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Preface 

The research conducted for this dissertation is presented in four chapters. Chapter 2 
presents, “An Efficient Algorithm for Identifying Pathway Regulators through Evaluation 
of Triple-Gene Mutual Interaction (TGMI).”  The author conceptualized this algorithm, 
with the help of author’s advisor, Dr. Hairong Wei.  Dr. Wei proposed to evaluate 
different triple gene interaction measures using information theory, provided data sets 
and contributed to interpreting the results using existing biological knowledge base. The 
author developed a computer program in R language, applied the program to multiple 
datasets, and compared the efficiency of the TGMI algorithm with those of several 
existing methods.  

Chapter 3 presents a web-based application, titled “TF-mining Pipelines for Identifying 
Regulatory Genes Controlling a Biological Pathway, Process, or Complex Trait from 
High-Throughput Gene Expression Data.”  We submitted a manuscript to ‘BMC 
Genomics’ journal in 2016 with the same title and received reviews and comments to 
improve functionalities of the web application. We are planning to resubmit the 
manuscript to the same journal with novel features. Dr. Wei proposed the idea for this 
web application, and he was a corresponding author of the two original algorithms; TF-
Cluster and TF-Finder, which were published in ‘BMC Systems Biology’ and ‘BMC 
Bioinformatics’ journals in 2011 and 2010 respectively. Dr. Sapna Kumari, a previous 
member of Dr. Wei’s laboratory, published a manuscript under the title of “Evaluation of 
Gene Association methods for Co-Expression Network Construction and Biological 
Knowledge Discovery” in ‘PLoS ONE’ journal in 2012. Xiaohui Ji, a visiting student in 
Dr. Wei’s Laboratory, published two decomposition algorithms, SSGA and MSGA, in 
‘Scientific Reports’ journal in 2017. The author combined the work of these multiple 
researchers as well as additional functionalities into both web-based data analysis 
pipelines. Jialin Lei and Avinash aided with the implementation of a data management 
portal for the web application. 

Chapter 4, “ExactSearch: A fast plant motif search tool” was published in BMC Plant 
Methods journal in 2016. The author developed the software with the aid from Dr. Bin 
Li, Avinash Subramanian, and Ram Kumar Avari. The author’s advisor Dr. Hairong Wei 
proposed the original idea.  

 Chapter 5 describes the implementation details of a web-based visualization tool, called 
STTM JBrowse. The author developed the tool utilizing JBrowse open source platform 
and produced visualizations shown in this dissertation. Dr. Guiliang Tang and Dr. 
Hairong Wei proposed the original idea for this web-based system. 
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Abstract 

In the era of genetics and genomics, the advent of big data is transforming the field of 
biology into a data-intensive discipline. Novel computational algorithms and software 
tools are in demand to address the data analysis challenges in this growing field. This 
dissertation comprises the development of a novel algorithm, web-based data analysis 
tools, and a data visualization platform. Triple Gene Mutual Interaction (TGMI) 
algorithm, presented in Chapter 2 is an innovative approach to identify key regulatory 
transcription factors (TFs) that govern a particular biological pathway or a process 
through interaction among three genes in a triple gene block, which consists of a pair of 
pathway genes and a TF.  The identification of key TFs controlling a biological pathway 
or a process allows biologists to understand the complex regulatory mechanisms in living 
organisms. TF-Miner, presented in Chapter 3, is a high-throughput gene expression data 
analysis web application that was developed by integrating two highly efficient 
algorithms; TF-cluster and TF-Finder. TF-Cluster can be used to obtain collaborative TFs 
that coordinately control a biological pathway or a process using genome-wide 
expression data. On the other hand, TF-Finder can identify regulatory TFs involved in or 
associated with a specific biological pathway or a process using Adaptive Sparse 
Canonical Correlation Analysis (ASCCA). Chapter 4 presents ExactSearch; a suffix tree 
based motif search algorithm, implemented in a web-based tool. This tool can identify the 
locations of a set of motif sequences in a set of target promoter sequences. ExactSearch 
also provides the functionality to search for a set of motif sequences in flanking regions 
from 50 plant genomes, which we have incorporated into the web tool. Chapter 5 presents 
STTM JBrowse; a web-based RNA-Seq data visualization system built using the 
JBrowse open source platform. STTM JBrowse is a unified repository to share/produce 
visualizations created from large RNA-Seq datasets generated from a variety of model 
and crop plants in which miRNAs were destroyed using Short Tandem Target Mimic 
(STTM) Technology. 



1 

  
Introduction 

In the post-genomics era, high-throughput technologies generate terabytes of sequencing 
and expression datasets, which demand highly efficient computational tools for 
discovering novel biological knowledge. This dissertation includes several computational 
approaches, which address theoretical and practical challenges in identifying transcription 
factors (TFs) which regulate biological pathways or processes, reverse engineering 
context specific gene regulatory networks and visualizing large-scale RNA-Seq gene 
expression data. The algorithms and the data analysis pipelines developed for this 
dissertation are now available as efficient and user-friendly web-based software tools, 
each relating to some aspect of transcriptional regulation, a very important process during 
which transcription factors (TFs) bind to promoter regions of the target genes and interact 
with basal transcriptional machinery, including RNA polymerase. These algorithms and 
the software tools will be instrumental for the elucidation of complex gene regulatory 
networks, which is a central component of modern biological research. 

Analyzing large-scale gene expression datasets to identify key TFs that control a 
biological pathway or a process is a challenging research problem. In Chapter 2, we 
present a novel algorithm, TGMI to address this challenge; the TGMI algorithm uses two 
types of input files: the gene expression profiles of genes in a biological pathway or a 
process of interest and the gene expression profiles of all TFs or a set of differentially 
expressed TFs. The algorithm produces a ranked list of regulatory TFs as well as a 
putative regulatory network that controls the biological pathway or the process. 
Regulatory TFs are identified by evaluating all combinations of triple gene blocks based 
on mutual interaction among the three genes; each block consists of two pathway genes 
and a TF. The advantage of evaluating a triple gene block is that causal patterns can be 
detected in a tri-variate setting rather than in a bivariate context (Schäfer & Strimmer, 
2005). Also, the importance of evaluating a triple gene block was evident in several of 
our previous publications (Kumari et al., 2016; Lin et al., 2013; Lu et al., 2013; H. Wei, 
Yordanov, Kumari, Georgieva, & Busov, 2013; H. Wei, Yordanov, Georgieva, Li, & 
Busov, 2013). The TFs were ranked by the frequencies of interactions in significant triple 
gene blocks; these frequencies reflected the importance of regulatory TFs in governing a 
given pathway. Regulatory networks were constructed using the significantly interacting 
triple gene blocks. Additionally, we developed an algorithm to identify combinatorial 
TFs, which have significant interactions with pathway genes. Finally, the accuracy of the 
new algorithm was compared with those of three other existing algorithms.  



2 

Chapter 3 presents TF-Miner, a web-based data analysis application that can analyze 
large-scale gene expression datasets for biological knowledge discovery. TF-Miner is 
comprised of two data analysis pipelines: TF-Cluster and TF-Finder. TF-Cluster is a data 
analysis pipeline that includes a collaborative network construction phase and a network 
decomposition phase, which can be used for building collaborative clusters of TFs. In this 
web-based implementation, the collaborative network construction phase was 
supplemented with four additional pair-wise association methods to facilitate the 
identification of a range of linear and non-linear associations, thereby increasing the 
accuracy of identifying collaborative clusters of TF (Kumari et al., 2012). The 
decomposition phase of the original TF-Cluster algorithm utilized only Triple-link 
Algorithm (Nie et al., 2011); for the web-based TF-Cluster pipeline, two additional 
algorithms, Single-Seed Growing Algorithm (SSGA) and Multi-Seed Growing Algorithm 
(MSGA) (Ji et al., 2017) were incorporated. This inclusion facilitated the decomposition 
of large collaborative networks into a multitude of collaborative clusters of TFs. In 
contrast to TF-Cluster, TF-Finder can be used for identifying regulatory TFs involved in 
a particular biological pathway or a process; this is accomplished using Adaptive Sparse 
Canonical Correlation Analysis (ASCCA), in combination with a user-supplied 
regulatory TF knowledge base (Cui, Wang, Chen, Busov, & Wei, 2010). In the web-
based TF-Finder pipeline, the knowledge base requirement can be avoided using the 
Sparse Partial Least Squares (SPLS) algorithm. SPLS was used to recognize candidate 
regulatory TFs, which are used in place of the existing knowledge base.  
TF-Miner is available at: http://sys.bio.mtu.edu/cluster/ 

Biologists frequently need to determine if a set of motif sequences bound by specific 
transcription, translation factors are present in the proximal promoters or 3′ untranslated 
regions (3′ UTRs) of a set of plant genes of interest. In Chapter 4, we developed a web 
portal, ExactSearch that enables users to search for motif sequences either in a set of 
custom sequences or the proximal flanking regions of all genes from 50 plant species 
available in public repositories such as Phytozome.org. The ExactSearch was 
implemented using a suffix tree-based search algorithm, which can execute an exhaustive 
search of 100 motifs against 35,000 target sequences (2 kb in length) in 4.2 minutes. This 
web tool will facilitate the work of plant biologists to identify and elucidate the roles of 
novel gene regulatory elements. ExactSearch was recently published in BMC Plant 
Methods (Gunasekara et al., 2016).  
ExactSearch is available at: http://sys.bio.mtu.edu/motif/ 

In Chapter 5, a web-based RNA-Seq data visualization platform called STTM JBrowse is 
presented. STTM JBrowse is a web-based system for sharing/generating visualizations to 
compare alterations in gene expression by Short Tandem Target Mimic (STTM) 

http://sys.bio.mtu.edu/cluster/
http://sys.bio.mtu.edu/motif/
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technology, which can target specific microRNAs (miRNAs) for degradation in 
transgenic plants (Guiliang Tang, 2016; G. Tang et al., 2012). This platform currently 
includes RNA-Seq data extracted from four plant species, including Arabidopsis 
thaliana, rice, soybean, and maize. Utilizing the STTM JBrowse, differentially expressed 
genes in several biological pathways were compared between wild-type (WT) and STTM 
transgenic lines. We adopted an open source genome browser, JBrowse, to implement the 
STTM JBrowse visualization system (Rat Genome Database, 2015; Skinner, Uzilov, 
Stein, Mungall, & Holmes, 2009; Westesson, Skinner, & Holmes, 2013).  
STTM JBrowse is available at: https://blossom.ffr.mtu.edu/designindex2.php 
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An Efficient Algorithm for Identifying Pathway Regulators 
through Evaluation of Triple-Gene Mutual Interaction 
(TGMI) 1 

 

2.1 Abstract 

This chapter introduces a novel algorithm, Triple-Gene Mutual Interaction (TGMI), 
which can efficiently identify true regulators of biological pathways or processes. The 
algorithm recognizes significant triple gene blocks, each consisting of a pair of pathway 
genes (PWGs) and a transcription factor (TF), through using information theory. TGMI 
evaluates all combinations of triple-gene blocks and identifies those that had potentially 
regulatory interactions through a measure, which reflects the interaction among three 
genes. The statistical significance of this measure is determined for each triple gene block 
by randomized permutation p-value.  After that, the frequency of presence of each TF in 
all those significant triple gene blocks, named the interaction frequency, are calculated. 
The interaction frequency acts as a likelihood measure for the TF to control the biological 
pathway or the process of interest. We demonstrated that the TFs with higher interaction 
frequencies are usually true pathway regulators as validated against the existing 
biological literature.  The comparison of the accuracy of TGMI with those of existing 
algorithms, including Backward Elimination Random Forest (BWERF) algorithm, 
Bottom-up Gaussian Graphical Model (Bottom-up GGM), and Algorithm for 
Reconstruction of Accurate Cellular Networks (ARACNE), was conducted using 
Receiver Operating Characteristic (ROC) curves. TGMI algorithm was more accurate 
than other three algorithms and will be instrumental in identifying true pathway 
regulators, generating regulatory networks and identifying combinatorial TFs.  

 

                                                 

 
1 The material contained in this chapter is being prepared for submission to a journal. 
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2.2 Introduction 

Present knowledge indicates that there are several hundred metabolic pathways and a 
multitude of biological processes in an organism. Our understanding of how these 
biological pathways are regulated is still limited. For example, Arabidopsis thaliana has 
549 metabolic pathways and currently, regulators of the majority of these pathways are 
unknown (Huala et al., 2001; Lv, Cheng, & Shi, 2014; Sweetlove, Last, & Fernie, 2003). 
This chapter presents a novel efficient algorithm, Triple Gene Mutual Interaction 
(TGMI), to identify regulatory transcription factors (TFs) that govern a particular 
pathway by analyzing genome-wide gene expression profiles. TGMI is based on an 
information theoretic approach to determine which triple gene blocks have significant 
interactions among the three genes; each consists of a pair of pathway genes and a TF.   

Currently available methods for identifying pathway regulators can be broadly 
categorized into phenotype-driven approaches, such as quantitative trait loci (QTL) 
mapping and microsatellite analysis, and genotype-driven approaches, which includes 
gene silencing technology, proteomics, and gene trapping (Marbach et al., 2012; 
Mitchell-Olds, 2010).  Some of these methods focus on individual genes and thus are lab-
intensive and time-consuming. With the advent of the whole-genome approach, there has 
been a heightened demand for efficient statistical and computational methods, which can 
be used to predict regulatory TFs and relationships between TFs and pathway genes from 
genome-wide high dimensional gene expression datasets. Techniques such as principal 
component analyses (PCA) and sliced inverse regression (SIR) have been used to 
perform dimension reduction for clustering in gene expression microarray datasets (Dai, 
Lieu, & Rocke, 2006). LASSO regression-based methods (Friedman, Hastie, & 
Tibshirani, 2010) have also been applied to high dimensional microarray datasets, but 
biologically interpretable results have not materialized as expected using these methods 
(Li, Liang, & Zhang, 2014), due to challenges in validating a large number of genes and 
interactions involved. During the last decade, many systems biological approaches have 
been developed to identify regulatory relationships between genes. Still, developing 
methods that can accurately identify true causal relationships have been challenging. 
Methods that are specialized in identifying regulatory relationships from time-series gene 
expression data include; Dynamic Bayesian networks (X. H. Chen, Chen, & Ning, 2006; 
MURPHY, 1999; M. Zou & Conzen, 2005), differential equations (T. Chen, He, & 
Church, 1999), control logic (Becskei, Seraphin, & Serrano, 2001), Boolean networks 
(Kauffman, 1969), stochastic networks (B. S. Chen, Chang, Wang, Wu, & Lee, 2011) and 
finite state linear models (Ruklisa, Brazma, & Viksna, 2005). However, in recent years, 
gene expression datasets that are available in the public domain have increased 
dramatically; the majority are static non-time series gene expression datasets, which 
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include both treatments versus controls data or those with very large time intervals 
varying from a few hours to several days (Yang & Wei, 2015).  To infer regulatory 
relationships from these kinds of data, only a few highly efficient methods have been 
developed in the past; for example, Algorithm for the Reconstruction of Accurate 
Cellular Networks (ARACNE) (Margolin et al., 2006), Backward Elimination Random 
Forest (BWERF) algorithm (Deng, Zhang, Busov, & Wei, 2017), Bottom-up Graphical 
Gaussian Model (Bottom-up GGM) algorithm (Kumari et al., 2016).  BWERF and 
Bottom-up GGM are developed and tailored for building multi-layered hierarchical gene 
regulatory networks (ML-hGRNs) operating above a pathway. BWERF is based on 
random forest algorithm with a recursive evaluation process that reduces the number of 
TFs before relationships among genes are established. The Bottom-up GGM algorithm 
constructs a ML-hGRN using a set of pathway genes as the bottom layer and all TFs as 
inputs for upper layers. This approach evaluates the significance of interference of an 
upper-layered candidate TF on two combined genes at the current bottom layer.  The 
interference can be determined by examining if the difference between two correlation 
coefficients: the correlation coefficient of two bottom-layered genes and the partial 
correlation coefficient of two bottom-layered genes after the effect of the upper-layered 
TF is removed. The ARACNE algorithm uses mutual information to identify the 
dependency relationships between pairwise genes and then implements data processing 
inequality to remove weakest links. In this study, the accuracy of the TGMI algorithm is 
evaluated by comparing with those of BWERF, Bottom-up GGM and ARACNE 
methods. 

