric distance minimization is applicable. Actually, this tracker is exactly what we used
in Chapter 5. The good news is that the event-based camera does not suffer from image blur.
Thus, a sharp edge map can be obtained on the current frame through an integration of events.
In the bootstraping step, an instantaneous stereo matching method (e.g. Hirschmuller [2008])
is applied on a pair of time-surface map, which returns a coarse depth map to the tracker. The
mapper will update the depth map incrementally using new observations with estimated poses.
As we have seen in the results of chapter 6, the quality of the semi-dense depth map is limited
by the spatial resolution of the event-based camera. Thus, it would be ideal to follow up on this
line of research by using the latest release of the DVS sensor, which supports VGA resolution
(Son et al. [2017]).

It would be interesting to test the developed VO system in practical cases such as a traffic
scene. Traffic scenes at night consist of many challenging elements for classic VO pipelines
using standard cameras, such as 1) inconsistent illumination (high dynamic range), 2) high
speed motion of the cameras and 3) independently moving objects (especially those that can-
not be observed clearly by standard cameras), etc. Due to the asynchronous nature and high
temporal resolution, event camera based VO solutions are able to deal with the first two issues.
However, the third issue needs additional efforts to deal with. A potential idea is inspired by
video stabilization, which estimates the principal flow pattern that can compensate the ego mo-
tion of the camera. Since we use only event cameras, the stabilization will be performed on
the time-surface map. After applying the flow on the time-surface map, events that are caused
by the ego motion of the event camera will be suppressed, whilst the portion of events that are
induced by independent moving objects are still spiking. This operation actually provides a
way to detect and filter independent motion, even if the independent motion is very fast. Thus,
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the static assumption can be guaranteed much better, which in turn improve the accuracy of
the motion estimation.
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Appendix A

Appendix

A.1 Derivations in Regards to Robust Geometric 3D-2D Edge
Alignment

A.1.1 Derivation on Jacobian Matrix of ANNF based Tracking

The linearization of the residual function at θk is

rlin,i(θk+1) = ri(θk) + Ji(θk)∆θ. (A.1)

The Jacobian matrix could be obtained using chains rule as

Ji(θk) = g(xi)
TJπJTJG. (A.2)

Each sub Jacobian matrix are derived as following.

Jπ =
∂π

∂T
|p=T(G(θk),xi) =

[
fx

1
z′ 0 − fx

x′

z′2

0 fy
1
z′ − fy

y′

z′2

]
, (A.3)

where p′i = (x′, y′, z′) is the 3D point transformed by motion G(θk).

JT =
∂T
∂G
|G=G(θk),p=pi

(A.4)

=

x 0 0 y 0 0 z 0 0 1 0 0
0 x 0 0 y 0 0 z 0 0 1 0
0 0 x 0 0 y 0 0 z 0 0 1


JG can be obtained by computing the derivatives of the pose G with respect to the motion

parameter θ = [t1, t2, t3, c1, c2, c3]
T, shown as below
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JG =
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12×6

(A.5)

=


O3 A1

O3 A2

O3 A3

I3 O3×3


let’s denote K = 1 + c2

1 + c2
2 + c3

3, then the entries of the matrices A1 are,
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the entries of the matrices A2 are respectively,
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K − 2c1(1−c2

1+c2
2−c2

3)
K2

• ∂r22
∂c2

= 2c2
K −

2c2(1−c2
1+c2

2−c2
3)

K2

• ∂r22
∂c3

= −2c3
K − 2c3(1−c2

1+c2
2−c2

3)
K2

• ∂r32
∂c1

= 2
K −

4c1(c1+c2c3)
K2

• ∂r32
∂c2

= 2c3
K −

4c2(c1+c2c3)
K2

• ∂r32
∂c3

= 2c2
K −

4c3(c1+c2c3)
K2

the entries of the matrices A3 are respectively,

• ∂r13
∂c1

= 2c3
K −

4c1(c2+c1c3)
K2

• ∂r13
∂c2

= 2
K −

4c2(c2+c1c3)
K2

• ∂r13
∂c3

= 2c1
K −

4c3(c2+c1c3)
K2

• ∂r23
∂c1

= −2
K −

4c1(c2c3−c1)
K2

• ∂r23
∂c2

= 2c3
K −

4c2(c2c3−c1)
K2

• ∂r23
∂c3

= 2c2
K −

4c3(c2c3−c1)
K2

• ∂r33
∂c1

= −2c1
K − 2c1(1−c2

1−c2
2+c2

3)
K2

• ∂r33
∂c2

= −2c2
K − 2c2(1−c2

1−c2
2+c2

3)
K2

• ∂r33
∂c3

= 2c3
K −

2c3(1−c2
1−c2

2+c2
3)

