1,947 research outputs found

    A literature survey of low-rank tensor approximation techniques

    Full text link
    During the last years, low-rank tensor approximation has been established as a new tool in scientific computing to address large-scale linear and multilinear algebra problems, which would be intractable by classical techniques. This survey attempts to give a literature overview of current developments in this area, with an emphasis on function-related tensors

    New Strings for Old Veneziano Amplitudes III. Symplectic Treatment

    Full text link
    A d-dimensional rational polytope P is a polytope whose vertices are located at the nodes of d-dimensional Z-lattice. Consider a number of points inside the inflated polytope (with coefficient of inflation k, k=1,2, 3...). The Ehrhart polynomial of P counts the number of such lattice points (nodes) inside the inflated P and (may be) at its faces (including vertices). In Part I (hep-th/0410242) of our four parts work we noticed that the Veneziano amplitude is just the Laplace transform of the generating function (considered as a partition function in the sence of statistical mechanics) for the Ehrhart polynomial for the regular inflated simplex obtained as a deformation retract of the Fermat (hyper) surface living in complex projective space. This observation is sufficient for development of new symplectic (this work) and supersymmetric (hep-th/0411241)physical models reproducing the Veneziano (and Veneziano-like) amplitudes. General ideas (e.g.those related to the properties of Ehrhart polynomials) are illustrated by simple practical examples (e.g. use of mirror symmetry for explanation of available experimental data on pion-pion scattering) worked out in some detail. Obtained final results are in formal accord with those earlier obtained by Vergne [PNAS 93 (1996) 14238].Comment: 48 pages J.Geom.Phys.(in press, available on line

    The structure of Gelfand-Levitan-Marchenko type equations for Delsarte transmutation operators of linear multi-dimensional differential operators and operator pencils. Part 1

    Full text link
    An analog of Gelfand-Levitan-Marchenko integral equations for multi- dimensional Delsarte transmutation operators is constructed by means of studying their differential-geometric structure based on the classical Lagrange identity for a formally conjugated pair of differential operators. An extension of the method for the case of affine pencils of differential operators is suggested.Comment: 12 page
    • …
    corecore