11,119 research outputs found

    The rolling problem: overview and challenges

    Full text link
    In the present paper we give a historical account -ranging from classical to modern results- of the problem of rolling two Riemannian manifolds one on the other, with the restrictions that they cannot instantaneously slip or spin one with respect to the other. On the way we show how this problem has profited from the development of intrinsic Riemannian geometry, from geometric control theory and sub-Riemannian geometry. We also mention how other areas -such as robotics and interpolation theory- have employed the rolling model.Comment: 20 page

    Intelligent sampling for the measurement of structured surfaces

    Get PDF
    Uniform sampling in metrology has known drawbacks such as coherent spectral aliasing and a lack of efficiency in terms of measuring time and data storage. The requirement for intelligent sampling strategies has been outlined over recent years, particularly where the measurement of structured surfaces is concerned. Most of the present research on intelligent sampling has focused on dimensional metrology using coordinate-measuring machines with little reported on the area of surface metrology. In the research reported here, potential intelligent sampling strategies for surface topography measurement of structured surfaces are investigated by using numerical simulation and experimental verification. The methods include the jittered uniform method, low-discrepancy pattern sampling and several adaptive methods which originate from computer graphics, coordinate metrology and previous research by the authors. By combining the use of advanced reconstruction methods and feature-based characterization techniques, the measurement performance of the sampling methods is studied using case studies. The advantages, stability and feasibility of these techniques for practical measurements are discussed

    A Note on Quantum Liouville Theory via Quantum Group; an Approach to Strong Coupling Liouville Theory

    Get PDF
    Quantum Liouville theory is analyzed in terms of the infinite dimensional representations of UQsl(2,C)U_Qsl(2,C) with q a root of unity. Making full use of characteristic features of the representations, we show that vertex operators in this Liouville theory are factorized into `classical' vertex operators and those which are constructed from the finite dimensional representations of Uqsl(2,C)U_qsl(2,C). We further show explicitly that fusion rules in this model also enjoys such a factorization. Upon the conjecture that the Liouville action effectively decouples into the classical Liouville action and that of a quantum theory, correlation functions and transition amplitudes are discussed, especially an intimate relation between our model and geometric quantization of the moduli space of Riemann surfaces is suggested. The most important result is that our Liouville theory is in the strong coupling region, i.e., the central charge c_L satisfies 1<cL<251<c_L<25. An interpretation of quantum space-time is also given within this formulation.Comment: 25 pages, Latex file, no figure

    A novel approach to modelling and simulating the contact behaviour between a human hand model and a deformable object

    Get PDF
    A deeper understanding of biomechanical behaviour of human hands becomes fundamental for any human hand-operated Q2 activities. The integration of biomechanical knowledge of human hands into product design process starts to play an increasingly important role in developing an ergonomic product-to-user interface for products and systems requiring high level of comfortable and responsive interactions. Generation of such precise and dynamic models can provide scientific evaluation tools to support product and system development through simulation. This type of support is urgently required in many applications such as hand skill training for surgical operations, ergonomic study of a product or system developed and so forth. The aim of this work is to study the contact behaviour between the operators’ hand and a hand-held tool or other similar contacts, by developing a novel and precise nonlinear 3D finite element model of the hand and by investigating the contact behaviour through simulation. The contact behaviour is externalised by solving the problem using the bi-potential method. The human body’s biomechanical characteristics, such as hand deformity and structural behaviour, have been fully modelled by implementing anisotropic hyperelastic laws. A case study is given to illustrate the effectiveness of the approac
    corecore