70 research outputs found

    Adaptive Traffic Fingerprinting for Darknet Threat Intelligence

    Full text link
    Darknet technology such as Tor has been used by various threat actors for organising illegal activities and data exfiltration. As such, there is a case for organisations to block such traffic, or to try and identify when it is used and for what purposes. However, anonymity in cyberspace has always been a domain of conflicting interests. While it gives enough power to nefarious actors to masquerade their illegal activities, it is also the cornerstone to facilitate freedom of speech and privacy. We present a proof of concept for a novel algorithm that could form the fundamental pillar of a darknet-capable Cyber Threat Intelligence platform. The solution can reduce anonymity of users of Tor, and considers the existing visibility of network traffic before optionally initiating targeted or widespread BGP interception. In combination with server HTTP response manipulation, the algorithm attempts to reduce the candidate data set to eliminate client-side traffic that is most unlikely to be responsible for server-side connections of interest. Our test results show that MITM manipulated server responses lead to expected changes received by the Tor client. Using simulation data generated by shadow, we show that the detection scheme is effective with false positive rate of 0.001, while sensitivity detecting non-targets was 0.016+-0.127. Our algorithm could assist collaborating organisations willing to share their threat intelligence or cooperate during investigations.Comment: 26 page

    Transparent and scalable client-side server selection using netlets

    Get PDF
    Replication of web content in the Internet has been found to improve service response time, performance and reliability offered by web services. When working with such distributed server systems, the location of servers with respect to client nodes is found to affect service response time perceived by clients in addition to server load conditions. This is due to the characteristics of the network path segments through which client requests get routed. Hence, a number of researchers have advocated making server selection decisions at the client-side of the network. In this paper, we present a transparent approach for client-side server selection in the Internet using Netlet services. Netlets are autonomous, nomadic mobile software components which persist and roam in the network independently, providing predefined network services. In this application, Netlet based services embedded with intelligence to support server selection are deployed by servers close to potential client communities to setup dynamic service decision points within the network. An anycast address is used to identify available distributed decision points in the network. Each service decision point transparently directs client requests to the best performing server based on its in-built intelligence supported by real-time measurements from probes sent by the Netlet to each server. It is shown that the resulting system provides a client-side server selection solution which is server-customisable, scalable and fault transparent

    An Architecture for Global Distributed SIP Network Using IPv4 Anycast

    Get PDF
    Tato diplomová práce se zabývá metodami pro výběr nejbližší RTP proxy k VoIP klientům s použitím IP anycastu. RTP proxy servery jsou umístěny v síti Internetu a přeposílají RTP data pro VoIP klienty za síťovými překladači adres(NAT). Bez zeměpisně rozmístěných RTP proxy serverů a metod pro nalezení nejbližšího RTP proxy serveru by došlo ke zbytečnému poklesu kvality přenosu médialních dat a velkému zpoždení. Tento dokument navrhuje 4 metody a jejich porovnání s podrobnějšími rozbory metod s využitím DNS resolvování a přímo SIP protokolu. Tento dokument také obsahuje měření chování IP anycastu v porovnání mezi metrikami směrování a metrikami časovými. Nakonec dokumentu je také uvedena implemetace na SIP Express Router platformě.This thesis is about using IP anycast-based methods for locating RTP proxy servers close to VoIP clients. The RTP proxy servers are hosts on the public Internet that relay RTP media between VoIP clients in a way that accomplishes traversal over Network Address Translators (NATs). Without geographically-dispersed RTP proxy servers and methods to find one in client's proximity, voice latency may be unbearably long and dramatically reduce perceived voice quality. This document proposes four methods their comparison with further design of DNS-based and SIP-based methods. It includes IP anycast measurements that provides an overview of IP anycast behaviour in terms of routing metrics and latency metrics. It also includes implementation on SIP Express Router platform.

    Systems for characterizing Internet routing

    Get PDF
    2018 Spring.Includes bibliographical references.Today the Internet plays a critical role in our lives; we rely on it for communication, business, and more recently, smart home operations. Users expect high performance and availability of the Internet. To meet such high demands, all Internet components including routing must operate at peak efficiency. However, events that hamper the routing system over the Internet are very common, causing millions of dollars of financial loss, traffic exposed to attacks, or even loss of national connectivity. Moreover, there is sparse real-time detection and reporting of such events for the public. A key challenge in addressing such issues is lack of methodology to study, evaluate and characterize Internet connectivity. While many networks operating autonomously have made the Internet robust, the complexity in understanding how users interconnect, interact and retrieve content has also increased. Characterizing how data is routed, measuring dependency on external networks, and fast outage detection has become very necessary using public measurement infrastructures and data sources. From a regulatory standpoint, there is an immediate need for systems to detect and report routing events where a content provider's routing policies may run afoul of state policies. In this dissertation, we design, build and evaluate systems that leverage existing infrastructure and report routing events in near-real time. In particular, we focus on geographic routing anomalies i.e., detours, routing failure i.e., outages, and measuring structural changes in routing policies

