14,971 research outputs found

    The Effect of the Bologna Process on the Cartographic Courses in the Hungarian Higher Education

    Get PDF
    After the 1990 political reforms, it took several years until Hungary officially signed the Bologna Declaration (1999). The progress was very slow: the implementation of the Bologna principles only started in 2002. The nation-wide introduction of the BA and BSc system began in 2006 and will be continued at master level in 2009. One of the most important bodies in this process has been the Hungarian Accreditation Committee. This Board consists of university professors and academics and has control over the establishment and introduction of curricula at all higher education institutions in Hungary. As for cartography and geodesy, we had two independent 5-year degree programmes in the pre-Bologna system (Cartography at Eötvös Loránd University, and Surveying and Geoinformatical Engineering at the Budapest University of Technology and Economics) and two 3-year degree programmes in the College of Surveying and Land Administration in Székesfehérvár. Due to the integration of Hungarian higher education institutions in 2000, this college was incorporated into the University of West Hungary as a faculty. These institutions had worked a lot on establishing and developing their own programmes. However, due to the implementation of the Bologna process, these individual programmes have lost their independence. It is only natural that all these institutions were interested in finding a solution to keep as much of their original curricula as only possible. Although about 140 BA and BSc programmes were established at national level, the Bologna system in Hungary did not allow any cartography-related BSc programme. However, Eötvös Loránd University and the Budapest University of Technology and Economics have established their MSc programmes that are related to cartography. Four universities also agreed on starting a new MSc in GIS, but the Hungarian Accreditation Committee refused the approval of their joint proposal. There are further cartography-related MSc programmes waiting for decision by the Hungarian Accreditation Committee. Some BSc and MSc programmes (such as geography and informatics) established specialization in GIS, and this gives us the opportunity of teaching cartography and GIS to a larger number of students

    GIS w polskiej edukacji wyższej – dyskusja

    Get PDF
    Norvay Grants FSS/2014/HEI/W/0114/U/001

    Built environment education and research in West Africa

    Get PDF
    Built environment programmes in West African universities; and research contributions from West Africa in six leading international journals and proceedings of the WABER conference are explored. At least 20 universities in the region offer degree programmes in Architecture (86% out of 23 universities); Building (57%); Civil Engineering (67%); Estate Management (52%); Quantity Surveying (52%); Surveying and Geoinformatics (55%); Urban and Regional Planning (67%). The lecturer-student ratio on programmes is around 1:25 compared to the 1:10 benchmark for excellence. Academics who teach on the programmes are clearly research active with some having published papers in leading international journals. There is, however, plenty of scope for improvement particularly at the highest international level. Out of more than 5000 papers published in six leading international peer-reviewed journals since each of them was established, only 23 of the papers have come from West Africa. The 23 papers are published by 28 academics based in 13 universities. Although some academics may publish their work in the plethora of journals that have proliferated in recent years, new generation researchers are encouraged to publish in more established journals. The analyses of 187 publications in the WABER conference proceedings revealed 18 research-active universities. Factors like quality of teaching, research and lecturer-student ratio, etc count in the ranking of universities. The findings lay bare some of the areas that should be addressed to improve the landscape of higher education in West Africa

    Earth's surface fluid variations and deformations from GPS and GRACE in global warming

    Full text link
    Global warming is affecting our Earth's environment. For example, sea level is rising with thermal expansion of water and fresh water input from the melting of continental ice sheets due to human-induced global warming. However, observing and modeling Earth's surface change has larger uncertainties in the changing rate and the scale and distribution of impacts due to the lack of direct measurements. Nowadays, the Earth observation from space provides a unique opportunity to monitor surface mass transfer and deformations related to climate change, particularly the global positioning system (GPS) and the Gravity Recovery and Climate Experiment (GRACE) with capability of estimating global land and ocean water mass. In this paper, the Earth's surface fluid variations and deformations are derived and analyzed from global GPS and GRACE measurements. The fluids loading deformation and its interaction with Earth system, e.g., Earth Rotation, are further presented and discussed.Comment: Proceeding of Geoinformatics, IEEE Geoscience and Remote Sensing Society (GRSS), June 24-26, 2011, Shanghai, Chin

    On the road to personalised and precision geomedicine: medical geology and a renewed call for interdisciplinarity

    Get PDF
    Our health depends on where we currently live, as well as on where we have lived in the past and for how long in each place. An individual’s place history is particularly relevant in conditions with long latency between exposures and clinical manifestations, as is the case in many types of cancer and chronic conditions. A patient’s geographic history should routinely be considered by physicians when diagnosing and treating individual patients. It can provide useful contextual environmental information (and the corresponding health risks) about the patient, and should thus form an essential part of every electronic patient/health record. Medical geology investigations, in their attempt to document the complex relationships between the environment and human health, typically involve a multitude of disciplines and expertise. Arguably, the spatial component is the one factor that ties in all these disciplines together in medical geology studies. In a general sense, epidemiology, statistical genetics, geoscience, geomedical engineering and public and environmental health informatics tend to study data in terms of populations, whereas medicine (including personalised and precision geomedicine, and lifestyle medicine), genetics, genomics, toxicology and biomedical/health informatics more likely work on individuals or some individual mechanism describing disease. This article introduces with examples the core concepts of medical geology and geomedicine. The ultimate goals of prediction, prevention and personalised treatment in the case of geology-dependent disease can only be realised through an intensive multiple-disciplinary approach, where the various relevant disciplines collaborate together and complement each other in additive (multidisciplinary), interactive (interdisciplinary) and holistic (transdisciplinary and cross-disciplinary) manners

