1,567 research outputs found

    Visual Calibration, Identification and Control of 6-RSS Parallel Robots

    Get PDF
    Parallel robots present some outstanding advantages in high force-to-weight ratio, better stiffness and theoretical higher accuracy compared with serial manipulators. Hence parallel robots have been utilized increasingly in various applications. However, due to the manufacturing tolerances and defections in the robot structure, the positioning accuracy of parallel robots is basically equivalent with that of serial manipulators according to previous researches on the accuracy analysis of the Stewart Platform [1], which is difficult to meet the precision requirement of many potential applications. In addition, the existence of closed-chain mechanism yields difficulties in designing control system for practical applications, due to its highly coupled dynamics. Visual sensor is a good choice for providing non-contact measurement of the end-effector pose (position and orientation) with simplicity in operation and low cost compared to other measurement methods such as the coordinate measurement machine (CMM) [2] and the laser tracker [3]. In this research, a series of solutions including kinematic calibration, dynamic identification and visual servoing are proposed to improve the positioning and tracking performance of the parallel robot based on the visual sensor. The main contributions of this research include three parts. In the first part, a relative pose-based algorithm (RPBA) is proposed to solve the kinematic calibration problem of a six-revolute-spherical-spherical (6-RSS) parallel robot by using the optical CMM sensor. Based on the relative poses between the candidate and the initial configurations, a calibration algorithm is proposed to determine the optimal error parameters of the robot kinematic model and external parameters introduced by the optical sensor. The experimental results demonstrate that the proposal RPBA using optical CMM is an implementable and effective method for the parallel robot calibration. The second part focuses on the dynamic model identification of the 6-RSS parallel robots. A visual closed-loop output-error identification method based on an optical CMM sensor is proposed for the purpose of the advanced model-based visual servoing control design of parallel robots. By using an outer loop visual servoing controller to stabilize both the parallel robot and the simulated model, the visual closed-loop output-error identification method is developed and the model parameters are identified by using a nonlinear optimization technique. The effectiveness of the proposed identification algorithm is validated by experimental tests. In the last part, a dynamic sliding mode control (DSMC) scheme combined with the visual servoing method is proposed to improve the tracking performance of the 6-RSS parallel robot based on the optical CMM sensor. By employing a position-to-torque converter, the torque command generated by DSMC can be applied to the position controlled industrial robot. The stability of the proposed DSMC has been proved by using Lyapunov theorem. The real-time experiment tests on a 6-RSS parallel robot demonstrate that the developed DSMC scheme is robust to the modeling errors and uncertainties. Compared with the classical kinematic level controllers, the proposed DSMC exhibits the superiority in terms of tracking performance and robustness

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Dynamic modeling, property investigation, and adaptive controller design of serial robotic manipulators modeled with structural compliance

    Get PDF
    Research results on general serial robotic manipulators modeled with structural compliances are presented. Two compliant manipulator modeling approaches, distributed and lumped parameter models, are used in this study. System dynamic equations for both compliant models are derived by using the first and second order influence coefficients. Also, the properties of compliant manipulator system dynamics are investigated. One of the properties, which is defined as inaccessibility of vibratory modes, is shown to display a distinct character associated with compliant manipulators. This property indicates the impact of robot geometry on the control of structural oscillations. Example studies are provided to illustrate the physical interpretation of inaccessibility of vibratory modes. Two types of controllers are designed for compliant manipulators modeled by either lumped or distributed parameter techniques. In order to maintain the generality of the results, neither linearization is introduced. Example simulations are given to demonstrate the controller performance. The second type controller is also built for general serial robot arms and is adaptive in nature which can estimate uncertain payload parameters on-line and simultaneously maintain trajectory tracking properties. The relation between manipulator motion tracking capability and convergence of parameter estimation properties is discussed through example case studies. The effect of control input update delays on adaptive controller performance is also studied

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Master of Science

    Get PDF
    thesisUntethered magnetic devices such as magnetic capsule endoscopes, magnetic swimming microrobots, and magnetic screws, as well as tethered magnetic devices such as magnet-tipped catheters and magnet-tipped cochlear-implant electrode arrays, can be actuate

    Error Modeling and Accuracy of Parallel Industrial Robots

    Get PDF

    Architectural study of the design and operation of advanced force feedback manual controllers

    Get PDF
    A teleoperator system consists of a manual controller, control hardware/software, and a remote manipulator. It was employed in either hazardous or unstructured, and/or remote environments. In teleoperation, the main-in-the-loop is the central concept that brings human intelligence to the teleoperator system. When teleoperation involves contact with an uncertain environment, providing the feeling of telepresence to the human operator is one of desired characteristics of the teleoperator system. Unfortunately, most available manual controllers in bilateral or force-reflecting teleoperator systems can be characterized by their bulky size, high costs, or lack of smoothness and transparency, and elementary architectures. To investigate other alternatives, a force-reflecting, 3 degree of freedom (dof) spherical manual controller is designed, analyzed, and implemented as a test bed demonstration in this research effort. To achieve an improved level of design to meet criteria such as compactness, portability, and a somewhat enhanced force-reflecting capability, the demonstration manual controller employs high gear-ratio reducers. To reduce the effects of the inertia and friction on the system, various force control strategies are applied and their performance investigated. The spherical manual controller uses a parallel geometry to minimize inertial and gravitational effects on its primary task of transparent information transfer. As an alternative to the spherical 3-dof manual controller, a new conceptual (or parallel) spherical 3-dof module is introduced with a full kinematic analysis. Also, the resulting kinematic properties are compared to those of other typical spherical 3-dof systems. The conceptual design of a parallel 6-dof manual controller and its kinematic analysis is presented. This 6-dof manual controller is similar to the Stewart Platform with the actuators located on the base to minimize the dynamic effects. Finally, a combination of the new 3-dof and 6-dof concepts is presented as a feasible test-bed for enhanced performance in a 9-dof system

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Dynamic modelling of hexarot parallel mechanisms for design and development

    Full text link
    In this research, the kinematics, dynamics, and general closed-form dynamic formulation of the centrifugal high-G hexarot-based manipulators have been developed through the different mathematical modeling techniques. The vibrations of the mechanism have also been investigated
    corecore