85 research outputs found

    An Automated Conversion Between Selected Robot Kinematic Representations

    Full text link
    This paper presents a methodology that forms an automated tool for robot kinematic representation conversion, called the RobKin Interpreter. It is a set of analytical algorithms that can analyze an input robot representation, express the joints globally in matrix form, and map to other representations such as standard Denavit-Hartenberg parameters, Roll-Pitch-Yaw angles with translational displacement, and Product of Exponentials with a possibility to generate a URDF (Universal Robot Description Format) file from any of them. It works for revolute and prismatic joints and can interpret even arbitrary kinematic structures that do not have orthogonally placed joints

    Modular and Analytical Methods for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots

    Get PDF
    While serial robots are known for their versatility in applications, larger workspace, simpler modeling and control, they have certain disadvantages like limited precision, lower stiffness and poor dynamic characteristics in general. A parallel robot can offer higher stiffness, speed, accuracy and payload capacity, at the downside of a reduced workspace and a more complex geometry that needs careful analysis and control. To bring the best of the two worlds, parallel submechanism modules can be connected in series to achieve a series-parallel hybrid robot with better dynamic characteristics and larger workspace. Such a design philosophy is being used in several robots not only at DFKI (for e.g., Mantis, Charlie, Recupera Exoskeleton, RH5 humanoid etc.) but also around the world, for e.g. Lola (TUM), Valkyrie (NASA), THOR (Virginia Tech.) etc.These robots inherit the complexity of both serial and parallel architectures. Hence, solving their kinematics and dynamics is challenging because they are subjected to additional geometric loop closure constraints. Most approaches in multi-body dynamics adopt numerical resolution of these constraints for the sake of generality but may suffer from inaccuracy and performance issues. They also do not exploit the modularity in robot design. Further, closed loop systems can have variable mobility, different assembly modes and can impose redundant constraints on the equations of motion which deteriorates the quality of many multi-body dynamics solvers. Very often only a local view to the system behavior is possible. Hence, it is interesting for geometers or kinematics researchers, to study the analytical solutions to geometric problems associated with a specific type of parallel mechanism and their importance over numerical solutions is irrefutable. Techniques such as screw theory, computational algebraic geometry, elimination and continuation methods are popular in this domain. But this domain specific knowledge is often underrepresented in the design of model based kinematics and dynamics software frameworks. The contributions of this thesis are two-fold. Firstly, a rigorous and comprehensive kinematic analysis is performed for the novel parallel mechanisms invented recently at DFKI-RIC such as RH5 ankle mechanism and Active Ankle using approaches from computational algebraic geometry and screw theory. Secondly, the general idea of a modular software framework called Hybrid Robot Dynamics (HyRoDyn) is presented which can be used to solve the geometry, kinematics and dynamics of series-parallel hybrid robotic systems with the help of a software database which stores the analytical solutions for parallel submechanism modules in a configurable and unit testable manner. HyRoDyn approach is suitable for both high fidelity simulations and real-time control of complex series-parallel hybrid robots. The results from this thesis has been applied to two robotic systems namely Recupera-Reha exoskeleton and RH5 humanoid. The aim of this software tool is to assist both designers and control engineers in developing complex robotic systems of the future. Efficient kinematic and dynamic modeling can lead to more compliant behavior, better whole body control, walking and manipulating capabilities etc. which are highly desired in the present day and future robotic applications

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Mapping of complex marine environments using an unmanned surface craft

