31 research outputs found

    Neighbor Adjacency based Hole Detection Protocol for Wireless Sensor Networks

    Get PDF
    AbstractCoverage and communication holes may appear in sensor networks due to limited battery life, presence of obstacles and physical destruction of nodes. These holes have a negative impact on the network performance. In order to ensure that optimum area in sensing field is covered by sensors, coverage holes must be detected. This paper proposes an adaptive routing algorithm based on neighbor adjacency for detecting coverage holes in sensor networks. Proposed algorithm can compute location of holes in the network from remote locations based on hop count measure computed from network statistics. Simulation results show that algorithm gives better performance in terms of end to end delay and packet delivery fraction as compared to previous works. Simplicity and efficiency are the key features that distinguish this work from existing routing and hole detection schemes

    Greedy Routing Recovery Using Controlled Mobility in Wireless Sensor Networks

    Get PDF
    International audienceOne of the most current routing families in wireless sensor networks is geographic routing. Using nodes location, they generally ap- ply a greedy routing that makes a sensor forward data to route to one of its neighbors in the forwarding direction of the destination. If this greedy step fails, the routing protocol triggers a recovery mechanism. Such re- covery mechanisms are mainly based on graph planarization and face traversal or on a tree construction. Nevertheless real-world network pla- narization is very difficult due to the dynamic nature of wireless links and trees are not so robust in such dynamic environments. Recovery steps generally provoke huge energy overhead with possibly long inefficient paths. In this paper, we propose to take advantage of the introduction of controlled mobility to reduce the triggering of a recovery process. We propose Greedy Routing Recovery (GRR) routing protocol. GRR en- hances greedy routing energy efficiency as it adapts network topology to the network activity. Furthermore GRR uses controlled mobility to relocate nodes in order to restore greedy and reduce energy consuming recovery step triggering. Simulations demonstrate that GRR successfully bypasses topology holes in more than 72% of network topologies avoid- ing calling to expensive recovery steps and reducing energy consumption while preserving network connectivity

    3D Geographical routing in wireless sensor networks

    Get PDF
    In this paper, we present a novel 3D geographical routing algorithm (3DGR) that makes use of the position information to route packets from sources to destinations with high path quality and reliability. The locality and high scalability of this algorithm make it suitable for wireless sensor networks. It provides high adaptability to changes in topology and recovery of link failures which increases its reliability. We also incorporate the battery-aware energy efficient schemes to increase the overall lifetime of the network. To reduce latency, a method of keeping a small record of recent paths is used. We also show that location errors still result in good performance of our algorithm while the same assumptions might yield to bad performance or even complete failures in others. Simulation results show that the power consumption and delay using 3DGR are close to optimal obtainable based on full knowledge of the network

    Enhanced Topology Aware Routing for WSN

    Get PDF
    In this paper Enhanced Topology Aware Routing (ETAR) is proposed for point to point routing in wireless sensor network. Each node is characterized by a coordinate vector consisting of the shortest path hop distances to a subset of nodes, named anchors. The ETAR algorithm efficiently maps a network topology into a low-dimensional virtual coordinate space where hop distances between pairwise nodes are preserved. It assist greedy forwarding to find the right neighbor that is one hop closer to the destination by eliminating the local minimum problem and achieve high success ratio of packet delivery and throughput without location informatio

    On Mobility Management in Multi-Sink Sensor Networks for Geocasting of Queries

    Get PDF
    In order to efficiently deal with location dependent messages in multi-sink wireless sensor networks (WSNs), it is key that the network informs sinks what geographical area is covered by which sink. The sinks are then able to efficiently route messages which are only valid in particular regions of the deployment. In our previous work (see the 5th and 6th cited documents), we proposed a combined coverage area reporting and geographical routing protocol for location dependent messages, for example, queries that are injected by sinks. In this paper, we study the case where we have static sinks and mobile sensor nodes in the network. To provide up-to-date coverage areas to sinks, we focus on handling node mobility in the network. We discuss what is a better method for updating the routing structure (i.e., routing trees and coverage areas) to handle mobility efficiently: periodic global updates initiated from sinks or local updates triggered by mobile sensors. Simulation results show that local updating perform very well in terms of query delivery ratio. Local updating has a better scalability to increasing network size. It is also more energy efficient than ourpreviously proposed approach, where global updating in networks have medium mobility rate and speed

    An Analysis of Planarity in Face-Routing

    Get PDF
    In this report we investigate the limits of routing according to left- or right-hand rule (LHR). Using LHR, a node upon receipt of a message will forward to the neighbour that sits next in counter-clockwise order in the network graph. When used to recover from greedy routing failures, LHR guarantees success if implemented over planar graphs. This is often referred to as face or geographic routing. In the current body of knowledge it is known that if planarity is violated then LHR is guaranteed only to eventually return to the point of origin. Our work seeks to understand why a non-planar environment stops LHR from making delivery guarantees. Our investigation begins with an analysis to enumerate all node con gurations that cause intersections. A trace over each con guration reveals that LHR is able to recover from all but a single case, the `umbrella' con guration so named for its appearance. We use this information to propose the Prohibitive Link Detection Protocol (PDLP) that can guarantee delivery over non-planar graphs using standard face-routing techniques. As the name implies, the protocol detects and circumvents the `bad' links that hamper LHR. The goal of this work is to maintain routing guarantees while disturbing the network graph as little as possible. In doing so, a new starting point emerges from which to build rich distributed protocols in the spirit of protocols such as CLDP and GDSTR
    corecore