The proposed triple-gene block in the TGMI algorithm is based on the biological 
knowledge that genes with similar expression patterns are regulated by the same 
mechanism (Allocco, Kohane, & Butte, 2004; Clements, van Someren, Knijnenburg, & 
Reinders, 2007; Yeung, Medvedovic, & Bumgarner, 2004). Existing literature suggests 
that identification of statistically significant triple gene blocks give important clues about 
the regulatory TFs, which govern a biological pathway or a process (Kumari et al., 2016; 
Watkinson, Liang, Wang, Zheng, & Anastassiou, 2009). We hypothesized that by 
representing this biologically acceptable triple gene block using information theory based 
mathematical representation, we could create an efficient algorithm to identify positive 
pathway regulators better than existing algorithms. We utilized mutual information and 
conditional mutual information to develop a novel measure to represent the interaction 
among the genes in a triple gene block. Using real world datasets we demonstrated that 
by evaluating this measure, regulatory relationships among the TF and two pathway 
genes in a triple gene block could be determined. The TGMI algorithm takes two input 
data files; 1) A set of expression profiles of genes involved in a known biological 
pathway (e.g. canonical or non-canonical) or a biological process, and 2) A set of 
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expression profiles of all TFs under the same experimental condition. The use of 
differentially expressed pathway genes and TFs may lead to the identification of pathway 
regulators with a higher accuracy.  The output results include, 1) A list of TFs that are 
sorted in descending order by frequencies of interactions in triple gene blocks; we 
hypothesized that the top ranked TFs with higher frequencies are more likely to be true 
pathway regulators, 2) A regulatory network diagram, and 3) a list of combinatorial TFs 
which regulate each pathway gene. Given the fact that many TFs may control a pathway, 
it is possible that several TFs may act in combination to govern a single pathway gene 
(K. B. Singh, 1998). Finally, the algorithm was evaluated by applying it to several 
biological pathways using microarray gene expression data from Arabidopsis thaliana 
stem tissues and mouse embryonic stem cells. The ranked TFs were compared to those 
obtained with three other algorithms; BWERF, Bottom-up GGM and ARACNE with the 
same input data. The results indicated that the TGMI algorithm is more efficient and 
accurate than all three algorithms we tested. Thus, this novel algorithm will be 
instrumental to the analysis of gene expression data for the biological research 
community. 

 

2.3 Materials and Methods 

2.3.1 Data 

2.3.1.1 Arabidopsis thaliana Microarray Gene Expression Data 

A compendium dataset (128 microarray samples) was pooled from several microarray 
datasets generated from hypocotyledonous stem tissues under short-day condition known 
to induce wood formation (Chaffey, Cholewa, Regan, & Sundberg, 2002).  These 
datasets were obtained from the NCBI GEO repository 
(http://www.ncbi.nlm.nih.gov/geo/) with the following accession numbers: GSE 607, 
GSE 6153, GSE 18985, GSE 2000, GSE 24781, and GSE 5633.  The platform for these 
datasets are Affymetrix 25k ATH1 microarrays.  The original CEL files for all 128 chips 
were downloaded and then processed with the Robust Multi-array Analysis (RMA) 
algorithm available at https://www.bioconductor.org (Irizarry et al., 2003). A previously 
published method was used to perform quality control of the datasets (Persson, Wei, 
Milne, Page, & Somerville, 2005). 
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2.3.1.2 Mouse Microarray Gene Expression Data 

A mouse microarray gene expression dataset related to the pluripotency maintenance 
pathway was downloaded from the Embryonic Stem Cells Atlas of Pluripotency 
Evidence (ESCAPE) repository. This time-course dataset contains data from following 
time points: 0 h, 6 h, 12 h, 18 h, 24 h, 36 h, 48 h, 4 days, 9 days and 14 days generated 
using the Affymetrix MOE439A arrays from embryonic stem cells (ESCs) under 
undirected differentiation. Validated regulatory relationships were obtained from ChIP-X 
studies available in the ESCAPE repository. The 24 pluripotency maintenance pathway 
genes and 35 known regulatory TFs were used to construct three datasets, with 100, 200, 
or 300 random noise variables (genes) being added to evaluate the performance of TGMI 
algorithm. 

 

2.3.2 Triple-Gene Mutual Interaction Algorithm 

The interaction of a regulatory TF with a pair of pathway genes is captured as a 
significant interaction among three genes in a triple gene block. A novel measure was 
developed to quantify the interaction employing information theory (Thomas M. Cover & 
Joy A. Thomas, 2006). In the triple gene block, the TF is represented in variable X and 
the pair of pathway genes are represented in variable Y1 and variable Y2 (see Figure 
2.1A). First, the gene expression data for each variable was discretized utilizing the equal 
frequency discretization algorithm (Boulle, 2005). The entropy (H) of each variable was 
calculated as, 

𝐻𝐻(𝑋𝑋)  =  −∑ 𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥)𝑥𝑥  =  − 𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝(𝑥𝑥))], 

Where x represents each discretized value in 𝑋𝑋 and 𝑝𝑝(𝑥𝑥) is the probability mass function.  

Similarly, H(Y1) and H(Y2) can be calculated.  

The mutual information between each pair of variables, including(𝑌𝑌1,𝑌𝑌2), (𝑌𝑌1,𝑋𝑋), and 
(𝑌𝑌2,𝑋𝑋) are calculated based on the following formulas. For the (𝑌𝑌1,𝑌𝑌2) pair; 

Conditional entropy,  𝐻𝐻(𝑌𝑌1|𝑌𝑌2): 

𝐻𝐻(𝑌𝑌1|𝑌𝑌2)  =  − � 𝑝𝑝(𝑦𝑦1,𝑦𝑦2)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦1|𝑦𝑦2)
𝑦𝑦1,𝑦𝑦2
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Joint entropy,  𝐻𝐻(𝑌𝑌1,𝑌𝑌2): 

𝐻𝐻(𝑌𝑌1,𝑌𝑌2) = 𝐻𝐻(𝑌𝑌1|𝑌𝑌2) + 𝐻𝐻(𝑌𝑌2) 

Mutual information, (𝑌𝑌1;  𝑌𝑌2): 

𝐼𝐼(𝑌𝑌1;𝑌𝑌2)  =  𝐻𝐻(𝑌𝑌1)  +  𝐻𝐻(𝑌𝑌2) −  𝐻𝐻(𝑌𝑌1,𝑌𝑌2) 

Similarly, mutual information for the other pairs of variables, (𝑋𝑋,𝑌𝑌1) and (𝑋𝑋,𝑌𝑌2) can be 
calculated. 

 

 
Figure 2.1 Representation of information theoretic quantities among three genes in the 
triple gene block. Pathway gene 1 (PWG1) and pathway gene 2 (PWG2), and the TF are 
represented by Y1, Y2, and X, respectively. (A)The interactions among genes in the 
triple genes block. (B) The Venn diagram segments S1 to S7. S1 = H(Y1|Y2,X) = 
conditional entropy of Y1 given Y2 and X. S2 = H(Y2|Y1,X) = conditional entropy of 
Y2 given Y1 and X.  S3 = conditional entropy of X given Y1 and Y2.  S4 = conditional 
mutual information of Y1,X given Y2. S5 = conditional mutual information of Y2,X 
given Y1. S6 = conditional mutual information of Y1,Y2 given X. S7 = difference of 
mutual information between Y1,Y2  and conditional mutual information Y1,Y2 given X. 

 

The conditional entropies of each variable given the other two variables, 
𝐻𝐻(𝑌𝑌1|𝑋𝑋,𝑌𝑌2),𝐻𝐻(𝑌𝑌2|𝑋𝑋,𝑌𝑌1),𝐻𝐻(𝑋𝑋|𝑌𝑌1,𝑌𝑌2), are represented in S1, S2, and S3 segments of 
Figure 2.1B. These quantities, were calculated using the definition of multivariate 
conditional entropy (Thomas M. Cover & Joy A. Thomas, 2006) as follows. 



11 

Joint entropy, 𝐻𝐻(𝑌𝑌1,𝑌𝑌2,𝑋𝑋): 

𝐻𝐻(𝑌𝑌1,𝑌𝑌2,𝑋𝑋) =  − � 𝑝𝑝(𝑦𝑦1,𝑦𝑦2, 𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦1,𝑦𝑦2, 𝑥𝑥)
𝑦𝑦1,𝑦𝑦2,𝑥𝑥

 

Conditional entropy (S1 in Figure 2.1B), 𝐻𝐻(𝑌𝑌1|𝑋𝑋,𝑌𝑌2): 

𝐻𝐻(𝑌𝑌1|𝑋𝑋,𝑌𝑌2) = 𝐻𝐻(𝑌𝑌1,𝑌𝑌2,𝑋𝑋) − 𝐻𝐻(𝑌𝑌2,𝑋𝑋) − 𝐻𝐻(𝑋𝑋) 

Similarly, S2 and S3 can be calculated. 

Conditional mutual information (S6 in Figure 2.1B), (𝑌𝑌1;𝑌𝑌2|𝑋𝑋): 

𝐼𝐼(𝑌𝑌1;𝑌𝑌2|𝑋𝑋)  =  𝐻𝐻(𝑌𝑌1|𝑋𝑋)  −  𝐻𝐻(𝑌𝑌1|𝑋𝑋,𝑌𝑌2) 

Then, multivariate mutual information, (S7 in Figure 2.1B), 𝐼𝐼(𝑌𝑌1;𝑌𝑌2;𝑋𝑋) is calculated as 
follows. 

𝐼𝐼(𝑌𝑌1;𝑌𝑌2;𝑋𝑋) =  𝐼𝐼(𝑌𝑌1;𝑌𝑌2) − 𝐼𝐼(𝑌𝑌1;𝑌𝑌2|𝑋𝑋) 

If 𝐼𝐼(𝑌𝑌1;𝑌𝑌2;𝑋𝑋) is a positive quantity, this can be represented by S7 in Figure 2.1B. If 
𝐼𝐼(𝑌𝑌1;𝑌𝑌2;𝑋𝑋) is a negative quantity, that triple gene block is discarded. 

The mutual interaction measure for a triple gene block 𝑆𝑆7
𝑆𝑆1+𝑆𝑆2+𝑆𝑆3

 is calculated as follows.  

𝑆𝑆7
𝑆𝑆1 + 𝑆𝑆2 + 𝑆𝑆3

=
𝐼𝐼(𝑌𝑌1;𝑌𝑌2;𝑋𝑋)

𝐻𝐻(𝑌𝑌1|𝑋𝑋,𝑌𝑌2) + 𝐻𝐻(𝑌𝑌2|𝑋𝑋,𝑌𝑌1) + 𝐻𝐻(𝑋𝑋|𝑌𝑌1,𝑌𝑌2)
 

S1, S2, S3, and S7 are shown in Figure 2.1B. 

 

P-value for each triple gene block was calculated using randomized permutation method 
(Sham & Purcell, 2014). First, by randomly permuting the data vector of TF in the triple-
gene block, 1000 permuted datasets are created. The randomization of the data vector of 
TF in each triple gene block causes the relationship among the TF and the pairs of genes 
to be broken. Then, 𝑆𝑆7

𝑆𝑆1+𝑆𝑆2+𝑆𝑆3
 measures are calculated for all 1000 randomized triple gene 

blocks. A p-value for the non-permuted original triple gene block is calculated as the 
probability of obtaining higher 𝑆𝑆7

𝑆𝑆1+𝑆𝑆2+𝑆𝑆3
 measures for permuted triple gene blocks than 

non-permuted original triple gene block.  
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Figure 2.2 illustrates the workflow of the TGMI algorithm. Suppose we have q number of 
TFs, p number of pathway genes and n samples, then the inputs are a TF matrix of n×q 
dimension, and a pathway gene matrix of n×p dimension. Triple gene mutual interaction 
measure for each block was calculated as shown in Figure 2.2A. After obtaining p-values 
for all triple gene combinations, the Benjamini-Hochberg, method (Benjamini & 
Hochberg, 1995) was used for the correction of multiple testing. Triple gene blocks with 
corrected p-values is less than the significance level (0.05) are considered significant and 
kept for the further steps of the algorithm. Figure 2.2B shows three output results, which 
were generated using the significant triple gene blocks. The first output was a TF list 
sorted in descending order by the frequencies of interactions. The second output was a 
network diagram, which shows the regulatory relationships from TFs to pathway genes. 
The TF nodes in the network were arranged in clock-wise circular direction from most 
frequently interacting TFs to least frequently interacting TFs. The pathway genes were 
placed in the middle of the circular network. The third output of the TGMI algorithm was 
multiple sets of combinatorial TFs; TFs within each set regulate the same pathway gene.  
To obtain such output, the significant triple gene blocks (PWG1-TF-PWG2) were first 
merged to form a layered network as shown in output 3 of Figure 2.2B. Then TFs 
connected to each pathway gene were extracted from the layered network. From this 
extracted TFs, all combinations of triple gene blocks, which each contains two TFs and 
one pathway gene (TF1-PWG-TF2), were evaluated using the triple gene mutual 
interaction measure. The significant triple-gene blocks (TF1-PWG-TF2) were merged to 
obtain combinatorial TFs for each pathway gene. The frequencies of interactions for each 
TF in the significant triple gene blocks (TF1-PWG-TF2) for each pathway gene were 
given within parentheses as shown in final output 3 of Figure 2.2B. The algorithm is 
summarized in the pseudo code shown in Procedure 2.1. 
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Figure 2.2 Workflow of Triple-gene Mutual Interaction (TGMI) algorithm. (A)The triple 
gene combinations are evaluated in parallel to accelerate the process shown in the red 
dashed region, and (B) Three types of results from the algorithm are shown in the blue 
dashed region. T letters represent TFs, and G letters represent pathway genes. The 
frequencies of interactions of TFs involved in significant two TF one-pathway gene 
blocks (TF1-PWG-TF2) are given within parentheses. 
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Procedure 2.1 TGMI pseudo code 
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2.4 Results 

The TGMI algorithm was tested for identification of pathway regulators and building 
regulatory networks surrounding several biological pathways in Arabidopsis thaliana and 
mouse embryonic stem cells. The pathway genes are non-regulatory genes that can be 
found in public repositories (e.g. https://www.arabidopsis.org/). Alternatively, genes 
involved in a biological process, for example, those defined by a gene ontology term of 
biological process, can also be used as non-canonical pathway genes in the algorithm.  