    Shortcuts through Colocation Facilities

    Full text link
    Network overlays, running on top of the existing Internet substrate, are of perennial value to Internet end-users in the context of, e.g., real-time applications. Such overlays can employ traffic relays to yield path latencies lower than the direct paths, a phenomenon known as Triangle Inequality Violation (TIV). Past studies identify the opportunities of reducing latency using TIVs. However, they do not investigate the gains of strategically selecting relays in Colocation Facilities (Colos). In this work, we answer the following questions: (i) how Colo-hosted relays compare with other relays as well as with the direct Internet, in terms of latency (RTT) reductions; (ii) what are the best locations for placing the relays to yield these reductions. To this end, we conduct a large-scale one-month measurement of inter-domain paths between RIPE Atlas (RA) nodes as endpoints, located at eyeball networks. We employ as relays Planetlab nodes, other RA nodes, and machines in Colos. We examine the RTTs of the overlay paths obtained via the selected relays, as well as the direct paths. We find that Colo-based relays perform the best and can achieve latency reductions against direct paths, ranging from a few to 100s of milliseconds, in 76% of the total cases; 75% (58% of total cases) of these reductions require only 10 relays in 6 large Colos.Comment: In Proceedings of the ACM Internet Measurement Conference (IMC '17), London, GB, 201

    Bias in Internet Measurement Platforms

    Full text link
    Network operators and researchers frequently use Internet measurement platforms (IMPs), such as RIPE Atlas, RIPE RIS, or RouteViews for, e.g., monitoring network performance, detecting routing events, topology discovery, or route optimization. To interpret the results of their measurements and avoid pitfalls or wrong generalizations, users must understand a platform's limitations. To this end, this paper studies an important limitation of IMPs, the \textit{bias}, which exists due to the non-uniform deployment of the vantage points. Specifically, we introduce a generic framework to systematically and comprehensively quantify the multi-dimensional (e.g., across location, topology, network types, etc.) biases of IMPs. Using the framework and open datasets, we perform a detailed analysis of biases in IMPs that confirms well-known (to the domain experts) biases and sheds light on less-known or unexplored biases. To facilitate IMP users to obtain awareness of and explore bias in their measurements, as well as further research and analyses (e.g., methods for mitigating bias), we publicly share our code and data, and provide online tools (API, Web app, etc.) that calculate and visualize the bias in measurement setups

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Measuring Effectiveness of Address Schemes for AS-level Graphs

    Get PDF
    This dissertation presents measures of efficiency and locality for Internet addressing schemes. Historically speaking, many issues, faced by the Internet, have been solved just in time, to make the Internet just work~\cite{justWork}. Consensus, however, has been reached that today\u27s Internet routing and addressing system is facing serious scaling problems: multi-homing which causes finer granularity of routing policies and finer control to realize various traffic engineering requirements, an increased demand for provider-independent prefix allocations which injects unaggregatable prefixes into the Default Free Zone (DFZ) routing table, and ever-increasing Internet user population and mobile edge devices. As a result, the DFZ routing table is again growing at an exponential rate. Hierarchical, topology-based addressing has long been considered crucial to routing and forwarding scalability. Recently, however, a number of research efforts are considering alternatives to this traditional approach. With the goal of informing such research, we investigated the efficiency of address assignment in the existing (IPv4) Internet. In particular, we ask the question: ``how can we measure the locality of an address scheme given an input AS-level graph?\u27\u27 To do so, we first define a notion of efficiency or locality based on the average number of bit-hops required to advertize all prefixes in the Internet. In order to quantify how far from ``optimal the current Internet is, we assign prefixes to ASes ``from scratch in a manner that preserves observed semantics, using three increasingly strict definitions of equivalence. Next we propose another metric that in some sense quantifies the ``efficiency of the labeling and is independent of forwarding/routing mechanisms. We validate the effectiveness of the metric by applying it to a series of address schemes with increasing randomness given an input AS-level graph. After that we apply the metric to the current Internet address scheme across years and compare the results with those of compact routing schemes
    corecore