39 research outputs found

    Kinematic Basis for Body Specific Locomotor Mechanics and Perturbation Responses

    Get PDF
    Animals have evolved mechanical and neural strategies for locomotion in almost every environment, overcoming the complexities of their habitats using specializations in body structure and animal behavior. These specializations are created by neural networks responsible for generating and altering muscle activation. Species specific musculoskeletal anatomy and physiology determine how locomotion is controlled through the transformation of motor patterns into body movements. Furthermore, when these species specific locomotor systems encounter perturbations during running and walking their behavioral and mechanical attributes determine how stability is established during and after the perturbation. It is still not understood how species specific structural and behavioral variables contribute to locomotion in non-uniform environments. To understand how these locomotor properties produce unique gaits and stability strategies we compared three species of brachyuran crabs during normal and perturbed running. Although all crabs ran sideways, morphological and kinematic differences explained how each species produced its unique gait and stability response. Despite the differences in running behavior and perturbation response, animals tended to use locomotor resources that were in abundance during stabilizing responses. Each crab regained stability during the perturbation response by altering leg joint movements or harnessing the body\u27s momentum. These species body designs and running behavior show how slight changes in body structure and joint kinematics can produce locomotor systems with unique mechanical profiles and abilities. Understanding how evolutionary pressures have optimized animals\u27 locomotor ability to successfully move in different environments will provide a deeper understanding of how to mimic these movements through mathematical models and robotics

    Towards understanding of climbing, tip-over prevention and self-righting behaviors in Hexapoda

    Get PDF
    Die vorliegende Dissertation mit dem Titel “Towards understanding of climbing, tip-over prevention and self-righting behaviors in Hexapoda” untersucht in drei Studien exemplarisch, wie (i) Wüstenameisen ihre Beine einsetzen um An- und Abstiege zu überwinden, wie (ii) Wüsten- und Waldameisen ein Umkippen an steilen Anstiegen vermeiden, und wie sich (iii) Madagaskar-Fauchschaben, Amerikanische Großschaben und Blaberus discoidalis Audinet-Servill, 1839 aus Rückenlagen drehen und aufrichten. Neuartige biomechanischen Beschreibungen umfassen unter anderem: Impuls- und Kraftwirkungen einzelner Ameisenbeine auf den Untergrund beim Bergauf- und Bergabklettern, Kippmomente bei kletternden Ameisen, Energiegebirge-Modelle (energy landscapes) zur Quantifizierung der Körperform für die funktionelle Beschreibung des Umdrehens aus der Rückenlage

    Biological, simulation, and robotic studies to discover principles of swimming within granular media

    Get PDF
    The locomotion of organisms whether by running, flying, or swimming is the result of multiple degree-of-freedom nervous and musculoskeletal systems interacting with an environment that often flows and deforms in response to movement. A major challenge in biology is to understand the locomotion of organisms that crawl or burrow within terrestrial substrates like sand, soil, and muddy sediments that display both solid and fluid-like behavior. In such materials, validated theories such as the Navier-Stokes equations for fluids do not exist, and visualization techniques (such as particle image velocimetry in fluids) are nearly nonexistent. In this dissertation we integrated biological experiment, numerical simulation, and a physical robot model to reveal principles of undulatory locomotion in granular media. First, we used high speed x-ray imaging techniques to reveal how a desert dwelling lizard, the sandfish, swims within dry granular media without limb use by propagating a single period sinusoidal traveling wave along its body, resulting in a wave efficiency, the ratio of its average forward speed to wave speed, of approximately 0.5. The wave efficiency was independent of the media preparation (loosely and tightly packed). We compared this observation against two complementary modeling approaches: a numerical model of the sandfish coupled to a discrete particle simulation of the granular medium, and an undulatory robot which was designed to swim within granular media. We used these mechanical models to vary the ratio of undulation amplitude (A) to wavelength (λ) and demonstrated that an optimal condition for sand-swimming exists which results from competition between A and λ. The animal simulation and robot model, predicted that for a single period sinusoidal wave, maximal speed occurs for A/ λ = 0.2, the same kinematics used by the sandfish. Inspired by the tapered head shape of the sandfish lizard, we showed that the lift forces and hence vertical position of the robot as it moves forward within granular media can be varied by designing an appropriate head shape and controlling its angle of attack, in a similar way to flaps or wings moving in fluids. These results support the biological hypotheses which propose that morphological adaptations of desert dwelling organisms aid in their subsurface locomotion. This work also demonstrates that the discovery of biological principles of high performance locomotion within sand can help create the next generation of biophysically inspired robots that could explore potentially hazardous complex flowing environments.PhDCommittee Chair: Daniel I. Goldman; Committee Member: Hang Lu; Committee Member: Jeanette Yen; Committee Member: Shella Keilholz; Committee Member: Young-Hui Chan

    Breeding teeth in Atlantic salmon: fact or fake?

    Get PDF

    What happens to the kype of male Atlantic salmon (Salmo salar) that survive spawning?

    Get PDF

    Patterns of tooth replacement in osteichthyans: variations on a theme

    Get PDF
    Nonmammalian tooth-bearing vertebrates usually replace their teeth throughout life. Much about how a replacement pattern is generated has been learned from zebrafish. However, to understand general mechanisms of tooth replacement, advantage can be taken from studying other, “nonmodel” species. We have mapped the patterns of tooth replacement in widely divergent aquatic osteichthyans using 2D charts, in which one axis is time, the other linear spacing along the tooth row. New teeth that are generated simultaneously are considered part of the same odontogenic wave. Using this approach, it appears that a similar, general pattern underlies very distinctive dentitions in distantly related species. A simple shift in spacing of odontogenic waves, or in distance between subsequent tooth positions along a row (or both), can produce dramatically different dentitions between life stages within a species, or between closely related species. Examples will be presented from salmonids, cyprinids, and cichlids. Our observations suggest that lines linking subsequent positions may have more biological significance than replacement waves (usually linking alternate positions), often used to explain the generation of patterns. The presence of a general pattern raises questions about common control mechanisms. There is now increasing evidence, at least for the zebrafish, to support a role for stem cells in continuous tooth renewal and control of replacement patterns
    corecore