 

2.4.1 Lignin biosynthesis pathway (Arabidopsis thaliana) 

Lignin is the second most abundant plant biopolymer present in the secondary cell walls 
and fibers in wood (Dixon & Paiva, 1995; Vanholme, Demedts, Morreel, Ralph, & 
Boerjan, 2010). Understanding how lignin is synthesized has long been a research focus 
of plant biologists and the wood industry due to its importance in plant structural integrity 
and stem stiffness (Chabannes et al., 2001; Donaldson, 2001). To identify pathway 
regulators that govern lignin biosynthesis, we used a compendium dataset comprises 128 
microarray samples. The data in this compendium were generated from Arabidopsis 
thaliana hypocotyledonous stem tissues under short-day conditions, which can induce 
secondary wood formation in hypocotyls. The expression data of lignin pathway genes 
and all TFs were extracted from this compendium data for analysis with TGMI algorithm. 

The TGMI algorithm extracted triple-gene blocks based on the user-defined significance 
level of 0.05 (i.e. the cut-off). The table on the right in Figure 2.3 shows top TFs ranked 
by frequencies of interactions with the lignin pathway genes in descending order. The 
TFs highlighted in red are known positive TFs that are evidenced by literature to regulate 
lignin biosynthesis pathway. SND1 is a higher-level regulator which has been evidenced 
to control SND2, SND3, MYB103, MYB85, MYB52, MYB54, MYB69, MYB42, 
MYB43, MYB86, MYB61, MYB46, MYB20, and KNAT7 (Lin et al., 2013; R. Zhong, 
Richardson, & Ye, 2007; R. Zhong & Ye, 2015). Out of these 15 TFs, TGMI algorithm 
identified 9 TFs (SND1, SND2, SND3, MYB103, MYB85, MYB43, MYB46, MYB86, 
MYB61) were identified by the TGMI algorithm. NST1, NST2, VND6, and VND7 are 
functional homologs of SND1 that regulate the same downstream targets in different cell 
types (R. Zhong, Lee, Zhou, McCarthy, & Ye, 2008). Our algorithm was able to 
recognize NST1 and NST2. Furthermore, MYB58 and MYB63, which are transcriptional 
activators of lignin biosynthesis in the SND1-mediated transcriptional regulatory network 
(J. Zhou, Lee, Zhong, & Ye, 2009), were identified by TGMI algorithm.   In addition,  

https://www.arabidopsis.org/
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LBD15 (Shuai, Reynaga-Pena, & Springer, 2002a), XND1 (Zhao, Avci, Grant, Haigler, 
& Beers, 2008),  bZIP6 (R. Zhong & Ye, 2012) and GATA12 (Nishitani & Demura, 
2015) that are involved in regulating different aspects of secondary cell wall synthesis 
were also identified by TGMI algorithm. The triple gene blocks with significant 
regulatory interactions were combined to generate a circular network that is shown in 
Figure 2.3. The TFs were arranged in the clock-wise direction from the most to the least 
frequent TFs. The directed edges from TFs to pathway genes represent regulatory 
relationships.  The known positive lignin pathway regulatory TFs highlighted in light 
coral are highly connected to lignin biosynthesis pathway genes.  

 

 
Figure 2.3 Regulatory network generated by TGMI algorithm for the Arabidopsis 
thaliana lignin biosynthesis pathway from hypocotyledonous stem tissues. Green nodes 
represent pathway genes.  All other nodes are TFs regardless of their colors. Light coral 
nodes represent positive TFs. References are provided for those TFs that are evidenced to 
regulate lignin pathway. 

 

ROC curves were used compare the accuracy of the TGMI algorithm with the other three 
algorithms, which include BWERF, Bottom-up GGM, and ARACNE. First, true positive 
rate (TPR) values and false positive rate (FPR) values were calculated for all possible cut 
points and ROC curves were plotted as shown in Figure 2.4. If a ROC curve, first closely 
follows the TPR axis, and then closely follows top FPR axis, the identification of positive 
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TFs by the algorithm are more accurate, but if the curve more closer to the 45-degree 
diagonal line, the identification of positive TFs by the algorithm are less accurate. As 
shown in Figure 2.4, TGMI algorithm has a much higher accuracy compared to other 
three algorithms.  To show the differences quantitatively, area under the ROC curves 
(AUROCs) were calculated (see Table 2.1). AUROC values can vary from lowest value 
of 0.5 to highest value of 1. AUROC of 1 indicates the method has a identified of all 
positive TFs and AUROC of 0.5 indicate the method failed to identify any positive TFs. 
The significantly larger AUROC of TGMI algorithm (0.92) supports that it has a better 
performance than other three algorithms in identifying lignin pathway regulators.  Note 
that the performance of some algorithms like BWERF and Bottom-up GGM is based on 
only one layer of TFs, but these algorithms were designed and tailored to build ML-
hGRN.   

 
Figure 2.4 The comparison of TGMI with the other three algorithms in recognition of 
lignin pathway regulators using receiver operating characteristic (ROC) curves. The ROC 
curves, which first closely follow the TPR axis and then, closely follow the top FPR axis, 
reflect higher accuracies in identifying positive regulatory TFs. The ROC curves, which 
are closer to the 45-degree diagonal line, reflect lesser accuracy in identifying positive 
regulatory TFs. 
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Table 2.1 The areas under the ROC curves (AUROCs) of TGMI and other algorithms in 
recognition of lignin pathway regulators (Arabidopsis thaliana). An AUROC of 1 
indicates the method perfectly identified of all positive TFs and AUROC of 0.5 indicate 
the method failed to identify positive TFs in when ranked by the frequencies of 
interactions.  

Method TGMI BWERF BottomUpGGM ARACNE 

AUC 0.9223461 0.874843 0.7847574 0.7976863 

 

Figure 2.5 shows the combinatorial TFs extracted for each pathway gene. The 
frequencies of each TF in triple gene blocks (TF1-PWG-TF2) with significant 
interactions are given in parentheses next to each TF. The results of combinatorial 
regulations are in agreement with existing literature.  For example, the algorithm 
identified MYB85, MYB53, MYB63 as combinatorial TFs for, PAL1/4, COMT and 
CCoAMT1 lignin pathway genes, which are supported by existing literature(Hussey, 
Mizrachi, Creux, & Myburg, 2013). Additionally, MYB103 and MYB46 combinatorial 
TFs are direct regulators of PAL1/4 pathway genes, which is consistent with the existing 
biological literature (Hussey et al., 2013). SND1 is a higher level regulator which appears 
in many combinatorial TF, as shown in Figure 2.5. Existing literature suggests SND1 
regulate many lignin pathway genes including PAL1, CCoAOMT, and 4CL1(Ohashi-Ito, 
Oda, & Fukuda, 2010). The results show NST2 and MYB58 combinatorial TFs are 
directly related to C3H and C4H genes. This is consistant with the earlier conclusion that 
C3H and C4H are directly regulated by higher level TFs which include NST2 and 
MYB58 (Poovaiah, Nageswara-Rao, Soneji, Baxter, & Stewart, 2014). The algorithm 
identified 4CL1/5 pathway genes that are directly regulated by several MYB domain TFs 
which includes combinatorial TFs, MYB85, MYB58, and MYB63 as shown in Figure 
2.5. Literature evidence shows these three TFs regulate many 4CL family of genes 
including 4CL1/5 (Y. Liu et al., 2017). CAD and CCR genes are coordinately regulated 
by many MYB binding sites (Rahantamalala et al., 2010). However, MYB43 and VAL1 
were the only combinatorial TFs identified by the algorithm. Literature evidence show 
MYB43 as one of the regulatory TFs  which directly regulates CAD family of genes 
(Thevenin et al., 2011). Existing literature suggests that CCR family of pathway genes 
are directly regulated by secondary wall thickening TFs, which include SND1, NST2 
(Mitsuda & Ohme-Takagi, 2008). Our algorithm also identified this combinatorial TFs 
are regulating CAD genes as well as many lignin pathway genes (see Figure 2.5). Based 
on literature evidence that in later steps of the lignin biosynthesis, CCR and CAD family 
of genes have a milder influence on lignin deposition (Yoon, Choi, & An, 2015). This 
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fact is confirmed by the relatively low frequency combinatorial of TFs (SND1, NST2) 
regulating CAD family of genes identified by the algorithm as shown in Figure 2.5. 

 

 
Figure 2.5 Display of combinatorial TFs within the pathway diagram of lignin 
biosynthesis. The green oval shapes show pathway genes involved in the lignin 
biosynthesis. The combinatorial TFs are shown in squares. The frequencies of 
interactions for each TF in significant triple gene blocks (TF1-PWG-TF2) are given in 
parentheses next to each TF. The combinatorial TFs, which have supporting literature 
evidence for regulating pathway genes, are highlighted in the squares. 

 

2.4.2 Pigment biosynthesis pathways (Arabidopsis thaliana) 

In plants, pigments provide a broad range of colors from red/orange to blue/violet and 
serve as important compounds that attract insects for pollination and act as a protectant 
against UV-B radiation(Tanaka, Sasaki, & Ohmiya, 2008). Literature evidence suggests 
coordinated activity among four biosynthesis pathways synthesizes plant pigments. For 
example, leucopelargonidin and leucocyanidin are colorless intermediates, which are 
synthesized in the course of colored anthocyanin pigmentation (Springob, Nakajima, 
Yamazaki, & Saito, 2003). Chemical reactions on leucopelargonidin and leucocyanidin 
compounds result in red/pink anthocyanin pigmentation in a variety of plants including 
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Arabidopsis thaliana (Burbulis & Winkel-Shirley, 1999). Flavonoids are modified by 
series of chemical reactions contributing to pigmentation in seeds and flowers (Forkmann 
& Martens, 2001). Visible patterns of anthocyanin in plants are intermediated by 
chemical compounds synthesized by flavonol biosynthesis (Martens, Teeri, & Forkmann, 
2002). In this study, anthocyanin biosynthesis and the three related pathways, which 
include flavonol, flavonoid, leucopelar-gonidin and leucocyanidin biosynthesis, were 
combined as a unified pigment biosynthesis pathway for identifying pathway regulators. 
First, co-expression analysis was carried out to identify co-expressed gene pairs across 
these several pigment related pathways, and significantly co-expressed pathway gene 
pairs were used in triple gene blocks.  Figure 2.6 shows the co-expression among these 
four pigmentation-related pathways using four different pair-wise association methods, 
Spearman rank correlation coefficient, Pearson product moment correlation coefficient, 
Kendall rank correlation coefficient (Kumari et al., 2012) and Maximum Information 
Coefficient(MIC) (Reshef et al., 2011). Among these methods, Spearman and Kendall 
can capture monotonic relationships, whereas MIC can capture varying degrees of linear 
and non-linear relationships between genes.  For the co-expression analysis, pathway 
genes for the four pigment synthesis pathways (anthocyanin, flavonol, flavonoid, 
leucopelar-gonidin and leucocyanidin biosynthesis) were obtained from the 
“aracyc_pathways.20140902.txt” file available in the www.arabidopsis.org repository. 
All significant co-expressed pathway gene pairs (after removing duplicated pairs), 
identified by four pair-wise association methods were used in triple gene blocks for 
identifying pigment pathway gene regulators.  

http://www.arabidopsis.org/
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Figure 2.6 Co-expression analysis to reduce pigment synthesis pathway gene 
combinations using four different pair-wise association methods. Spearman rank 
correlation coefficient, Pearson correlation coefficient, Kendall rank correlation 
coefficient and Maximum Information Coefficient (MIC), to identify co-expressed 
pigment biosynthesis pathway genes from anthocyanin, flavonol, flavonoid, and 
leucopelar-gonidin and leucocyanidin biosynthesis pathways. Black dots indicated 
significant pair-wise associations. 
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Figure 2.7 Regulatory network generated by TGMI for Arabidopsis thaliana unified 
pigment biosynthesis pathway that consists of anthocyanin, flavonol, flavonoid, and 
leucopelar-gonidin and leucocyanidin biosynthesis pathways with a compendium 
microarray data set (128 chips) from Arabidopsis thaliana. Green nodes represent 
pathway genes. All other nodes are TFs regardless of their colors.  Light coral nodes 
represent positive TFs.   References are provided for those TFs that are evidenced to 
regulate pigment synthesis pathways. 

 

The regulatory network constructed to manifest the relationships between genes involved 
in the unified pigment pathway is illustrated in Figure 2.7. The TFs that have higher 
frequent dependency with pigment biosynthesis pathway genes are listed at the right side 
of Figure 2.7. The NFYA5 identified by the TGMI algorithm is a stress-sensitive 
regulator related to anthocyanin synthesis that regulates purple pigmentation under 
drought conditions (W. X. Li et al., 2008). NARS1 is involved in anthocyanin 
pigmentation of the epidermal cells of the Arabidopsis thaliana (Kunieda et al., 2013). 
ANR1 and ANR2, have shown to induce over accumulation of flavonoid intermediates 
which suppresses anthocyanin pathway genes (Kovinich et al., 2012). MYB33 and 
MYB65 are involved in anthocyanin accumulation and seed color pigmentation 
(Ambawat, Sharma, Yadav, & Yadav, 2013). Overexpression of the SVP3 gene in 
kiwifruit has been shown to interfere with anthocyanin biosynthesis in petals (Wu et al., 
2014). Literature evidence suggests ATAF1 is involved in anthocyanin synthesis in 
Arabidopsis thaliana in adverse growth conditions (Mahmood, Xu, El-Kereamy, 
Casaretto, & Rothstein, 2016). HYH is an Arabidopsis bZIP transcription factor directly 
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involved in anthocyanin and chlorophyll estimation (Zhang, Zheng, Liu, Wang, & Bi, 
2011). SPL9 negatively regulates anthocyanin by directly suppressing anthocyanin 
biosynthesis genes (Gou, Felippes, Liu, Weigel, & Wang, 2011a). GATA 15 is involved 
in various activities to modify chlorophyll pigment content in response to different 
environmental conditions (Xu, 2016). Literature evidence shows MYB32 indirectly 
regulate anthocyanin biosynthesis through MYB112, which is a known regulator of 
anthocyanin pathway (Lotkowska et al., 2015). Also MYB96 is a drought stress response 
regulator, which has an effect on anthocyanin synthesis in Arabidopsis Thaliana(Seo & 
Park, 2010). NFYA8 was found to be a major regulator of tomato ripening; the literature 
indicates that this TF is also present in Arabidopsis thaliana (Seo & Park, 2010). 

ROC curves were used compare the accuracy of the TGMI algorithm with the other three 
algorithms as shown in Figure 2.8. Figure 2.8 indicate that TGMI algorithm has a higher 
accuracy in comparison to the other three algorithms based on the ROC curves.  To show 
the differences quantitatively, area under the ROC curves (AUROCs) were calculated 
(see Table 2.2). The AUROC of TGMI algorithm for the identification of pigment 
biosynthesis regulatory TFs (0.8), supports that it has a better performance than the other 
three algorithms.  Note that the performance of some algorithms like BWERF and 
Bottom-up GGM is based on only one layer of TFs, but these algorithms were designed 
and tailored to build ML-hGRNs. 
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Figure 2.8 The comparison of TGMI with the other three algorithms in recognition of 
pigment pathway regulators using reciever operating characteristic (ROC) curves. ROC 
curves, which closely follow the TPR axis, and then, more closely follow the top FPR 
axis, reflect the higher accuracies in identifying positive regulatory TFs. The ROC 
curves, which are closer to the 45-degree diagonal line, reflect lesser accuracies in 
identifying positive regulatory TFs. 

 

Table 2.2 The area under ROC curves (AUROCs) of TGMI and other three algorithms in 
recognition of the unified pigment pathway regulators(Arabidopsis thaliana). An 
AUROC of 1 indicates the method perfectly identified of all positive TFs and AUROC of 
0.5 indicate the method failed to identify any positive TFs.  