    Solving the tasks of subsurface resources management in GIS RAPID environment

    Get PDF
    Purpose. Solving the tasks of subsurface resources management based on the created GIS RAPID geoinformation technology. Methods. Close spatial relationships of lineament network characteristics and earthquake epicenters were detected in 3 seismically active areas located in the mountainous regions of Central Europe. Digital elevation models (DEM) based on ASTER satellite surveys and earthquake epicenter data were used. The nature of spatial relationship of lineament network and vein ore objects was studied in the territory of Congo DR, in the Lake Kivu area using space imagery. Gold ore objects were searched and forecasted in Uzbekistan in the site of Jamansai Mountains. High- resolution imagery from QuickBird 2 satellite, geophysical field surveys, geological and geochemical data were used. Findings. It was found that a significant number of epicenters are located in areas of high concentration of “non-standard” azimuths lineaments – from 27 to 34% of the total number of lineaments. It was revealed that 59.6% of the epicenters are located within 10% of sites with the highest values of complex deformation maps; 50% of the areas with the highest values of these maps contain, on average, 89% of all earthquake epicenters. It was found that satellite image lineament concentration maps with “non-standard” azimuths reflect the spatial relationship with known deposits much better than the concentration map of all lineaments. It was detected that the total area of gold ore objects perspective sites is about 20 km2. Originality. The use of GIS RAPID in a number of earth’s crust areas has allowed to establish new regularities linking the networks of physical field and landscape lineament characteristics with ore bodies and earthquake epicenters localization. Practical implications. A new technology has been developed for solving geological forecasting and prospecting problems. The technology can be used to solve a wide range of practical problems, especially in difficult geological conditions when searching for deep objects weakly presented in external fields and landscape.Мета. Рішення задач надрокористування на базі створеної геоінформаційної технології ГІС РАПІД. Методика. Виявлення тісних просторових взаємозв’язків різноманітних характеристик мереж лінеаментів і епіцентрів землетрусів проводилося у 3 сейсмоактивних ділянках, розташованих в гірських районах Центральної Європи. Використовувалися цифрові моделі рельєфу (DEM), побудовані за зйомками зі супутника ASTER і дані по епіцентрах землетрусів. Дослідження характеру просторового взаємозв’язку мережі лінеаментів і жильних рудних об’єктів проводилися на території Демократичної Республіки Конго, в районі озера Ківу із використанням космічних зйомок. Дослідження пошуку та прогнозу золоторудних об’єктів виконувалися в Узбекистані на ділянці Джамансайскіх гір. Використовувалися високоточні космічні зйомки зі супутника QuickBird 2, зйомки геофізичних полів, геологічні та геохімічні дані. Результати. Виявлено, що значна частина епіцентрів приурочена саме до ділянок підвищеної концентрації лінеаментів “нестандартних” азимутів, складаючи від 27 до 34% загального числа лінеаментів. Встановлено, що 59.6% епіцентрів знаходяться всередині 10% території ділянок, що володіють найвищими значеннями комплексних карт деформацій; 50% території з найвищими значеннями цих карт вміщають, в середньому, 89% усіх епіцентрів землетрусів. Визначено, що карти концентрації лінеаментів космознімків з “нестанартними” азимутами значно краще відображають просторовий взаємозв’язок з відомими родовищами у порівнянні з картою концентрації всіх лінеаментів. Встановлено, що сумарна площа перспективних ділянок золоторудних об’єктів склала близько 20 км2. Наукова новизна. Застосування ГІС РАПІД на ряді ділянок земної кори дозволило встановити нові закономірності, що зв’язують характеристики мережі лінеаментів фізичних полів і ландшафту з локалізацією рудних тіл та епіцентрів землетрусів. Практична значимість. Розроблено нову технологію рішення прогнозних і пошукових геологічних завдань, яка може застосовуватися для вирішення широкого кола практичних задач, особливо у складних геологічних умовах при пошуках глибокозалягаючих об’єктів, що слабо виявляються в зовнішніх полях і ландшафті.Цель. Решения задач недропользования на базе созданной геоинформационной технологии ГИС РАПИД. Методика. Выявление тесных пространственных взаимосвязей разнообразных характеристик сетей линеаментов и эпицентров землетрясений проводилось в 3 сейсмоактивных участках, расположенных в горных районах Центральной Европы. Использовались цифровые модели рельефа (DEM), построенные по съемкам со спутника ASTER, и данные об эпицентрах землетрясений. Исследования характера пространственной взаимосвязи сети линеаментов и жильных рудных объектов проводились на территории Демократической Республики Конго, в районе озера Киву с использованием космических съемок. Исследования поиска и прогноза золоторудных объектов выполнялись в Узбекистане на участке Джамансайских гор. Использовались высокоточные космические съемки со спутника QuickBird 2, съемки геофизических полей, геологические и геохимические данные. Результаты. Выявлено, что значительная часть эпицентров приурочена именно к участкам повышенной концентрации линеаментов “нестандартных” азимутов, составляя от 27 до 34% общего числа линеаментов. Установлено, что 59.6% эпицентров находятся внутри 10% территории участков, обладающих наивысшими значениями комплексных карт деформаций; 50% территории с наивысшими значениями этих карт вмещают, в среднем, 89% всех эпицентров землетрясений. Определено, что карты концентрации линеаментов космоснимков с “нестанартными” азимутами значительно лучше отражают пространственную взаимосвязь с известными месторождениями по сравнению с картой концентрации всех линеаментов. Установлено, что суммарная площадь перспективных участков золоторудных объектов составила около 20 км2. Научная новизна. Применение ГИС РАПИД на ряде участков земной коры позволило установить новые закономерности, связывающие характеристики сети линеаментов физических полей и ландшафта с локализацией рудных тел и эпицентров землетрясений. Практическая значимость. Разработана новая технология решения прогнозных и поисковых геологических задач, которая может применяться для решения широкого круга практических задач, особенно в сложных геологических условиях при поисках глубокозалегающих объектов, слабо проявляющихся во внешних полях и ландшафте.The work is performed as a part of planned research of the geoinformation systems department of the Dnipro University of Technology. The results are obtained without any financial support of grants and research projects. The authors express appreciation to reviewers and editors for their valuable comments, recommendations, and attention to the work