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 185-199).Recent technology has combined accurate GPS localization with mapping to build 3D maps in a diverse range of terrestrial environments, but the mapping of marine environments lags behind. This is particularly true in shallow water and coastal areas with man-made structures such as bridges, piers, and marinas, which can pose formidable challenges to autonomous underwater vehicle (AUV) operations. In this thesis, we propose a new approach for mapping shallow water marine environments, combining data from both above and below the water in a robust probabilistic state estimation framework. The ability to rapidly acquire detailed maps of these environments would have many applications, including surveillance, environmental monitoring, forensic search, and disaster recovery. Whereas most recent AUV mapping research has been limited to open waters, far from man-made surface structures, in our work we focus on complex shallow water environments, such as rivers and harbors, where man-made structures block GPS signals and pose hazards to navigation. Our goal is to enable an autonomous surface craft to combine data from the heterogeneous environments above and below the water surface - as if the water were drained, and we had a complete integrated model of the marine environment, with full visibility. To tackle this problem, we propose a new framework for 3D SLAM in marine environments that combines data obtained concurrently from above and below the water in a robust probabilistic state estimation framework. Our work makes systems, algorithmic, and experimental contributions in perceptual robotics for the marine environment. We have created a novel Autonomous Surface Vehicle (ASV), equipped with substantial onboard computation and an extensive sensor suite that includes three SICK lidars, a Blueview MB2250 imaging sonar, a Doppler Velocity Log, and an integrated global positioning system/inertial measurement unit (GPS/IMU) device. The data from these sensors is processed in a hybrid metric/topological SLAM state estimation framework. A key challenge to mapping is extracting effective constraints from 3D lidar data despite GPS loss and reacquisition. This was achieved by developing a GPS trust engine that uses a semi-supervised learning classifier to ascertain the validity of GPS information for different segments of the vehicle trajectory. This eliminates the troublesome effects of multipath on the vehicle trajectory estimate, and provides cues for submap decomposition. Localization from lidar point clouds is performed using octrees combined with Iterative Closest Point (ICP) matching, which provides constraints between submaps both within and across different mapping sessions. Submap positions are optimized via least squares optimization of the graph of constraints, to achieve global alignment. The global vehicle trajectory is used for subsea sonar bathymetric map generation and for mesh reconstruction from lidar data for 3D visualization of above-water structures. We present experimental results in the vicinity of several structures spanning or along the Charles River between Boston and Cambridge, MA. The Harvard and Longfellow Bridges, three sailing pavilions and a yacht club provide structures of interest, having both extensive superstructure and subsurface foundations. To quantitatively assess the mapping error, we compare against a georeferenced model of the Harvard Bridge using blueprints from the Library of Congress. Our results demonstrate the potential of this new approach to achieve robust and efficient model capture for complex shallow-water marine environments. Future work aims to incorporate autonomy for path planning of a region of interest while performing collision avoidance to enable fully autonomous surveys that achieve full sensor coverage of a complete marine environment.by Jacques Chadwick Leedekerken.Ph.D

    Flight Mechanics/Estimation Theory Symposium, 1994

    Get PDF
    This conference publication includes 41 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 17-19, 1994. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Information Assurance through Binary Vulnerability Auditing

    Get PDF
    The goal of this research is to develop improved methods of discovering vulnerabilities in software. A large volume of software, from the most frequently used programs on a desktop computer, such as web browsers, e-mail programs, and word processing applications, to mission-critical services for the space shuttle, is unintentionally vulnerable to attacks and thus insecure. By seeking to improve the identification of vulnerabilities in software, the security community can save the time and money necessary to restore compromised computer systems. In addition, this research is imperative to activities of national security such as counterterrorism. The current approach involves a systematic and complete analysis of the low-level organization of software systems in stark contrast to existing approaches which are either ad-hoc or unable to identify all buffer overflow vulnerabilities. The scope of this project is to develop techniques for identifying buffer overflows in closed-source software where only the software’s executable code is available. These techniques use a comprehensive analysis of the software system’s flow of execution called binary vulnerability auditing. Techniques for binary vulnerability auditing are grounded in science and, while unproven, are more complete than traditional ad-hoc approaches. Since there are several attack vectors in software, this research will focus on buffer overflows, the most common class of vulnerability

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1372 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1990 and June 30, 1990. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems
    • …
    corecore