Method TGMI BWERF BottomUpGGM ARACNE 

AUC 0.8015492 0.7080889 0.7290233 0.63199 

 

2.4.3 Pluripotency maintenance pathway (Mouse embryonic stem cells) 
A mouse time-course microarray dataset of 34 samples were downloaded from the 
Embryonic Stem Cells Atlas of Pluripotency Evidence (ESCAPE) repository, which was 
used to compare the performance of TGMI with the other three algorithms.  Additionally, 
24 pluripotency maintenance pathway genes and 35 known positive TFs, which regulate 
the pathway genes, were obtained from a Chip-Seq study available in ESCAPE web 
portal.  In order to compare the performance of the TGMI algorithm to the other three 
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algorithms as mentioned above, three datasets; Dataset 1, Dataset 2, and Dataset 3, were 
created by adding profiles of 100, 200, and 300 randomly selected noise genes 
respectively, to the 35 known positive TFs. Figure 2.9 illustrates the mouse pluripotency 
maintenance non-canonical pathway Regulatory network that were identified using the 
TGMI algorithm using the Dataset 3.  

 

 
Figure 2.9 Regulatory network generated by TGMI for mouse pluripotency maintenance 
non-canonical pathway using Dataset 3 (335 TF). The green nodes are non-canonical 
pathway genes, and all others are TFs while the light coral colored nodes represent 
known positive TFs.   

 

Top positive TFs shown in red color in the table on the right of Figure 2.9 which 
includes, SOX17(Niakan et al., 2010), NROB1(Fujii et al., 2015), PHC1(Morey, 
Santanach, & Di Croce, 2015), CTCF(Donohoe, Silva, Pinter, Xu, & Lee, 2009), 
ZFP42(Masui et al., 2008), ZFP281(Fidalgo et al., 2011), ESRRB(Papp & Plath, 2012), 
MYCN(Ruiz-Perez, Henley, & Arsenian-Henriksson, 2017), REST(S. K. Singh, 
Kagalwala, Parker-Thornburg, Adams, & Majumder, 2008), GATA3(Shu et al., 2015), 
MYC(Chappell & Dalton, 2013),and TRIM28(Miles et al., 2017) are positive TFs out of 
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the known 35 TFs which are involved with pluripotency maintenance in mouse 
embryonic stem cells. However, POU5F1, SOX2 and NANOG are well known master 
regulatory genes that govern the stem renewal in mice (Hall & Hyttel, 2014; Kellner & 
Kikyo, 2010; Loh et al., 2006; Rodda et al., 2005; Sharov et al., 2008; Q. Zhou, 
Chipperfield, Melton, & Wong, 2007). Although they were identified by the TGMI, their 
frequencies of interaction are low, as shown in Figure 2.9. The possible reason is that 
these three master regulators are located at higher hierarchical levels, and are relatively 
distal from the pathway genes that were used to identify them.  

As shown in Figure 2.10, ROC curves were used to compare the accuracy of TGMI with 
the other three algorithms using the three datasets. Figure 2.10 indicates that TGMI 
algorithm has higher accuracies in comparison to the other three algorithms when tested 
using all three datasets.  To show the differences quantitatively, area under the ROC 
curves (AUROCs) were calculated (see Table 2.3). AUROCs of the TGMI algorithm for 
the identification of pluripotency pathway regulatory TFs using three datasets; Dataset 1, 
Dataset 2, and Dataset 3 are 0.77, 0.79, 0.8, respectively. These results indicate that 
TGMI has a higher accuracy than other three algorithms for all three datasets.  Note that 
the performance of some algorithms like BWERF and Bottom-up GGM is based on only 
one layer of TFs, but these algorithms were designed and tailored to build ML-hGRN. 

 

 
Figure 2.10 The performance of TGMI in comparison with the three algorithms in 
identifying mouse pluripotency pathway positive regulatory TFs. (a) ROC curves 
generated using 135 TF dataset (Dataset 1). (b) ROC curves generated using 235 TF 
dataset (Dataset 2). (c) ROC curves generated using 335 TF dataset (Dataset 3). ROC 
curves, which closely follow the TPR axis first, and then, closely follow the top FPR 
axis, reflect the higher accuracies in identifying positive regulatory TFs. The ROC 
curves, which are closer to the 45-degree diagonal line, reflect lesser accuracies in 
identifying positive regulatory TFs. 
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Table 2.3 The area under ROC curves of TGMI algorithm in comparison to other 
algorithms in recognition positive TFs which regulates the mouse pluripotency 
maintenance pathway. Adding 100 created 200 and 300 random noise genes to known 35 
regulatory TFs, following three datasets created (Dataset1, Dataset2, and Dataset3). 

 
TGMI BWERF BottomUpGGM ARACNE 

Dataset 1 0.7711429 0.7442857 0.698 0.6662857 

Dataset 2 0.7895714 0.7331429 0.6945714 0.7168571 

Dataset 3 0.802381 0.786 0.7518816 0.7382857 

 

2.5 Discussion 

The TGMI algorithm was developed for identifying novel regulators controlling 
canonical or non-canonical pathways. After testing with three real transcriptome datasets, 
we found that the TGMI algorithm consistently performed well in identifying regulators 
of both canonical and non-canonical pathways, through constructing regulatory network 
between pathway genes and TFs.  Additionally, TGMI can unearth combinatorial TFs 
that interact with each pathway gene. TGMI is based on mutual information and 
conditional mutual information. The use of mutual information has several advantages in 
comparison to linear pair-wise association methods because mutual information can be 
generalized to identify linear or non-linear relationships between two variables 
(Schneidman, Still, Berry, & Bialek, 2003). When expanded to three variables, the results 
have proven that the TGMI algorithm is better than Bottom-up GGM, which utilizes the 
significance of the difference in correlation and partial correlation to identify triple gene 
blocks. The triple gene interaction measure used in the TGMI algorithm is largely 
responsible for the high accuracy in determining positive regulatory TFs. The TGMI 
algorithm has led to; 

 
1) The reduction of the dimensionality of gene space by fitting differentially 

expressed regulatory genes to a set of pathway genes. 

2) The emergence of true regulatory relationships by suppressing spurious 

relationships. 

3) The extraction of linear and non-linear associations between pathway genes and 

TFs. 
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It is well established that the detection of causal patterns is more effective in a tri-variate 
setting than in a bivariate context (Schäfer & Strimmer, 2005). The efficiency and 
accuracy of evaluating three genes for causal relationships have been demonstrated in 
two previous publications (Lin et al., 2013; Lu et al., 2013).  

 

 
Figure 2.11 Illustration of four interaction measures for a triple-gene block. Y1, Y2 and 
X represent pathway gene 1, pathway gene 2 and a TF, respectively. S7 = I(Y1;Y2)-
I(Y1;Y2|X), S1 = H(Y1|Y2,X) = conditional entropy of Y1 given Y2 and X. S2 and S3 
can be similarly defined. Segment 4 (S4) = conditional mutual information of Y1, X 
given Y2. S5 and S6 can be similarly defined. 

 

A triple gene block can be symbolized as shown in Figure 2.11, which also shows 
different predictors for quantifying the strength of interaction among three genes.  To 
evaluate the best predictors of positive TFs systematically, out of the several triple gene 
interaction measures, illustrated in Figure 2.11(a, b, c, and d ), we created a dataset using 
combinations of pairs of pathway genes with all TFs. Each combination in the dataset 
was given a label of "1" if the TF in the triple gene block was a positive TF and "0" if the 
TF was a non-positive TF. The dataset was sampled to create a training data partitions to 
build logistic regression classification models and testing data partitions to predict 
positive TFs. The prediction performance was measured by determining the area under 
the ROC curves (AUROCs) for the four different triple gene interaction measures (see a, 

b, c, and, d in Figure 2.11) and a random predictor. As shown in Figure 2.12,  
𝑆𝑆7

𝑆𝑆1+𝑆𝑆2+𝑆𝑆3
 

has a higher prediction performance compared to the other three interaction measures 
and, of course, the random predictor, for both the lignin and pigment biosynthesis 
datasets. For the mouse pluripotency maintenance pathways, the result from Dataset 1 

(135 TFs) illustrate that S7 and 
𝑆𝑆7

𝑆𝑆1+𝑆𝑆2+𝑆𝑆3
 have nearly the same AUROC values. 
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However, for both Dataset 2 (235 TFs) and Dataset 3 (335 TFs), it is obvious that 
𝑆𝑆7

𝑆𝑆1+𝑆𝑆2+𝑆𝑆3
  has a better predictive performance for predicting positive TFs than the other 

candidate triple gene interaction measures and obviously the random predictor. 

 

 
Figure 2.12 The use of areas under ROC curves (AUROCs) to compare efficiencies of 
four types of triple gene interaction measures using logistic regression model. (a) AUC of 
lignin pathway regulators identified from TGMI; (b) AUC of pigment biosynthesis 
pathway regulators identified from TGMI; (c) (d) and (e) are AUCs of mouse 
pluripotency pathway regulators  identified from TGMI from Dataset 1 (135 TFs), 
Dataset 2 (235 TFs), and Dataset 3 (335 TFs) respectively. 

 

The results indicate the triple gene interaction measure; 
𝑆𝑆7

𝑆𝑆1+𝑆𝑆2+𝑆𝑆3
 can be used to 

identify key TFs that govern a biological pathway through evaluating triple gene blocks. 
Biologists, thereby reducing expensive and time-consuming explorative research, can test 
significant pathway regulators that emerged from frequencies of interactions on pathway 
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genes. Additionally, the triple gene blocks can be used to build network structures that 
convey information regarding cellular mechanisms, combinatorial regulatory behavior, 
and models of TFs. Computational validations of the TGMI algorithm using real-world 
microarray datasets have demonstrated that our approach is effective in identifying many 
positive regulatory genes that are significantly enriched in gene regulatory networks. Our 
algorithm will be instrumental in constructing regulatory networks and identifying key 
TFs that govern important biological pathways and processes. 

 

2.6 Conclusion 

The TGMI algorithm can be used for identifying pathway regulatory TFs, discovering 
combinatorial TFs, and constructing regulatory network operating above the pathway. 
The algorithm accomplishes these objectives through evaluating combined triple gene 
blocks; each contains two pathway genes and one TF. The gene expression data do not 
necessarily have to be a time series because we have used pooled compendium to test the 
algorithm. The algorithm was tested on several real datasets, the results aligned well with 
the existing literature.  Furthermore, performance tests using ROC and AUROC proved 
that the TGMI algorithm performs better than several existing algorithms. Our method 
will be instrumental to biologists who are interested in identifying regulators that control 
biological pathways and processes using gene expression data available in public 
repositories.  
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TF-mining Pipelines for Identifying Regulatory Genes 
Controlling a Biological Pathway, Process, or Complex Trait 
from High-Throughput Gene Expression Data2 

3.1 Abstract 

Online large-scale data analysis platforms to facilitate efficient data mining are becoming 
increasingly desirable in this era of genomic data explosion. This chapter describes the 
implementation of a web-based platform, TF-Miner, which is comprised of two data 
analysis algorithms, TF-Cluster and TF-Finder (TF for transcription factor). The TF-
Cluster algorithm includes both a collaborative network construction phase and a network 
decomposition phase to obtain functionally coordinated clusters of TFs. The collaborative 
network construction phase of the original TF-Cluster algorithm utilized the Spearman 
Rank Correlation Coefficient (SRCC). For the web-based TF-Cluster pipeline, the 
collaborative network construction phase was supplemented with four additional pair-
wise association methods: Pearson Product Moment Correlation Coefficient (PPMCC), 
Weighted Rank Correlation Coefficient (WRCC), Kendall Rank Correlation Coefficient 
(KRCC) and Maximum Information Coefficient (MIC). The inclusion of these four 
additional methods facilitated the identification a range of linear and non-linear 
associations and thereby recognizing coherent clusters of collaborative TFs. Similarly, 
while the decomposition phase of the original TF-Cluster algorithm utilized only the 
Triple-link Algorithm, the web-based TF-Cluster pipeline was supplemented with two 
additional algorithms: Single-Seed Growing Algorithm (SSGA) and Multi-Seed Growing 
Algorithm (MSGA).  In contrast to TF-Cluster, which takes genome-wide expression 
profiles of all genes and identifies collaborative clusters of TFs, TF-Finder is more 
focused on the identification of regulatory TFs controlling a specific biological pathway 
or a process. The original TF-Finder algorithm utilized Adaptive Sparse Canonical 
Correlation Analysis (ASCCA) with the aid of a user-supplied regulatory TF knowledge 
base. In the web-based TF-Finder pipeline, the knowledge base requirement was 
circumvented by using Sparse Partial Least Squares (SPLS) algorithm to predict 

                                                 

 
2 The material presented in this chapter was submitted to the BMC Genomics journal in 
2016. Reviews and comments for improvements have been incorporated in this 
manuscript and will be resubmitted to the same journal in the near future. 
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candidate regulatory TFs existing TF knowledge base is not available. Finally, TF-Miner 
makes these two pipelines accessible to a large number of researchers due to its user-
friendly interface and efficient data management portal for both the input datasets and the 
output results. 

 

3.2 Introduction 

Over the last decade, technologies to generate high-throughput genome-wide gene 
expression data have become less and less expensive and, as a result, researchers around 
the world have produced a large amount of data. This data deluge has created an urgent 
need for efficient, user-friendly, web-based analysis pipelines to mine these large datasets 
and extract biologically relevant information. A web-based gene expression data analysis 
platform was implemented by integrating two existing algorithms, TF-Cluster (Nie et al., 
2011) and TF-Finder (Cui et al., 2010), while adding novel functionalities. TF-Cluster 
and TF-Finder were previously available only as separate standalone scripts (R, Perl), and 
a Unix/Linux-based high-performance computational environment was required to use 
them for analyzing large-scale datasets. Typically, a significant investment of time and 
effort is needed to configure a high-end computational hardware and install all the 
prerequisite software libraries, such as multiple R packages, third party Perl libraries, and 
Eisen’s k-means clustering package. For this reason, we hope to facilitate the work of a 
multitude of researchers by implementing a web-based application for these two software 
pipelines.  

The TF-Cluster and TF-Finder algorithms were implemented as web-based pipelines with 
a user-friendly web interface and data management portal. With the web-based interface, 
the users are separated from tedious command line execution details and algorithm 
details. When a user registers to the TF-Miner online platform, 2GB of storage space is 
allocated to upload the gene expression datasets for analysis. Once the analysis is 
completed an email notification is sent to the user to download results. The data 
management portal provides an efficient mechanism to store the input datasets and output 
results for up to two months. More importantly, our web-based TF-Mining pipelines 
platform has been functionally boosted by the addition of several augmentations to the 
original TF-Cluster and TF-Finder algorithms.  

In short, the TF-Cluster was augmented in both the collaborative network construction 
phase and the decomposition phase. Based on an earlier analysis (Kumari et al., 2012), 
the efficiencies of different association methods could be contingent upon the data 
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properties and to a large extent on the biological processes. This knowledge has 
necessitated applying multiple methods to identify collaborative TFs via the construction 
of shared so-expression connectivity matrix (SCCM). In this study, we implemented four 
additional pair-wise association methods; Pearson Product Moment Correlation 
Coefficient (PPMCC), Weighted Rank Correlation Coefficient (WRCC), Kendall Rank 
Correlation Coefficient (KRCC) and Maximum Information Coefficient (MIC). For the 
second step of decomposition of the SCCM, Xiaohui Ji (Ji et al., 2017) developed two 
additional algorithms, Single-Seed Growing Algorithm (SSGA) and Multi-Seed Growing 
Algorithm (MSGA). These two novel decomposition algorithms improve the arbitrary 
nature of the original Triple-link decomposition algorithm that specifically requires three 
significant edges from a new TF to the TFs within the growing cluster of TFs (Ji et al., 
2017). 