    Marine science from cartographic viewpoint: from research to education in Hungary | Tengertan térképészet szemmel: a kutatástól az oktatásig Magyarországon

    Get PDF
    Két és fél évtizedes magyar kutatások, valamint a témához kapcsolódó külföldi szakirodalom magyar adaptációja és szintézise eredményeképpen, ma már korszerű és elegendő tudással rendelkezünk ahhoz, hogy a tengerfenéknek a szárazföldek leíróföldrajzához hasonló részletességű leírását adjuk. Ez adta az ötletet, hogy kurzust szervezzünk a Miskolci és a Szegedi Egyetemen „Tengertan I. – Morfológia”, illetve „Tengertan térképész szemmel” címmel. Jelen tanulmányban összegzem kutatásaim történetét, hálás tisztelettel Klinghammer István professzor úrnak. A tudományos munkásságomhoz kapcsolódó sikerek két időszakra és két különböző hasznosítási területre oszthatók. Az első időszakban (1974–90) az eredmények gyakorlati hasznosulása jellemző, nem véletlenül, hiszen ekkor a Kartográfiai Vállalat munkatársa voltam. Míg a második – nagyjából az 1990-es évek elején elkezdődött – időszakban az ELTE oktatójaként a kutatás áttevődött az egyetemre, hallgatók bevonásával folyt, de az ezredforduló elejéig „csak” nemzetközi visszhangot is kiváltó elméleti eredmények születtek, az eredmények ugyan folyamatosan beépültek az oktatásba, azonban „látványosabb hasznosításuk” különböző kiadványokban csak 2003 és 2004 folyamán valósulhatott meg. Szükségesnek látom azonban a fizikai oceanográfia eredményeinek térképi szintézisét, összegzését és „honosítását” is. A 2004-ben a Topográf–Nyír-Karta kiadta „Nagy Világatlaszba” elkészítettem a 32 oldalas TENGERFENÉK-DOMBORZAT című fejezetet. A kiadóval további 40 oldalnyi tematikus térképpel kibővített kiadásról tárgyalunk, a felsőoktatás és a doktorképzés számára. After having pursued research of marine science for two and half decades, and after having synthesized international literature on this discipline and adapted it to the Hungarian language, we are in possession of a level of modern knowledge sufficient to give a detailed and adequate description of the seafloor, similar to descriptive geography of continents. This gave us the idea to organize a course at the University of Miskolc and Szeged as well with the titles „Marine Science I – Morphology”and „Marine Science from Cartographic Viewpoint”. This paper gives a summary of the history of this research, with grateful respects to Professor István Klinghammer. My achievements in research can be divided in two periods fundamentally different in practical respect. In the first period (1974–90), when I was working for the Kartográfiai Vállalat, my results were typically utilized in practice. During the second period, which began in the early 1990s, being a lecturer at Eötvös Loránd University, I transferred my research to the university, where several students joined the project. Until the first years of the new millennium, we could „only” achieve theoretical results; although these results elicited international reaction and were incorporated in education, they could be utilized in various publications „spectacularly” only during 2003 and 2004. I also find the cartographical synthesis, summary and „nationalization” of results of physical oceanography important. I prepared a chapter of 32 pages with the title „Seafloor Relief”, which was published in 2004 by Topográf–Nyír-Karta in their „Great World Atlas”. We are negotiating with the publishing company about a more comprehensive publication including 40 new pages of thematic maps for the university and postgraduate training
    corecore