K2

A.1.2 Derivation on Robust Weight Function Corresponding to the Tukey-
Lambda Distribution

When the shape parameter λ = 0, the probability density function (pdf) of Tukey-Lamba
distribution has the closed form as

P(x; µ, k) =
1

k(e
x−µ
2k + e−

x−µ
2k )2

, (A.6)
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which is identical to the Logistic distribution. We assume µ = 0 and thus the robust weight
function is derived by

ω(x) = − 1
2x

∂ log P(x; k)
∂x

(A.7)

=
1

2kx
e

x
k − 1

e
x
k + 1

=


1

2k2(e
x
k +1)

, if|x| ≤ ε

e
x
k −1

2kx(e
x
k +1)

, if|x| > ε
,

where ε is a small positive number.

A.2 Derivations in Regards to 3D Reconstruction Using a Stereo
Event Camera

A.2.1 Calculation of the Derivatives

The objective function requires to warp every event’s location x in the reference view to each
pair of involved stereo observation x1 and x2. First, the 3D point p inducing the event x is
recovered by performing a back-projection, given the inverse depth ρ:

ṗ =
1
ρ

(
P1

0 0 0 z

)−1


u
v
1
1

 =



u−p13
p11ρ

v−p23
p22ρ

1
ρ

1


,

where P1 is the 3× 4 projection matrix of the left event camera. The following calculation
is based on the fact that the last column of P1 is 03×1. Transforming p to the left camera
coordinate of an observation out of SRV gives,

p1 = Rp + t. (A.8)

The warping results are obtained by

ẋ1 = P1p1, (A.9)

ẋ2 = P2p1. (A.10)

Taking the left event camera, for example,

u1 =
A + B ρ

C + D ρ
, (A.11)
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where
A = (p11r11 + p13r31)

u− p13

p11

+ (p11r12 + p13r32)
v− p23

p22
+ (p11r13 + p13r33),

B = p11tx + p13tz + p14,

C =
r31(u− p13)

p11
+

r32(v− p23)

p22
+ r33,

D = tz.

(A.12)

Similarly,

v1 =
A′ + B′ ρ
C′ + D′ ρ

, (A.13)

with
A′ = (p22r21 + p23r31)

u− p13

p11

+ (p22r22 + p23r32)
v− p23

p22
+ (p22r23 + p23r33),

B′ = p22ty + p23tz + p24,

C′ = C

D′ = D.

(A.14)

Therefore, the derivatives with respect to inverse depth d are:

∂u
∂ρ

=
BC− AD
(C + D ρ)2 ,

∂v
∂ρ

=
B′C′ − A′D′

(C′ + D′ ρ)2 .
(A.15)

A.2.2 Uncertainty Propagation

Following (6.9) and only considering the temporal residual for simplicity, we have

ρ? = ρk −
1
γ
(J1r1 + J2r2 + · · ·+ Jsrs)︸ ︷︷ ︸

s∈SRV

, (A.16)

where
γ

.
= ∑

s∈SRV

J2
s . (A.17)

Therefore the derivative of ρ? with respect to r is

∂ρ?

∂r
= − 1

γ
(J1, J2, · · · , Js). (A.18)
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Substituting (A.18) in (6.10), the overall uncertainty of the inverse depth is, to first order, given
by

σ2
ρ? ≈

1
γ
(J1, J2, · · · , Js)


σ2

r
σ2

r
. . .

σ2
r

 1
γ


J1

J2
...
Js


=

σ2
r

γ2 (J2
1 + J2

2 + · · ·+ J2
s )

(A.17)
=

σ2
r

∑s∈SRV
J2
s

.

(A.19)
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