In contrast to TF-Cluster, The TF-Finder pipeline employs Adaptive Sparse Canonical 
Correlation Analysis (ASCCA) to identify groups of TFs using a set of pathway genes 
involved in a biological process as bait or target variables (Cui et al., 2010). The original 
TF-Finder algorithm required at least a few known regulatory TFs (guide TFs) in the 
intermediate step to narrow down and eliminate false positives. By adopting this 
approach, TF-Finder eliminates the arbitrary process of recognizing TFs purely by 
statistical significance and improves computational efficiency. However, this requirement 
of knowing at least a few known positive regulators (guide TFs) as an enrichment test, 
has limited its applicability because some biological processes have no known positive 
regulators. For this reason, we have augmented the TF-Finder algorithm by incorporating 
Sparse Partial Least Squares (SPLS) algorithm (Chun, 2008) to computationally predict 
putative positive TFs that can be used to replace the positive TFs for the enrichment test 
in the absence of guide TFs. 

 

3.3 Materials and Methods 

3.3.1 Microarray Gene Expression Data 

The TF-Miner web application presented here is designed to analyze genome-wide 
microarray or RNA-seq datasets to identify regulatory TFs. To achieve a higher statistical 
power and better performance in identifying regulatory TFs using TF-Miner, a sufficient 
number of samples (>30) should be employed (Cui et al., 2010). To increase the sample 
size, users can combine samples from multiple experiments, but the gene expression 
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datasets should satisfy the following conditions to maintain coherence and minimize 
batch effects: 

1. Samples used to extract data were from same species and tissue type (e.g. stems or 
roots). 

2. Gene expression data sets were generated from samples exposed to the same 
environmental conditions and/or experimental treatments (e.g. salt treatment, long 
day conditions). 

3. The high-throughput platform from which the datasets are generated were similar to 
each other (e.g. gene expression datasets were generated using the same microarray 
technology such as hybridization of Affymetrix 25k ATH1 microarrays). 

4. To create a compendium dataset, either time-series or non-time-series data can be 
utilized. The time-series data with small intervals such as minutes or hours may be 
more advantageous as it can capture subtle variations. However, data with large 
intervals such as days can also be used (Ji et al., 2017). 

To compare and estimate the performance of the pipelines incorporated into the TF-
Miner, multiple data sets from several microarray experiments were downloaded in raw 
data format (.CEL) from the NCBI GEO (https://www.ncbi.nlm.nih.gov/gds/) repository.  
The datasets were preprocessed using the robust multi-array analysis (RMA) algorithm 
available in the Bioconductor R-package (Irizarry et al., 2003). Quality control of 
datasets was done by a method described previously (Persson et al., 2005). The following 
microarray datasets were used to evaluate the performance TF-Miner pipelines: 

1. Microarray gene expression datasets from Arabidopsis thaliana hypocotyledonous 
stems under short-day conditions were downloaded from the NCBI GEO repository 
(Accession numbers: GSE 607, GSE6 153, GSE 18985, GSE 2000, GSE 24781, and 
GSE 5633). These datasets were derived using hybridization of Affymetrix 25k 
ATH1 microarray technology. The pooled compendium dataset consists of 128 
samples. 

2. Microarray gene expression datasets from Arabidopsis thaliana roots under salt stress 
condition were downloaded from the NCBI GEO repository (Accession numbers: 
GSE 7636, GSE 7639, GSE 7641, GSE 7642, GSE 8787, and GSE 5623). These 
datasets were derived using hybridization of Affymetrix 25k ATH1 microarray 
technology. The pooled compendium dataset consists of 108 samples.  

3.3.2 TF-Miner Web Application Architecture 

The TF-Miner web application was implemented using the model-view-controller (MVC) 
design pattern, a modern methodology in software engineering that separates algorithmic 
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details from the user while allowing access to the application logic and algorithm through 
a user-friendly interface. The MVC design pattern divides the web application into three 
components: internal mechanism (Model), presentation (View) and user interface 
(Controller). The three-tiered architecture used to implement the MVC design pattern as a 
web-based application is shown in Figure 3.1. As defined in the presentation logic (1st 
tier), the web interface collects user input via the client web browser (e.g. Internet 
Explorer, Google Chrome). When the user first directs the web browser to the address of 
the web server where the web application is hosted (http://sys.bio.mtu.edu/cluster), 
specifications to display the web interface in the client web browser are sent as Hypertext 
Markup Language (HTML) and Cascading Style Sheets (CSS) elements. The HTML and 
CSS elements specify the structure of the information displayed in the browser and 
functionality to input user information. The CSS specification allows arrangement of the 
HTML by enforcing general software engineering practices such as modularity and code 
reusability. After establishing a connection with the client's web browser, a secure 
communication channel is established after the user submits login information. For a new 
user, “Registration” web interface is loaded to create the user profile and add the user 
information to the database on the server. After successful login to the website, the input 
data can be transferred to the web server following the request response cycle of 
Hypertext Transfer Protocol (HTTP). 

 

 

 
Figure 3.1 Three-tiered dynamic web application framework of model-view-controller 
(MVC) Architecture. The user interface (View) is defined with instructions from the 
presentation logic. The application logic defines the Model, and the Controller executes 
the instructions in the application logic. Data management handles the datasets.  
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Once the data and required parameters for the desired analysis are submitted to the 
server, application logic executes the defined model for the requested analysis on the 
input data. The server-side processing is handled by programming scripts developed in 
Personal Home Pages (PHP) language and using the open source Apache web server. The 
TF-Cluster and TF-Finder algorithms were implemented using Perl and R languages. 
When each data analysis task is completed, the result is sent to the client’s web browser 
as HTML pages, and an electronic message (e-mail) notification is sent to the client’s 
registered e-mail address. This e-mail functionality was implemented with Google’s 
SMTP (Simple Mail Transfer Protocol) facility via a software library called LWP 
(Library for WWW in Perl) that allows the web server to use a third-party e-mail server 
(Gmail) to send emails notifications to the user. The Perl package was downloaded from 
CPAN online Perl package repository. After the analysis is completed, the user has the 
option to download, delete, or continue to analyze a different dataset. When the user 
initiates several analysis tasks, each job is encapsulated to run in a separate directory of 
the user’s disk space to allow simultaneous analyses of different data sets. Not only does 
this data management structure allow one user to submit multiple analysis tasks, but it 
also allows additional users to submit multiple analysis tasks simultaneously. 

3.3.2.1 TF-Miner log-in system 

To use the TF-Miner web application, a user must first register through an HTML form 
via the "Register" link in the web-interface. The username and email address must be 
unique. Validation scripts written in JavaScript prevent a user from registering if a 
duplicate record is detected. If the password is forgotten, it can be retrieved through the 
“forgot password” link in the login web portal by submitting the user email address. 
Finally, the information collected about a new user is sent to the MySQL database 
through a PHP script, which executes a SQL (Structured Query Language) command to 
store the user information in a database. 

3.3.2.2 Research data management console 

The TF-mining pipelines in this web application typically run from a few minutes to a 
few hours depending on the size of a user’s input dataset. Once a data analysis task is 
completed, an email notification is sent to the user with a link to the location of the result 
files on the server. The file manager portal stores input data and output result files under 
a subdirectory provided by the user (Job ID) when initiating the analysis. The Job ID 
should follow the convention specified in the web interface; blank spaces and special 
characters cannot be used. To enforce proper naming of input files and job ID, a dynamic 
validation system was developed with Asynchronous JavaScript and XML (AJAX) 
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technology. If the user enters an incompatible name for an input file or Job ID, the 
interface signals the user with a warning message to prevent the user from running the 
analysis with incorrect filenames. After the analysis, the data management functionality 
enables the user to locate and download the result files at any time by logging into the 
web portal and navigating to the "File Manager" link (Figure 3.2). Each registered user is 
allocated 2GB of storage space on the web server to store the input datasets and the 
output files from any of the two analysis pipelines. The stored data can be downloaded 
and visualized by navigating to the "File Manager" link and opening the subdirectory 
specified for a given analysis task. If the user does not delete files, the server will 
automatically remove data files that are older than two months to make room for other 
users. This function is achieved by triggering a Perl script to scan the dates of available 
data files whenever a user logs into the system. Every time a given user visits the web 
page, the Perl script calculates the length of time that each of the user’s input and output 
files has been stored on the server; any files that are older than two months are deleted. If 
the user has almost reached the quota, a warning message prevents the user from 
uploading additional datasets until the personal storage space is cleared.  

 

 
Figure 3.2 The File Manager for the TF-Miner web application. This portal provides 
access to results from previous analysis job submissions. Exploring the file manager 
should be done using the navigation links. The buttons in the explorer bar can be used to 
arrange the files by name, size, or date. This screenshot was obtained from the software 
created for this dissertation. 
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3.3.3 TF-Cluster Pipeline 

3.3.3.1 TF-Cluster pipeline web interface 

The TF-Cluster web interface shown in Figure 3.3 requires a user to upload two files. The 
first file is a list of all transcription factors (TFs) available for a given species. The 
second file is a genome-wide gene expression dataset in tab delimited .txt format with the 
first column containing the locus nomenclature (Meinke & Koornneef, 1997) and 
subsequent columns containing gene expression samples. The user also has to provide a 
unique name for the analysis task in the text area labeled as "Job ID". To properly 
execute the analysis pipeline, the naming should be done according to the specific 
instructions provided in the web interface. To prevent a user from entering a duplicate 
Job ID, JavaScript-based validations have been added to the data submission form. If the 
user provides an invalid Job ID and moves to the next field, an error message indicates 
this issue near the Job ID field.  

The TF-Cluster pipeline first constructs a Shared Co-Expression Connectivity Matrix 
(SCCM) by calculating correlations between all pairs of TF and non-TF genes using any 
of the following association methods: Spearman Rank Correlation Coefficient (SRCC), 
Pearson Product Moment Correlation Coefficient (PPMCC), Weighted Rank Correlation 
Coefficient (WRCC), Kendall Rank Correlation Coefficient (KRCC) and Maximum 
Information Coefficient (MIC). Next, a cut-off value specified by the user determines a 
set of top genes correlated with each TF sorted by p-values; the default is set to pick the 
top 100 genes. Each element in the SCCM represents the count of common genes 
between a pair of TFs. The decomposition of the SCCM is implemented with three 
options: the Triple-Link Algorithm (Nie et al., 2011), SSGA (Ji et al., 2017), or MSGA 
(Ji et al., 2017). The web interface to select the association method to construct SCCM 
and input parameters for decomposition algorithms are shown in Figure 3.3. 
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Figure 3.3 TF-Cluster web application interface. A registered user can upload a list of 
TFs and a genome-wide gene expression dataset. Each analysis task is given a unique Job 
ID. The user also specifies the TF-gene association method and cut-off for collaborative 
network construction and the parameters required for decomposition. Triple Link 
algorithm parameters: 𝜃𝜃 =  (𝜃𝜃1,𝜃𝜃2,𝜃𝜃3)  ⊂  (0.5~1.0, 1~1.5,1.5~2.5) , SSGA 
algorithm parameters; Threshold parameter  (𝜃𝜃); default value = 0.6, Average edge 
weight (w); default value = 1, Where θ =Ratio of authentic connections and theoretical 
connections w = Connect candidate node to the seed if the average edge weight between 
candidate node to the nodes in the seed are greater than w. MSGA algorithm 
parameters; Threshold parameter (𝜃𝜃); default value = 0.6, Swd = determine to merge two 
seed cores based on average weights, T = Number of individual nodes should be added to 
a merged seed score. This screenshot was obtained from the software created for this 
dissertation. 

 

3.3.3.2 TF-Cluster algorithm 

The TF-Cluster algorithm can be broadly described in two steps: Step 1 is the 
construction of a Shared Co-Expression Connectivity Matrix (SCCM), and Step 2 is the 
decomposition of the SCCM into coordinated clusters, where each cluster contains 
coordinated TFs. The original TF-Cluster algorithm (Nie et al., 2011) is shown Algorithm 
3.1. 
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Algorithm 3.1 TF-Cluster Algorithm with Triple Link Decomposition Method. 

 

To construct the SCCM, correlation analysis between each TFi (where i =  (1, 2, 3, . . . n) 
and n is the number of all available TFs) and all other genomic genes is conducted. This 
correlation analysis can be done with one of the five available methods: Spearman Rank 
Correlation Coefficient (SRCC), Pearson Product Moment Correlation Coefficient 
(PPMCC), Weighted Rank Correlation Coefficient (WRCC), Kendall Rank Correlation 
Coefficient (KRCC) and Maximum Information Coefficient (MIC). The TF-gene 
relationships indicated by the correlation analysis are sorted according to p-values 
(lowest to highest), and a list of the top k genes most tightly co-expressed with TFi is 
obtained (where k is the cut-off designated by the user; for example, k =
 50, 100, 150, 200). Similarly, for all n TFs, the top k genes are extracted and kept 
separately. Next, for all pairs of i,j where i =  (1, 2, 3, . . . n) and j =  (1, 2, 3, . . . n) the 
number of shared genes (NC) is calculated as shown in Figure 3.4. Nc represents the 
shared co-expression between TFi and TFj.  To construct the SCCM, shared genes among 
all pairs of TFs are counted and stored.  

 



48 

 
Figure 3.4 Calculation of shared co-expression Connectivity (Nc) between two TFs. Nc 
represents the coordination of two TFs in the context of other genes. The Nc value of 89 
shown above means that for the top 100 genes correlated with TFi and TFj, they have 89 
genes in common. 

