69,384 research outputs found

    The Reactome pathway Knowledgebase

    Get PDF
    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently

    DEVELOPMENT OF BIOINFORMATICS TOOLS AND ALGORITHMS FOR IDENTIFYING PATHWAY REGULATORS, INFERRING GENE REGULATORY RELATIONSHIPS AND VISUALIZING GENE EXPRESSION DATA

    Get PDF
    In the era of genetics and genomics, the advent of big data is transforming the field of biology into a data-intensive discipline. Novel computational algorithms and software tools are in demand to address the data analysis challenges in this growing field. This dissertation comprises the development of a novel algorithm, web-based data analysis tools, and a data visualization platform. Triple Gene Mutual Interaction (TGMI) algorithm, presented in Chapter 2 is an innovative approach to identify key regulatory transcription factors (TFs) that govern a particular biological pathway or a process through interaction among three genes in a triple gene block, which consists of a pair of pathway genes and a TF. The identification of key TFs controlling a biological pathway or a process allows biologists to understand the complex regulatory mechanisms in living organisms. TF-Miner, presented in Chapter 3, is a high-throughput gene expression data analysis web application that was developed by integrating two highly efficient algorithms; TF-cluster and TF-Finder. TF-Cluster can be used to obtain collaborative TFs that coordinately control a biological pathway or a process using genome-wide expression data. On the other hand, TF-Finder can identify regulatory TFs involved in or associated with a specific biological pathway or a process using Adaptive Sparse Canonical Correlation Analysis (ASCCA). Chapter 4 presents ExactSearch; a suffix tree based motif search algorithm, implemented in a web-based tool. This tool can identify the locations of a set of motif sequences in a set of target promoter sequences. ExactSearch also provides the functionality to search for a set of motif sequences in flanking regions from 50 plant genomes, which we have incorporated into the web tool. Chapter 5 presents STTM JBrowse; a web-based RNA-Seq data visualization system built using the JBrowse open source platform. STTM JBrowse is a unified repository to share/produce visualizations created from large RNA-Seq datasets generated from a variety of model and crop plants in which miRNAs were destroyed using Short Tandem Target Mimic (STTM) Technology

    How to understand the cell by breaking it: network analysis of gene perturbation screens

    Get PDF
    Modern high-throughput gene perturbation screens are key technologies at the forefront of genetic research. Combined with rich phenotypic descriptors they enable researchers to observe detailed cellular reactions to experimental perturbations on a genome-wide scale. This review surveys the current state-of-the-art in analyzing perturbation screens from a network point of view. We describe approaches to make the step from the parts list to the wiring diagram by using phenotypes for network inference and integrating them with complementary data sources. The first part of the review describes methods to analyze one- or low-dimensional phenotypes like viability or reporter activity; the second part concentrates on high-dimensional phenotypes showing global changes in cell morphology, transcriptome or proteome.Comment: Review based on ISMB 2009 tutorial; after two rounds of revisio

    MorphDB : prioritizing genes for specialized metabolism pathways and gene ontology categories in plants

    Get PDF
    Recent times have seen an enormous growth of "omics" data, of which high-throughput gene expression data are arguably the most important from a functional perspective. Despite huge improvements in computational techniques for the functional classification of gene sequences, common similarity-based methods often fall short of providing full and reliable functional information. Recently, the combination of comparative genomics with approaches in functional genomics has received considerable interest for gene function analysis, leveraging both gene expression based guilt-by-association methods and annotation efforts in closely related model organisms. Besides the identification of missing genes in pathways, these methods also typically enable the discovery of biological regulators (i.e., transcription factors or signaling genes). A previously built guilt-by-association method is MORPH, which was proven to be an efficient algorithm that performs particularly well in identifying and prioritizing missing genes in plant metabolic pathways. Here, we present MorphDB, a resource where MORPH-based candidate genes for large-scale functional annotations (Gene Ontology, MapMan bins) are integrated across multiple plant species. Besides a gene centric query utility, we present a comparative network approach that enables researchers to efficiently browse MORPH predictions across functional gene sets and species, facilitating efficient gene discovery and candidate gene prioritization. MorphDB is available at http://bioinformatics.psb.ugent.be/webtools/morphdb/morphDB/index/. We also provide a toolkit, named "MORPH bulk" (https://github.com/arzwa/morph-bulk), for running MORPH in bulk mode on novel data sets, enabling researchers to apply MORPH to their own species of interest

    Systemic suppression of the shoot metabolism upon rice root nematode infection

    Get PDF
    Hirschmanniella oryzae is the most common plant-parasitic nematode in flooded rice cultivation systems. These migratory animals penetrate the plant roots and feed on the root cells, creating large cavities, extensive root necrosis and rotting. The objective of this study was to investigate the systemic response of the rice plant upon root infection by this nematode. RNA sequencing was applied on the above-ground parts of the rice plants at 3 and 7 days post inoculation. The data revealed significant modifications in the primary metabolism of the plant shoot, with a general suppression of for instance chlorophyll biosynthesis, the brassinosteroid pathway, and amino acid production. In the secondary metabolism, we detected a repression of the isoprenoid and shikimate pathways. These molecular changes can have dramatic consequences for the growth and yield of the rice plants, and could potentially change their susceptibility to above-ground pathogens and pests
    • …
    corecore