404 research outputs found

    Integrating CAD files and automatic assembly sequence planning

    Get PDF
    In this research study, a fully automated assembly sequence planner was developed, which automatically extracts geometrical information directly from STEP CAD files and then generates feasible assembly sequences with minimum assembly direction reorientations. The effectiveness of using the planner to reduce assembly time was also verified. The research study included three parts;In the first part of the research study, algorithms and software were developed for extracting geometrical information contained in STEP CAD files and for detecting potential collisions between parts during assembly along principal-axis assembly directions, based upon the extracted geometrical information. The developed software directly takes a STEP CAD file of a designed product assembly as input, and outputs six interference-free matrices representing collision information between parts in six principal assembly directions;In the second part of the research study, the algorithm developed in the first part was integrated into a genetic algorithm-based assembly sequence planner. The enhanced planner then was used to find assembly sequences with minimum reorientations automatically. The integrated assembly sequence planner directly takes a STEP CAD file of a designed product assembly as input, and outputs geometrically feasible assembly sequences requiring minimum reorientations;In the third part of the research study, a case study was conducted to verify the impact of assembly direction reorientations on assembly time, for both robot assembly and human operator assembly. Results of the case study show that, for both robot and human operator assembly processes, the number of reorientations in an assembly sequence has a significant impact on assembly time. The results support the primary research hypothesis that more assembly direction reorientations in a sequence require a longer assembly time. The case study helped verify and quantify the importance and effectiveness of using a fully automated assembly sequence planner to reduce the number of assembly direction reorientations in assembly sequence planning

    Decomposition approach to optimal feature-based assembly planning

    Get PDF
    The paper proposes a generic approach to assembly planning where individual tasks, with detailed technological content specified by features, must be combined into an optimal assembly plan subject to technological and geometric constraints. To cope with the complexity and variety of the constraints that refer to the overall assembly process, Benders decomposition is applied. The macro-level master problem looks for the optimal sequencing and resource assignment of the tasks, while sub-problem modules ensure plan feasibility on the micro-level from aspects of technology, fixturing, tooling, and collision. Constraints are also dynamically generated for the master problem. The approach is demonstrated in automotive assembly. © 2017

    Aggregate assembly process planning for concurrent engineering

    Get PDF
    In today's consumer and economic climate, manufacturers are finding it increasingly difficult to produce finished products with increased functionality whilst fulfilling the aesthetic requirements of the consumer. To remain competitive, manufacturers must always look for ways to meet the faster, better, and cheaper mantra of today's economy. The ability for any industry to mirror the ideal world, where the design, manufacturing, and assembly process of a product would be perfected before it is put mto production, will undoubtedly save a great deal of time and money. This thesis introduces the concept of aggregate assembly process planning for the conceptual stages of design, with the aim of providing the methodology behind such an environment. The methodology is based on an aggregate product model and a connectivity model. Together, they encompass all the requirements needed to fully describe a product in terms of its assembly processes, providing a suitable means for generating assembly sequences. Two general-purpose heuristics methods namely, simulated annealing and genetic algorithms are used for the optimisation of assembly sequences generated, and the loading of the optimal assembly sequences on to workstations, generating an optimal assembly process plan for any given product. The main novelty of this work is in the mapping of the optimisation methods to the issue of assembly sequence generation and line balancing. This includes the formulation of the objective functions for optimismg assembly sequences and resource loading. Also novel to this work is the derivation of standard part assembly methodologies, used to establish and estimate functional tunes for standard assembly operations. The method is demonstrated using CAPABLEAssembly; a suite of interlinked modules that generates a pool of optimised assembly process plans using the concepts above. A total of nine industrial products have been modelled, four of which are the conceptual product models. The process plans generated to date have been tested on industrial assembly lines and in some cases yield an increase in the production rate

    Precision Pointing Control System (PPCS) system design and analysis

    Get PDF
    The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target

    Report on the development of the Manned Orbital Research Laboratory /MORL/ system utilization potential. Task area IV - MORL SYSTEM improvement study, book 3

    Get PDF
    Manned Orbital Research Laboratory system improvement study on stabilization and control subsystem

    Orbital experiment capsule feasibility study. Volume I - Summary Final report

    Get PDF
    Feasibility estimate, mission profile, and design Orbital Experiment Capsule /OEC/ Mars satellite to be used in Voyager Projec

    Voyager spacecraft. Volume V - Alternate designs, subsystems considerations Study report, phase IA

    Get PDF
    Telecommunication, propulsion, control, electric, and mechanical subsystems design for Voyager spacecraf

    A study of liquid propellant behavior during periods of varying accelerations Final report

    Get PDF
    Liquid propellant behavior under space flight conditions and predicting Apollo spacecraft liquid stabilit

    Fabricate

    Get PDF
    Bringing together pioneers in design and making within architecture, construction, engineering, manufacturing, materials technology and computation, Fabricate is a triennial international conference, now in its third year (ICD, University of Stuttgart, April 2017). Each year it produces a supporting publication, to date the only one of its kind specialising in Digital Fabrication. The 2017 edition features 32 illustrated articles on built projects and works in progress from academia and practice, including contributions from leading practices such as Foster + Partners, Zaha Hadid Architects, Arup, and Ron Arad, and from world-renowned institutions including ICD Stuttgart, Harvard, Yale, MIT, Princeton University, The Bartlett School of Architecture (UCL) and the Architectural Association
    • …
    corecore