 

The second step of the TF-Cluster algorithm is the decomposition of the SCCM matrix to 
identify sub-networks of collaborative TFs that function coordinately to regulate a 
biological process or a complex trait. Currently, three algorithms have been developed to 
decompose an SCCM collaborative network. The Triple-Link decomposition algorithm 
was part of the original TF-Cluster algorithm (Nie et al., 2011); Single-Seed Growing 
Algorithm (SSGA) and Multi-Seed Growing Algorithm (MSGA) (Ji et al., 2017) are new 
decomposition algorithms that have been added to TF-Cluster. In short, the Triple-Link 
Algorithm searches through the SCCM and finds the pair of TFs with the maximum value 
(Nc) in the SCCM matrix (see Figure 3.4 ). This pair of TFs (TFi and TFj) is connected 
with an edge and serves as the initial seed to grow a coordinated cluster of TFs. A third 
TF, TFk, is joined to the original pair of TFs if it has significant connection weights with 
both TFi and TFj. A link is considered as a significant edge if the weight connecting the 
two TFs is larger than a threshold of μ + θδ, where μ and δ are the mean and the standard 
deviation of non-zero edge weights contained in SCCM. 𝜃𝜃 =  (𝜃𝜃1,𝜃𝜃2)  ⊂
 (0.5~1.0, 1~1.5). Adding a fourth TF is similar to the previous step, except that now 
three thresholds have to be met with μ + θδ, where 𝜃𝜃 =  (𝜃𝜃1,𝜃𝜃2, 𝜃𝜃3)  ⊂
 (0.5~1.0, 1~1.5,1.5~2.5) . The range of values was chosen empirically based on 
optimal results obtained by analyzing several datasets. The web-based pipeline provides 
functionality for users to modify the parameters.  𝜃𝜃1  is the least and 𝜃𝜃3  is the most 
stringent parameter when adding a node to a cluster. After the third node, any additional 
TF is added to a cluster if any of the three edges satisfy the requirement; this process 
continues until all of the TFs are evaluated as candidates. Two additional algorithms, 
SSGA and MSGA, were developed for the decomposition of the SCCM collaborative 
network (Ji et al., 2017) to achieve more efficient and accurate results. SSGA and MSGA 
differ from Triple Link in that they employ a more flexible network-growing approach. 
This complete TF-Cluster pipeline is shown in Figure 3.5. 
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Figure 3.5 A flowchart illustrating the workflows of TF-Cluster. Step 1 shows the 
construction of the Shared Co-Expression Connectivity Matrix (SCCM), which is the 
matrix form of the coordination network of all transcription factors (TFs).  Step 2 shows 
the three decomposition methods and parameters for constructing collaborative clusters 
of TFs. 
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3.3.3.3 Pair-wise association methods for SCCM construction 

The strength of statistical methods in identifying associations between genes using 
expression data depends on data properties and the biological process. Complex and 
noisy nature of gene expression data dataset requires multiple methods of analysis, which 
can capture the varying degree of linear and non-linear associations. The inclusion of four 
additional association methods to TF-Cluster, facilitated more robust usability of the TF-
Cluster pipeline across many different datasets. In a previous publication (Kumari et al., 
2012), an extensive comparison was carried out to show the efficiencies in identifying 
pair-wise associations accross eight association methods; including, Spearman Rank 
Correlation Coefficient (SRCC), Pearson Product Moment Correlation Coefficient 
(PPMCC), Weighted Rank Correlation Coefficient (WRCC), Kendall Rank Correlation 
Coefficient (KRCC). These four pair-wise association methods were incorporated to the 
web-based TF-Cluster along with Maximum Information Coefficient (MIC), which is a 
novel measure that can be used for modeling the relationship between two variables 
including both linear and nonlinear bivariate relationships (Reshef et al., 2011). Because 
MIC is mutual information based, it can measure associations equally well with both 
linear and non-linear relationships, including linear, cubic, exponential, monotonic, 
parabolic, and sinusoidal relationships. This procedure allows MIC method to associate 
genes with various types of relationships including those that can hardly be distinguished 
by linear methods. MIC is based on the concept that if a bivariate association exists, a 
grid can be drawn in a way that partitions the data points of a scatterplot to encapsulate 
the relationship. Intuitively, the idea is to explore all grid resolutions up to a maximal 
grid level that captures the highest mutual information associating two variables. 
Depending on the number of samples, a finite set N of ordered pairs are partitioned into x 
bins by x-values and y bins by y-values. These bins creates an x-by-y grid.  D|G is the 
notation used to specify the distribution of points D given the grid G.  

Definition 1:  For a dataset (D) of 2-dimensions where 𝐷𝐷 ⊂  ℝ2 and x, y be  

𝐼𝐼(𝐷𝐷, 𝑥𝑥,𝑦𝑦) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐷𝐷|𝐺𝐺) 

where G is the 2-dimensional bins with x columns and y rows. 

Definition 2: The characteristic matrix (M) of set D data is: 

𝑀𝑀(𝐷𝐷)𝑥𝑥,𝑦𝑦 =
𝐼𝐼∗(𝐷𝐷, 𝑥𝑥,𝑦𝑦)

𝑙𝑙𝑙𝑙𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚[𝑥𝑥,𝑦𝑦]
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Definition 3: Maximum Information Coefficient (MIC): 

𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷)  =  max
𝑋𝑋𝑋𝑋<𝐵𝐵(𝑛𝑛)

𝑀𝑀(𝐷𝐷)𝑋𝑋,𝑌𝑌 =  max
𝑋𝑋𝑋𝑋<𝐵𝐵(𝑛𝑛)

𝐼𝐼(𝐷𝐷,𝑋𝑋,𝑌𝑌)
𝑙𝑙𝑙𝑙𝑙𝑙(𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋,𝑌𝑌)

 

where, 𝐵𝐵(𝑛𝑛)  =  𝑛𝑛𝛼𝛼 

Statistical significance of the associations captured by MIC is determined as follows. If 
the null hypothesis is that the variables X and Y are statistically independent, the p-value 
for a given MIC score for a pair-wise association is determined using permutations of the 
dataset to generate 1/𝛼𝛼 −  1 surrogate datasets for 𝛼𝛼 =  0.05. 

 

3.3.4 TF-Finder Pipeline 

3.3.4.1 TF-Finder web interface 

In this web-based pipeline, the TF-Finder algorithm has been incorporated into a simple, 
user-friendly interface (see Figure 3.6).  A user is required to submit gene expression 
profiles of all transcription factors (TFs), pathway genes (PWGs) from a canonical or a 
non-canonical pathway and known positive TFs (guide TFs) of the biological pathway 
(canonical or non-canonical) or complex trait being analyzed(For option 1). The data file 
must be in the tab delimited “.txt” format with the first column containing the locus 
nomenclature and subsequent columns containing gene expression samples. The web 
interface provides three options for the enrichment test. If the guide TFs are not available 
a user can select option 2 (use SPLS algorithm to predict guide TFs) or option 3 (execute 
the TF-Finder without the enrichment test). 
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Figure 3.6 TF-Finder web application interface. A unique Job ID must be given to avoid 
overwriting existing files by following the provided naming convention in the web 
interface. A user can select any of the three options available for the enrichment test. This 
screenshot was obtained from the software created for this dissertation.  

 

The enrichment test restricts false positive TFs from entering the predicted TFs set by 
cross checking TFs obtained by the Adaptive Sparse Canonical Correlation Analysis 
(ASCCA) with a set of known positive TFs (guide TFs) supplied by the user (as an input 
file). However, this requirement limits the application of the TF-Finder to situations in 
which at least a few TFs of the particular biological pathway are known. The new TF-
Finder implementation addresses this issue by utilizing an additional algorithm, Sparse 
Partial Least Squares (SPLS) (Chun, 2008) to predict TF and use these predicted TFs in 
place of known positive TFs (guide TFs). For a user who does not want to use either 
known positive TFs or SPLS predicted TFs in the enrichment test, a third option is 
included to by-pass this enrichment step altogether and keep all TF sets generated by the 
ASCCA algorithm. 
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3.3.4.2 TF-Finder algorithm 

The original TF-finder (Cui et al., 2010) is shown in Algorithm 3.2. The following 
sections introduce the Adaptive Sparse Canonical Correlation Analysis (ASCCA) and 
enrichment test along with modifications added to the web-based TF-Finder pipeline. As 
shown in Figure 3.7, the TF-Finder pipeline accepts three input files: (1) The target genes 
file contains expression data for genes that are known to be involved in a biological 
process or pathway(canonical or non-canonical), (2) Expression data for positive TFs 
(guide TFs) known to participate in this process, and (3) Expression data for all other 
TFs. The known positive TFs are those that have been experimentally validated for 
involvement in regulating the biological process being studied or of interest. The 
algorithm can identify a set of candidate positive TFs from all other TFs along with the 
known positive TFs.  

 

 
Algorithm 3.2 TF-Finder algorithm with guide TF-knowledge base. 
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Figure 3.7 TF-Finder pipeline. Three types of data files, namely expression data for target 
genes, all TFs, and known positive TFs should be submitted. The ASCCA algorithm is 
performed on each cluster obtained from Eisen's k-means clustering, and the results from 
ASCCA along with known positive TFs are submitted to the enrichment test. Finally, the 
pipeline outputs new positive TFs. The enrichment test is supplemented with additional 
two options; SPLS algorithm or by passing the enrichment test. 

 

3.3.4.2.1 Adaptive sparse canonical correlation analysis (ASCCA) 

The first step of the TF-Finder pipeline is clustering the target pathway genes into several 
groups based on the correlations between gene expression samples. Eisen’s k-means 
clustering algorithm has been implemented with cluster size, k, ranging from 4 to an 
upper bound. The upper bound is determined as follows.  For example, for 100 target 
genes, with k = 4, results in four groups with each group consisting of 25 genes. The k is 
gradually increased until the minimum number of genes in a cluster is 4. As shown in  
Figure 3.7 Each pathway gene cluster is applied to the Adaptive Sparse Canonical 
Correlation Analysis (ASCCA) as a multivariate response variable (Y), and all the TFs 
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are supplied as predictor variables (X). Mathematical details of the ASCCA algorithm 
can be found in the original TF-Finder publication (Cui et al., 2010). Briefly, the ASCCA 
extracts a set of TFs that coordinately regulates each of the target pathway gene clusters. 
Importantance of candidate TFs are identified by the frequencies of extraction by the 
ASCCA algorithm for each target pathway gene cluster. Intuitively, if a particular TF is 
extracted by in almost all target pathway gene clusters, then that TF should be ranked 
high by the frequency of extraction for the particular target pathway gene cluster.  

 

3.3.4.2.2 Enrichment test  

The TF sets extracted by the ASCCA for each target pathway gene cluster are further 
evaluated by the enrichment test that takes advantage of any of published studies linking  
particular set of TFs (guide TFs) to the regulation of the pathway genes of interest (see 
Figure 3.7). This procedure has conceptually similar reasoning to the enrichment test (I. 
Rivals, Personnaz, Taing, & Potier, 2007). The idea is to develop a test to keep or discard 
a set of TFs obtained for a particular target pathway gene cluster by evaluating for each 
extracted TF set as follows:  

The following notation is used to introduce this test.  

𝑁𝑁 =  𝑇𝑇ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 𝑋𝑋 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝  = 𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒 𝑇𝑇𝑇𝑇𝑇𝑇  

N𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝∩𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  = 𝑇𝑇ℎ𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  ∩  𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑏𝑏𝑏𝑏 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

EF = enrichment factor, a user defined value between 1 - 5 

𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝∩𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  >  𝐸𝐸𝐸𝐸 ×  �
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁

� × 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

However, in the event of no known positive TFs for a particular biological pathway of 
interest, the Sparse Partial Least Squares (SPLS) algorithm (Chun, 2008) is employed to 
predict a set of candidate positive TFs. The SPLS takes a set of target pathway genes and 
all TFs as inputs. As shown in Figure 3.7, for each iteration, all the TFs predicted by the 
SPLS are used as positive TFs (guide TFs) for the enrichment test. If the enrichment test 
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(𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝∩𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  >  𝐸𝐸𝐸𝐸 ×  �𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝
𝑁𝑁
�×  𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) is passed, the set of TFs identified by ASCCA 

is kept for further steps of the algorithm.  

The SPLS algorithm used in the optional enrichment test in the TF-Finder pipeline is 
briefly described in this section. The concept of SPLS relies on Partial Least Squares 
(PLS) which is a supervised dimension reduction algorithm. PLS is comparable to 
Principal Component Analysis (PCA), which reduces the dimension of a dataset to a set 
of latent components, which can capture the maximum variation in the original dataset. 
The PLS considers a set of response variables (Y) when obtaining the set of latent 
components thereby retaining the most relevant components to the response variable. The 
SPLS imposes a sparsity when obtaining the latent PLS component and limits the number 
of unimportant variables. The shrinkage of the coefficient in unimportant variables to 
zero is achieved with a L1 norm penalty constraint in the covariance maximization 
problem, following the Lasso principle developed by Tibshirani (Tibshirani, 2011). The 
SPLS predictive model has two primary tuning parameters: 𝐿𝐿1 penalty, η, is set between 
0 and 1, and K is the number of latent components which can be set between 1 and min 
(p, (v-1) n/v), where v is the number of folds for cross-validation. In general, lower 
values of η represent less sparsity (and thus more variables tend to be selected), whereas 
higher values imply more sparsity. However, the choice of K also affects variable 
selection in conjunction with η (lower values of K tend to result in fewer chosen 
variables). To facilitate the choice of K and η, cross validation should be used where the 
“optimal” K and η are those with the lowest mean squared prediction error. 

 

3.4 Results and Discussion 

3.4.1 TF-Cluster Results 

3.4.1.1 Arabidopsis thaliana roots under salt stress tolerance 

This analysis was conducted on a microarray compendium dataset pooled from six salt 
stress microarray experiments using Arabidopsis thaliana roots. The datasets were 
downloaded from the NCBI GEO repository with accession numbers GSE 7636, GES 
7639, GES 7642, GES 8787, GES 5623, and GES 7641. The combined dataset includes 
108 samples. The TF-Cluster pipeline was used to analyze the dataset utilizing each of 
the association methods and keeping the cut-off at the default value of 100. The Triple 
Link Algorithm was executed with theta values (0.8, 1.2, 1.5). Using the existing 
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literature, we identified positive TFs known to control a given biological process, 
pathway, or trait under salt stress conditions. To evaluate the performance of the TF-
Cluster pipeline for each association method we counted the number of positive TFs 
identified in each cluster by each association method. A stacked barplot was used to 
visualize and compare the efficiency of each association method, as shown in Figure 3.8. 
Also, the positive TFs identified by each method in top 20 clusters were compared as 
shown in Table 3.1. 

 

 
Figure 3.8 Comparison of the number of TFs identified by each association method for 
TF-Cluster pipeline using Arabidopsis thaliana (roots). Positive TFs identified in the top 
20 clusters using Spearman Rank Correlation (SRCC), Pearson Product Moment 
Correlation Coefficient (PMMCC), Weighted Rank Correlation Coefficient (WRCC), 
Kendall Rank Correlation Coefficient (KRCC), Maximum Information Coefficient (MIC) 
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Table 3.1 Comparison of the number of positive TFs identified clusters using each 
association method with the microarray dataset from  Arabidopsis thaliana (roots).

Cluster No. 
Identified 
Positive 
TFs 

Biological Process controlled by TFs 
in each cluster 

Run 
Time 

Spearman Rank Correlation Coefficient 
Cluster 1 6 Root hair growth 

~45min 
Cluster 2 16 Root cap growth 
Cluster 4 12 Secondary cell wall growth 
Cluster 7 9 Root cell cycle & growth 
Cluster 11 11 Drought stress in response to ABA 
Pearson Product Moment Correlation Coefficient  
Cluster 1 2 Root hair growth 

~30min Cluster 2 13 Root cap growth 
Cluster 3 9 Secondary cell wall growth 
Weighted Rank Correlation Coefficient  
Cluster 1 2 Root hair growth 

~2hr Cluster 2 16 Root cap growth 
Cluster 3 9 Secondary cell wall growth 
Kendall Rank Correlation Coefficient  
Cluster 1 2 Root hair growth 

~3hr Cluster 2 6 Root cap growth 
Cluster 4 16 Secondary cell wall growth 
Cluster 6 12 Root cell cycle & growth 
Maximum Information Coefficient  
Cluster 1 6 Root hair growth 

~5hr 
Cluster 3 16 Root cap growth 
Cluster 4 12 Secondary cell wall growth 
Cluster 7 8 Root cell cycle & growth 
Cluster 12 11 Drought stress in response to ABA 

 

3.4.1.2 Arabidopsis thaliana short-day hypocotyledonous stem tissues 

This analysis was conducted on a microarray dataset compendium pooled from six 
functionally related experiments in Arabidopsis thaliana. The datasets were downloaded 
from the NCBI GEO repository with accession numbers: GSE 607, GSE 6153, GSE 
18985, GSE 2000, GSE 24781 and GSE 5633. The experiments were conducted on 
hypocotyledonous stem tissues under short-day conditions known to induce secondary 
wood formation(Chaffey et al., 2002). The compendium dataset of 128 samples was 



59 

analyzed with each of the association method separately, and the cut-off was set to the 
top 100 genes. The Triple Link Algorithm was executed with theta values (0.8, 1.2, and 
1.5). The comparison between clusters are shown in Figure 3.9. The biological processes 
governed by the positive TFs in top two clusters and the number of positive TFs in each 
cluster is shown in Table 3.2. 

