38,829 research outputs found

    Accelerating Discovery for Complex Neurological and Behavioral Disorders Through Systems Genetics and Integrative Genomics in the Laboratory Mouse

    Get PDF
    Recent advances in systems genetics and integrative functional genomics have greatly improved the study of complex neurological and behavioral traits. The methods developed for the integrated characterization of new, high-resolution mouse genetic reference populations and systems genetics enable behavioral geneticists an unprecedented opportunity to address questions of the molecular basis of neurological and psychiatric disorders and their comorbidities. Integrative genomics augment these strategies by enabling rapid informatics-assisted candidate gene prioritization, cross-species translation, and mechanistic comparison across related disorders from a wealth of existing data in mouse and other model organisms. Ultimately, through these complementary approaches, finding the mechanisms and sources of genetic variation underlying complex neurobehavioral disease related traits is becoming tractable. Furthermore, these methods enable categorization of neurobehavioral disorders through their underlying biological basis. Together, these model organism-based approaches can lead to a refinement of diagnostic categories and targeted treatment of neurological and psychiatric disease

    Single cell molecular alterations reveal target cells and pathways of concussive brain injury.

    Get PDF
    The complex neuropathology of traumatic brain injury (TBI) is difficult to dissect, given the convoluted cytoarchitecture of affected brain regions such as the hippocampus. Hippocampal dysfunction during TBI results in cognitive decline that may escalate to other neurological disorders, the molecular basis of which is hidden in the genomic programs of individual cells. Using the unbiased single cell sequencing method Drop-seq, we report that concussive TBI affects previously undefined cell populations, in addition to classical hippocampal cell types. TBI also impacts cell type-specific genes and pathways and alters gene co-expression across cell types, suggesting hidden pathogenic mechanisms and therapeutic target pathways. Modulating the thyroid hormone pathway as informed by the T4 transporter transthyretin Ttr mitigates TBI-associated genomic and behavioral abnormalities. Thus, single cell genomics provides unique information about how TBI impacts diverse hippocampal cell types, adding new insights into the pathogenic pathways amenable to therapeutics in TBI and related disorders

    GENETIC TESTING PRACTICES OF GENETIC COUNSELORS, GENETICISTS, AND PEDIATRIC NEUROLOGISTS WITH REGARD TO CHILDHOOD-ONSET NEUROGENETIC CONDITIONS

    Get PDF
    Identifying genetic diagnoses for neurological conditions with a considerable hereditary component, such as autism spectrum disorder (ASD), intellectual disability, and epilepsy, is critical to providing proper medical management for these patients and their families. However, many patients with these conditions are not tested appropriately or receive no genetic testing at all. The current study was designed to characterize the genetic testing practices of the providers most likely to evaluate or order genetic testing for these patients: pediatric neurologists, geneticists, and genetic counselors. The study noted significant variance between the testing strategies selected by pediatric neurologists compared to those of geneticists and genetic counselors and supports the need for updated guidelines that are consistent across specialties. Pediatric neurologists report lower confidence with ordering genetic testing and a need and desire for further education regarding genetic testing. This study proposes that the continued integration of genetic counselors into pediatric neurology clinics may improve utilization of genetic testing while reducing the burden on neurologists

    Interrogating the Genetic Determinants of Tourette’s Syndrome and Other Tic Disorders Through Genome-Wide Association Studies

    Get PDF
    Objective: Tourette’s syndrome is polygenic and highly heritable. Genome-wide association study (GWAS) approaches are useful for interrogating the genetic architecture and determinants of Tourette’s syndrome and other tic disorders. The authors conducted a GWAS meta-analysis and probed aggregated Tourette’s syndrome polygenic risk to test whether Tourette’s and related tic disorders have an underlying shared genetic etiology and whether Tourette’s polygenic risk scores correlate with worst-ever tic severity and may represent a potential predictor of disease severity. Methods: GWAS meta-analysis, gene-based association, and genetic enrichment analyses were conducted in 4,819 Tourette’s syndrome case subjects and 9,488 control subjects. Replication of top loci was conducted in an independent population-based sample (706 case subjects, 6,068 control subjects). Relationships between Tourette’s polygenic risk scores (PRSs), other tic disorders, ascertainment, and tic severity were examined. Results: GWAS and gene-based analyses identified one genome-wide significant locus within FLT3 on chromosome 13, rs2504235, although this association was not replicated in the population-based sample. Genetic variants spanning evolutionarily conserved regions significantly explained 92.4% of Tourette’s syndrome heritability. Tourette’s-associated genes were significantly preferentially expressed in dorsolateral prefrontal cortex. Tourette’s PRS significantly predicted both Tourette’s syndrome and tic spectrum disorders status in the population-based sample. Tourette’s PRS also significantly correlated with worst-ever tic severity and was higher in case subjects with a family history of tics than in simplex case subjects. Conclusions: Modulation of gene expression through noncoding variants, particularly within cortico-striatal circuits, is implicated as a fundamental mechanism in Tourette’s syndrome pathogenesis. At a genetic level, tic disorders represent a continuous spectrum of disease, supporting the unification of Tourette’s syndrome and other tic disorders in future diagnostic schemata. Tourette’s PRSs derived from sufficiently large samples may be useful in the future for predicting conversion of transient tics to chronic tic disorders, as well as tic persistence and lifetime tic severity

    Neandertal introgression partitions the genetic landscape of neuropsychiatric disorders and associated behavioral phenotypes

    Get PDF
    Despite advances in identifying the genetic basis of psychiatric and neurological disorders, fundamental questions about their evolutionary origins remain elusive. Here, introgressed variants from archaic humans such as Neandertals can serve as an intriguing research paradigm. We compared the number of associations for Neandertal variants to the number of associations of frequency-matched non-archaic variants with regard to human CNS disorders (neurological and psychiatric), nervous system drug prescriptions (as a proxy for disease), and related, non-disease phenotypes in the UK biobank (UKBB). While no enrichment for Neandertal genetic variants were observed in the UKBB for psychiatric or neurological disease categories, we found significant associations with certain behavioral phenotypes including pain, chronotype/sleep, smoking and alcohol consumption. In some instances, the enrichment signal was driven by Neandertal variants that represented the strongest association genome-wide. SNPs within a Neandertal haplotype that was associated with smoking in the UKBB could be replicated in four independent genomics datasets

    Clinical applications of personalized medicine: a new paradigm and challenge

    Get PDF
    The personalized medicine is an emergent and rapidly developing method of clinical practice that uses new technologies to provide decisions in regard to the prediction, prevention, diagnosis and treatment of disease. The continue evolution of technology and the developments in molecular diagnostics and genomic analysis increased the possibility of an even more understanding and interpretation of the human genome and exome, allowing a "personalized" approach to clinical care, so that the concepts of "Systems Medicine" and "System Biology" are increasingly actual. The purpose of this study is to evaluate the personalized medicine about its indications and benefits, actual clinical applications and future perspectives as well as its issues and health care implications. It was made a careful review of the scientific literature on this field that highlighted the applicability and usefulness of this new medical approach as well as the fact that personalized medicine strategy is even more increasing in numerous fields of applications

    Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium

    Get PDF
    Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging
    • …
    corecore