 

 
Figure 3.9 Comparison of the number of TFs identified by each association method for 
TF-Cluster pipeline using Arabidopsis thaliana stem tissues. Positive TFs identified in 
top 20 clusters using Spearman Rank Correlation, Pearson Product Moment Correlation 
Coefficient (PMMCC), Weighted Rank Correlation Coefficient (WRCC), Kendall Rank 
Correlation Coefficient (KRCC), Maximum Information Coefficient (MIC) 
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Table 3.2 Comparison of the number of positive TFs identified in clusters using each 
association method with the microarray dataset from Arabidopsis thaliana (stems). 

Cluster 
No. 

Identified 
Positive TFs 

Biological Process controlled by TFs 
in each cluster 

Run 
Time 

Spearman Rank Correlation Coefficient 

Cluster 2 15 Secondary cell wall growth and lignin 
synthesis ~1hr 

Cluster 3 12 Vascular patterning and phyllotaxy, 
Anthocyanin synthesis 

Cluster 4 3 Anthocyanin synthesis  
Pearson Product Moment Correlation Coefficient  

Cluster 2 16 Secondary cell wall growth and lignin 
synthesis 

~40min 
Cluster 9 8 Vascular patterning and phyllotaxy, 

Anthocyanin synthesis 
Weighted Rank Correlation Coefficient  

Cluster 2 16 Secondary cell wall growth and lignin 
synthesis ~2.5hr 

Cluster 6 4 Anthocyanin synthesis 
Kendall Rank Correlation Coefficient  

Cluster 2 15 Secondary cell wall growth and lignin 
synthesis ~4.2hr 

Cluster 4 14 Anthocyanin synthesis 
Maximum Information Coefficient  

Cluster 2 15 Secondary cell wall growth and lignin 
synthesis 

~6hr Cluster 3 2 Anthocyanin synthesis 

Cluster 4 16 Vascular patterning and phyllotaxy, 
Anthocyanin synthesis 

 

3.4.2 TF-Finder Results 

TF-Finder was used to identify candidate TFs that are involved in lignocellulosic 
biosynthesis in stem tissues and salt stress tolerance in roots in Arabidopsis thaliana 
using the two microarray compendium datasets consisting of 128 and 108 samples 
respectively. ROC curves in Figure 3.10 shows the two datasets have different accuracies 
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based on the option selected for the enrichment test. Following 3.4.2.1 and 3.4.2.2 
sections provide more details about this analysis. 

 

 
Figure 3.10 ROC curves for the comparison of accuracies of the three enrichment options 
available for TF-Finder. The blue curve indicates ROC of the original TF-Finder 
(enrichment using known TFs in Option 1 of the web interface), the red curve indicates 
ROC with the SPLS algorithm used for enrichment in Option 2 of the web interface. 
When the enrichment test is ignored (purple curve in Option 3 of the web interface). (A) 
Identification of Lignin biosynthesis pathway using Arabidopsis thaliana 128 microarray 
samples generated from stem tissues under long day conditions. (B) Identification of salt 
stress tolerance regulators using Arabidopsis thaliana 108 microarray samples generated 
from roots under salt stress conditions. 

 

3.4.2.1 Arabidopsis thaliana short-day stem tissues (Lignin biosynthesis) 

The accuracy of the TF-Finder pipeline was tested by analyzing a microarray dataset 
containing 128 samples that were collected from hypocotyledonous stem tissues under 
short-day condition (See 3.3.1 for more details). A set of 22 pathway genes involved in 
lignin biosynthesis, were used as target genes. To generate ROC curves to compare the 
accuracy of identifying novel TFs using Option1 (with enrichment test) with those of 
other methods, ten guide TFs, out of 20 positive TFs known to regulate the lignin 
pathway, were employed in the enrichment test. The guide TFs were GATA12, LBD15, 



62 

LBD30, MYB85, SND1, NST1, MYB58, NST2, SND2, GRF3 (Kumari et al., 2016). The 
TF-Finder pipeline identified six positive TFs, namely MYB103, MYB43, MYB46, 
MYB52, SND3, MYB63 (Deng et al., 2017; Kumari et al., 2016). Using Option 2 (SPLS) 
for the enrichment test, the TF-Finder pipeline identified all of the TFs obtained using 
Option 1 as well as additional TFs. Option 3 introduced more noise, and only four 
positive TFs were identified. ROC curves, which compare the accuracies for identifying 
TFs using each enrichment test option are shown in Figure 3.10A. For this dataset, the 
SPLS assisted greatly in comparison to the guide TFs which yielded an AUROC of 
0.9295 and not using enrichment test (Option 3) yielded an AUROC of 0.7373. 

 

3.4.2.2 Arabidopsis thaliana roots under salt stress (Salt stress response and tolerance) 

The accuracy of the TF-Finder pipeline was tested by analyzing the 108-sample 
microarray dataset from Arabidopsis thaliana root tissues (See 3.3.1 for more details). A 
set of 157 target genes that are known to be involved in salt stress response and tolerance, 
1640 Arabidopsis thaliana TFs available in Affymetrix ATH1 array and 13 known 
positive TFs as guides for the enrichment test in Option 1 were used to generate results. 
When the ASCCA algorithm was used with the 13 TFs (AT1G01520, AT1G35515, 
AT1G52890, AT2G27300, AT2G30250, AT2G38470, AT2G40950, AT2G47190, 
AT3G19580, AT3G55980, AT4G28110, AT5G39610, AT5G67450) using Option 1 for 
the enrichment test, 11 out of 18 salt tolerance TFs were identified by the TF-Finder 
pipeline. The ROC curves shown in Figure 3.10B shows the comparision of accuracy of 
option 1 (0.9756) with those of other two options. For this dataset, the existing 
knowledge base assisted greatly compared to the SPLS algorithm (Option 2) which 
yielded an AUROC of 0.8546125; Option 3 (no enrichment test) yielded an AUROC of 
0.8456296.  

3.5 Conclusion 

The web-based implementation of TF-Miner discussed in this chapter will facilitate the 
recognition of major regulatory TFs that govern important biological processes/pathways 
of interest from large-scale gene expression datasets.  The web interface of TF-Mining 
pipelines enable the users to modify the parameters of two pipelines for extracting more 
biologically relevant TFs from the datasets. For TF-Cluster pipeline, multiple 
augmentations were accomplished through the integration of four additional gene 
association methods for construction of collaborative networks of TFs, in contrast to only 
one method, namely Spearman Rank Correlation, in the original pipeline. Also, the 
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decomposing phase was supplemented with additional SSGA and MSGA algorithms. TF-
Finder pipeline was equipped with the Sparse Partial Least Squares (SPLS) that is added 
as an option for the enrichment test when positive TF knowledge base is not available. 
With the user-friendly and efficient web-based platform along with novel functionalities, 
the TF-Miner will be an indispensable tool to a multitude of biologists who need to 
unearth important TFs of interest from gene expression datasets and discover novel 
biological knowledge. 
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ExactSearch: A Web-based Plant Motif Search Tool3 

 

4.1 Abstract 

ExactSearch is a web-based software application that utilizes an efficient suffix tree 
based search algorithm to locate a set of short motif sequences in a set of large target 
sequences. The target sequences can be regulatory regions associated with specific 
transcription or translation factors in the proximal promoters or 3′ untranslated regions (3′ 
UTR) of a set of plant genes of interest. Our algorithm preprocesses the long target 
sequences into suffix-tree data structures that allow searching for a short motif sequences 
of length m (m < 20bp) in O(m) time. The algorithm can execute an exhaustive search of 
100 motifs against 35,000 target sequences (2 kb in length) in 4.2 minutes. Our web 
application currently includes a repository of target sequences from proximal promoter 
regions of 50 plant species, including regions 0.6kb downstream and 0.5kb, 1.5kb, and 
2kb upstream. Additionally, the application hosts about 400 available motif sequences 
from these 50 plant species. When a user submits a search task by uploading/selecting a 
set of motif sequences and uploading/selecting a set of target sequences, the web portal 
completes the search operations and sends the result file to the user's email address. The 
ExactSearch web tool is accessible at this URL: http://sys.bio.mtu.edu/motif. 

 

 

 

                                                 

 
3  The material presented in this chapter has been published in BMC Plant Methods 
journal. “Gunasekara, C., Subramanian, A., Avvari, J. V., Li, B., Chen, S., & Wei, H. 
(2016). ExactSearch: a web-based plant motif search tool. Plant Methods, 12, 26. 
doi:10.1186/s13007-016-0126-6” 

http://sys.bio.mtu.edu/motif
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4.2 Introduction 

Motifs are short nucleotide sequences located in the promoter region of genes presumed 
to play a role in regulating gene expression. Transcription factors (TFs) binding to 
sequence-specific motifs in the promoter regions can to either activate or repress gene 
expression. These putative regulatory sequence motifs are discovered by searching for 
overrepresented DNA patterns upstream of functionally related genes employing both 
experimental and computational approaches (D'Haeseleer, 2006). Identifying known 
motif sequences in the promoter region of a particular gene can give important clues 
about regulatory relationships, including predicting target genes for particular 
transcription factors. Given their regulatory role, biologists often work to locate putative 
binding motif sequences in the proximal promoters of a set of gene sequences(E. Rivals, 
Salmela, & Tarhio, 2011). To do this, biologists need to identify appropriate algorithms, 
download flanking sequences of candidate target genes, and manipulate pattern-matching 
tasks; this typically occurs in a command line environment foreign to many biologists. 
Also, searching for numerous motifs in thousands of target sequences can quickly 
become an overwhelming task, and this approach is especially tedious when degenerate 
motifs are encountered. Degeneracy is a phenomenon whereby some positions within the 
DNA sequence must be strictly adhered to and the presence of a designated base is 
mandated, while other nucleotide positions can be occupied by more than one base, each 
having an equal probability. As a result, degeneracy increases the number of possible 
motif sequences that need to be searched. Moreover, to effectively carry out exact pattern 
matching, several steps are necessary: developing programming scripts, setting up a 
computational environment, preparing the required input files, and then extracting 
essential information from outputs. The ExactSearch web application simplifies this 
entire process by automating repetitive tasks to avoid mistakes. In addition, by using a 
suffix-tree based algorithm to make the search task faster than is possible with existing 
tools. The challenge of searching for a large number of short DNA motif sequences in 
thousands of larger target DNA sequences can be addressed with the efficient 
implementation of algorithms available in the computer science literature. We adopted 
the Ukkonen's linear-time suffix-tree construction algorithm (Galil & Ukkonen, 1995) to 
preprocess each target sequence into suffix-tree data structure, and implemented a suffix 
tree search algorithm originally proposed by Gusfield (Gusfield & Kao, 1999).  

Briefly, locating a DNA motif of length m in a larger target sequence of length n can be 
done using a naïve approach. This method consists of checking every character of the 
target sequence between the first (0) and last (n-m) character by sliding a window of 
length m across the target sequence. If the first nucleotide of the motif sequence matches, 
then the next character is examined. If the next character does not match, then the 
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window is shifted one character to the right and compared again. This approach has the 
time complexity of O (mn) (Lecroq, 2007). The Rabin-Karp (RK) algorithm is another 
popular string search algorithm which has some similarity to the naïve sliding window 
approach (Lecroq, 2007). The RK algorithm improves upon the naïve approach by 
optimizing the sliding window movements across the target sequence. The RK algorithm 
computes a hash value for the motif sequence pattern and compares it with the hash 
values generated for each substring in the target sequence. If the hash values match, then 
individual characters are matched to find the pattern in the target sequence. The RK has 
the time-complexity of O(m+n) (Lecroq, 2007).  

The suffix tree data structure-based search algorithm that we implemented can rapidly 
search for many motif sequences once the target sequence is preprocessed and saved in 
the computer’s memory. This dynamic programming approach reduced the run time 
significantly in comparison to the naive and RK algorithms and the existing Regulatory 
Sequence Analysis Tool (RSAT) (Thomas-Chollier et al., 2011). To make our search 
algorithm more widely accessible, we developed a user-friendly, web-based application 
that allows users to carry out search tasks either by uploading their own target sequences 
or by selecting any of the 50 plant species whose flanking gene sequences that are stored 
in our database. The user has the option of searching flanking sequences 0.6kb 
downstream or 1kb, 1.5kb, or 2kb upstream with respect to the coding regions. Also, the 
web application permits the user to select genes to search for by providing a annotation 
file for each plant species. We also incorporated 400 known plant motifs into our web 
application so users can choose to search in custom target sequences or in the proximal 
sequences of the 50 plant species stored in our sequence database. 

 

4.3 Materials and Methods 

4.3.1 Degenerate Motif Sequences 

The degeneracy of a motif sequence is a phenomenon whereby some positions within the 
DNA sequence must be strictly adhered to and the presence of a designated base is 
mandated, while other nucleotide positions can be occupied by more than one base, each 
having an equal probability of occupying that position. For example, W (weak) positions 
have an equal probability of adenine (A) and thymine (T). A weight matrix with a 
probability weight vector for each position of the sequence can be assigned for each 
nucleotide as shown in Table 4.1. 
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Table 4.1 IUPAC notation of Ambiguous characters in nucleotide sequences. The 
degenerate bases that are not A,T,C,G nucleotides have other equally likely 
representations.  

IUPAC Code Nucleotides Name [pA,pC,pG,pT] 
A A Adenine [1, 0, 0, 0] 
C C Cytosine [0, 1, 0, 0] 
G G Glutamine [0, 0, 1, 0] 
T T Thymine [0, 0, 0, 1] 
S C or G Strong [0, ½, ½, 0] 
W A or T Weak [½, 0, 0, ½] 
R A or G PuRine [½, 0, ½, 0] 
Y C or T pYrimidine [0, ½, 0, ½] 
M A or C aMino group [½, ½, 0, 0] 
K G or T Keto group [0, 0, ½, ½] 
B C or G or T Not A [0, ⅓, ⅓, ⅓] 
D A or G or T Not C [⅓, 0, ⅓, ⅓] 
H A or C or T Not G [⅓, ⅓, 0, ⅓] 
V A or C or G Not T [⅓, ⅓, ⅓, 0] 
N A, C, G or T aNy base [¼, ¼, ¼, ¼] 

 

For example, a degenerate motif sequence, RTCRYNNNNACGR, takes many forms and 
each possible sequence combination needed to be checked against the target sequences. 
For RTCRYNNNNACGR, 4096 possible motifs that can be combined (see Table 4.2). 
When multiple degenerate motif sequences are present, the number of possible motif 
sequences increases rapidly. 

 
Table 4.2 Number of possible nucleotides for each base in the motif sequence 

R T C R Y N N N N A C G R 
2 1 1 2 2 4 4 4 4 1 1 1 2 

Input motif sequence file should follow the format shown in Figure 4.1. This format 
includes the “>” character followed by a unique motif identification name that begins 
with a lower/upper case letter and followed by any alphanumeric characters. The 
identifier is followed on the next line by the motif sequence itself.  
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Figure 4.1 Sample motif sequence file. A unique motif identification name should be 
preceded by a ">" character. The motif sequence is given on the next line. 

 

4.3.2 Target DNA Sequences 

Target sequences can be uploaded to the ExactSearch web tool in two ways. The first 
option is to compose target sequences into a .txt file in FASTA format, as shown in 
Figure 4.2. Each target sequence must start with a header line, which acts as a sequence 
identifier. This identifier should not contain white spaces and special characters. The 
sequence identifier must begin with the “>” sign as shown in Figure 4.1. The nucleotide 
sequence starts on the next line, with each line consisting of a maximum of 80 characters 
(according to the standard). The target sequences should not contain gaps or any 
alignment characters. If lower case characters were submitted, these would be mapped to 
uppercase characters.  

 

 
Figure 4.2 Sample file of target sequences in FASTA format. The target gene identifiers 
(ids) should be unique and preceded by a ">" character. The nucleotide sequence begins 
on the next line and continues with 80 nucleotides per line. 
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The second option is to select target sequences from our repository of proximal promoter 
regions from 50 plant species. We have included 4 proximal promoters: 0.6kb 
downstream and 1kb, 1.5kb, 2kb upstream of all genes in the 50 plant species. The 
presence of certain sequence motifs in these proximal promoter regions is necessary to 
control gene expression (Maston, Evans, & Green, 2006). We downloaded the sequences 
from the online repository Phytozome.org (Goodstein et al., 2012). Automated scripts 
were developed to download the sequence data using the Biomart Perl API 
(http://www.ensembl.org/info/data/biomart/biomart_perl_api.html). 

 

4.3.3 ExactSearch Algorithm 

The ExactSearch algorithm first separates non-degenerate and degenerate motif 
sequences into separate files by traversing through the input motif file. The non-
degenerate motif file is directly sent to the next phase of the algorithm while the 
degenerate motif file is further processed to generate candidate motif sequences. As 
shown in the Algorithm 4.1, a lookup table substitutes each of the degenerate characters 
by applying a recursive algorithm. In short, this recursive algorithm starts with the first 
character, and, if it is a degenerate nucleotide (R, Y, S, W, K, M, B, D, H, V, N), then the 
first letter is replaced with appropriate (A, T, C, G) base characters. For example, 
RCGMK will generate two sequences: ACGMK and GCGMK. At this point, the second 
nucleotide of each newly generated sequence is considered. Since the second character is 
not degenerate in this example, the algorithm moves on to the next character, this 
continues until all combinations of the degenerate motif sequences have been copied to a 
file. After this step, the generated sequence combinations are sent to the next phase of the 
ExactSearch algorithm.   

 

http://www.ensembl.org/info/data/biomart/biomart_perl_api.html)
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Algorithm 4.1 Generate all possible combinations from the degenerated motif sequence 
using IUPAC notation for ambiguity nucleotides. 

The next step of the ExactSearch algorithm is to preprocess each of the target sequences 
into suffix-tree data structures. The ExactSearch algorithm employs Ukkonen’s suffix-
tree construction method (Ukkonen, 1995), for this preprocessing step for each target 
sequence. Briefly, characters are represented in a tree starting from a root node with 
edges extending out to new nodes and expanding until a terminating character ($ sign) is 
reached. Figure 4.3 illustrates how the algorithm builds a suffix tree from a sample target 
sequence (T) of 11 bases (T= TAACAGAGTGAC). Then the search of a short motif 
sequence (m = ACAGAG) using the suffix-tree is demonstrated. 
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Step 1: Suffixes are generated by removing one character at a time from the left side of 
the sequence (T), moving from the left to right, while separating each sub-sequence from 
the remaining sequence. The $ character is added to the right side end target sequence 
before suffix generation to signify the end of the sequence. The algorithm builds each 
new suffix from the previous suffix as generalized by the sequence T of length n as 
shown in Step 1 of Figure 4.3.  

Step 2: The suffix tree can be represented in a dictionary format in which, the fixed set of 
characters that exist in the target sequence are ordered in a predefined pattern. For the 
nucleotide sequences, we defined the characters in our target sequence in the order 
shown:  

$ > A > C > G > T 

The suffixes are then sorted according to this predefined order as shown in Step 2 of 
Figure 4.3. 

Step 3: After sorting, the suffixes are arranged into a tree structure in which the root node 
diverges into five branches, one for each character ($, A, C, G, T). The suffixes built in 
the previous step are stored in the tree in such a way that each node contains information 
about subsequent nodes. The first character of the substring to be added is checked at the 
first level of the suffix tree; if no match is found, a node with this new character is added 
immediately under the current node, and the rest of the substring is stored under this 
newly created node. In this manner, all suffixes are stored in the data structure as shown 
in Step 3 of Figure 4.3. 

Step 4: Once the target sequence is represented in the suffix-tree and stored in the 
computer’s memory, this can repeatedly be used to search for as many motif sequences as 
needed (Figure 4.3, Step 4). In this example, the stored suffix tree generated from the 
target sequence, T, is searched for the motif pattern 'ACAGAG'. In traversing the initial 
portion of this motif, A -> C -> A, the algorithm determines that this sub-pattern be in 
node 3, thereby determining the starting location of the motif sequence in the target 
sequence. If the search function successfully maps the motif sequence to a node of the 
suffix-tree, then that sorted rank of the node (established in Step 2), that is stored at the 
end of each path (represented by green circles in Figure 4.3, Step 3) is returned. This rank 
represents the starting location of the motif sequence in the target sequence.  
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Figure 4.3 An illustration of suffix-tree search algorithm using a sample target sequence 
(Steps 1-3) and how to perform a motif search (Step 4). A simple target sequence T = 
(TAACAGAGTGAC) is used for demonstration purposes. The generated suffixes are 
sorted by the predefined order and represented in the tree structure. This figure was 
reproduced from the manuscript published in BMC Plant Methods open access journal 
(Gunasekara et al., 2016). Copyright documentation is attached in Appendix (A.1.1) 

 

4.4 Web-based Implementation 

Figure 4.4 shows the overall workflow of the web application. At the center of the web 
application resides the suffix tree-based string search algorithm compiled into a 
command line executable program developed in C++. Depending on the requirements, 
users can either upload a set of target sequences in a txt file or select target sequences 
from available proximal promoter sequences in the web tool. The proximal promoter 
sequences from genes of any of the 50 plant species can be chosen from the web 
interface. Specific genes can be searched by providing the gene IDs of interest or all 
genes. 
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Figure 4.4 The flowchart of ExactSearch algorithm. The input files can be uploaded or 
selected from the available target or motif sequences on the web interface. The file parser 
reads the motif sequences; degenerate sequences are converted into all possible motifs 
with A, T, C, G (non-degenerated) bases. Each target sequence and the converted motif 
file are then fed to the suffix-tree search algorithm. The suffix-tree search algorithm 
implemented in a C++ executable file identifies the motif sequences in the target 
sequence in both forward and reverse strands and saves the locations to a text file. 

The web application was developed using the Model-View-Controller (MVC) design 
pattern implemented in a three-tier architecture. The user interacts with the ExactSearch 
algorithm through the web interface implemented in Hyper Text Markup Language 
(HTML), Cascading Style Sheets (CSS) and JavaScript languages. Figure 4.5 shows the 
web interface to upload or paste in motifs and target sequences. Client-side data 
validations using JavaScript prevent the user from submitting incorrect data formats to 
the web server. A user can submit multiple search jobs while another search job is 
executing, but the filenames must be different to avoid overwriting. When the user clicks 
the submit button, the algorithm starts executing with the two input files: the target 
sequence file and the motif sequence file. First, each of the target sequences is 
preprocessed into suffix tree data structures. Then, the algorithm searches for each of the 
motif sequences in the preprocessed target sequences in the tree; non-degenerate motifs 
are searched immediately, but degenerate motifs are further processed to generate all 
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possible candidate motif sequences before the search is executed. Once all motifs are 
searched for in each target sequence, the result file is emailed to the user. The web 
interface shown in Figure 4.6 is used to search for the presence of a set of motif 
sequences in particular genes of a species genome. The user has the option to restrict the 
search regarding which genes and which flanking regions to search. When a species name 
is selected from the drop-down list, the user can download the annotation file for all the 
genes of that species. After the user identifies a set of genes, the gene ids are copied to 
the text area provided to upload the gene list. Additionally, a genome-wide search can be 
done by selecting the appropriate checkbox. The online database of the ExactSearch web 
application stores known motif sequences that users can select and search for in a user-
provided, uploaded sequence file. To date, we have collected approximately 400 known 
motif sequences across the 50 sequenced plant species. 
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Figure 4.5 Web interface to upload motif and sequence files. The user has the option to 
upload a file in the designated format or paste into text areas. An email address is 
required to send the result files to the user once the analysis is complete. This screenshot 
was obtained from the software created for this dissertation. 
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Figure 4.6 User interface for selecting target sequences from 50 plant species. In Step 1, 
users input sequence motifs by uploading a file or selecting from our motif database. In 
Step 2, users select which species genome the target sequence should be extracted from 
and what genes and flanking regions are to be included in the search. This screenshot was 
obtained from the software created for this dissertation.  
 

4.5 Results and Discussion 

4.5.1 Search results 

After a user submits input files/select sequences, the search operation is transferred to the 
web server to execute the ExactSearch algorithm. The sample results shown in Table 4.3 
is part of a output file from a genome-wide search of several degenerate motif sequences 
in the 2kb upstream flanking regions of Arabidopsis thaliana. The first column shows the 
gene IDs of the target sequence file. The second column (Motif) shows the degenerate 
motif used for the search followed, in curly brackets, by the exact motif found. The third 
column indicates the length of submitted target sequences. The fourth column (Direction) 
indicates which strand the motif is located. Moreover, fifth to eight columns indicate the 
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locations of the motif sequences from the 5' or 3' end of the target gene sequence (see 
Table 4.3). 

 
Table 4.3 A portion of the results of a genome-wide search in the upstream 2kb flanking 
region of Arabidopsis thaliana. The location of the motif sequence in the target sequence 
is shown from 5` end and from 3` end. Within the curly braces in the Motif column, the 
exact degenerated sequences matched to the target sequences are shown. 

 

 

4.6 Discussion 

An algorithm is a set of instructions to achieve a well-defined goal. Because the actual 
run time of an algorithm is affected by uncontrollable variables such as CPU power, the 
current load of the system, and the programming language used to implement the 
algorithm, running time is instead measured using complexity analysis. Complexity 
analysis eliminates the uncertainty in uncontrollable variables by measuring the run time 
as a function of the size of the input data to the algorithm. For example, in a pattern 
matching algorithm, if the runtime increases linearly with the length of the input target 
sequence (n), then the complexity of the pattern matching algorithm is O(n). Table 4.4 
shows the comparison of the complexity of ExactSearch algorithm to those of naïve and 
Rabin-Karp algorithms. The time complexity calculation for both the naïve and Rabin-
Karp algorithms factors in the size of the target sequence (n), whereas the time 
complexity of ExactSearch depends only on the length of the motif sequence (m). Since 
m is, significantly lower than n, (m<<<n), the search time is greatly improved for 
ExactSearch in comparison to these other algorithms (O(m) <<< O(n)). The 
preprocessing time for the ExactSearch algorithm is O(n), but once a target sequence is 
preprocessed and saved in computer’s memory in a tree data structure, it can be 
repeatedly used to search all other motifs. But, the space complexity of ExactSearch is 
O(n2). However, nowadays, computer memory is relatively inexpensive, and a typical 
high-end computational server with adequate amount of memory will not limit the 
implementation. 
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Table 4.4 Complexities of the ExactSearch algorithm compared to those of Naive and 
Robin-Karp string search algorithms. The Preprocessing Time Complexity, Run Time 
Complexity, and Space Complexity are compared. The length of a target sequence is 
given as n, and the length of a motif sequence is given as m. 

Algorithm Naïve Robin-Karp ExactSearch 
Preprocessing Time 

 
O(m) O(m) O(n) 

Time Complexity (worst 
 

O(mn) O(m(n−m+1)) O(m) 
Space Complexity O(m) O(m) O(n2) 

 

In this study, we implemented the ExactSearch algorithm into a web application that 
plant biologists can efficiently use in several search scenarios. These scenarios include:  

1. When a list of degenerate motif sequences are needed to be searched in a set of 
target sequences specified by the user. 

2. When a set of degenerate motif sequences is to be searched in promoter regions 
(0.6 kb downstream or 1.0, 1.5, and 2.0 kb upstream) in the genome of any of the 
50 plant species available in ExactSearch web tool. 

The ExactSearch algorithm is a very efficient in comparison to the naïve and Rabin-Karp 
string search algorithms. The ExactSearch web tool was also compared to the existing 
Regulatory Sequence Analysis Tool (RSAT-DNA) (Thomas-Chollier et al., 2008) using 
the same input files. For this comparison, we submitted 100 motif sequences and 35,000 
target sequences (2kb in length) from Arabidopsis thaliana to both the ExactSearch and 
RSAT-DNA web applications. ExactSearch completed the analysis in 4.2 minutes while 
the RSAT web-based program took about 45 minutes to produce the same output results. 
Additionally, in contrast to ExactSearch, the RSAT-DNA web-based program does not 
provide a built-in target sequence repository for any species. There is currently no 
comparable web application that has all of the functionalities implemented in our 
ExactSearch web tool. The other existing motif discovery platforms such as MEME suite 
(http://meme-suite.org), FIMO (Grant, Bailey, & Noble, 2011), MCAST (Bailey & 
Gribskov, 1998), and MAST (Bailey & Noble, 2003) require the motifs to be in letter-
probability-matrix formats not necessarily similar to ExactSearch web tool. Another tool, 
GLM2Scan (also in MEME suite), is capable of searching for gapped local alignments of 
motifs if the motifs are represented in MEME motif format, which is specific to that 
software tool. Therefore, in comparison to existing software applications in terms of 
capabilities and file formats, ExactSearch is a different tool. Our web tool caters to the 
need for fast motif sequence identification in a larger set of target sequences or user-
selected genes in proximal promoters from 50 plant species. In light of this, we can 
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confidently say that the ExactSearch web application will be an indispensable tool for 
biologists to efficiently conduct motif search tasks. 

 

4.7 Conclusion 

We developed a web-based application, ExactSearch that incorporates an efficient 
pattern-matching algorithm to search for degenerate motifs in the flanking regions of 50 
plant genome sequences or user-specified target sequences. Additionally, 400 known 
plant motifs are stored in our database, which can be searched for in target sequences. 
Our ExactSearch algorithm has proven to be very fast in locating a set of motif sequences 
in a set of target sequences. We compared the ExactSearch web application with the 
Regulatory Sequence Analysis Tool (RSAT)-DNA program by searching for 100 motifs 
in the flanking regions of 35,000 Arabidopsis genes, each having a length of 2kb. The 
ExactSearch web application completed the search task in about 4.2 minutes, while the 
RSAT-DNA web tool required about 45 minutes completing the same task. The web 
application was published in the Plant Methods journal (Gunasekara et al., 2016) and is 
accessible to users via the link: http://sys.bio.mtu.edu/motif. In the future, additional 
flanking and motif sequences from other plant species can be added to increase the 
usability of the web application.   
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A Web Based Genome Browser for Visualizing Gene 
Expression Data of miRNA Silencing Lines Generated with 
Short Tandem Target Mimic (STTM) Technology in 
Arabidopsis, Rice, Soybean, and Maize4 

 

5.1 Abstract 

This chapter presents an implementation of a web-based RNA-Seq data visualization 
platform, STTM JBrowse. This web-based platform can be used to compare alterations in 
gene expression resulting from the silencing of microRNA (miRNA) by Short Tandem 
Target Mimic (STTM) technology. Currently STTM JBrowse includes data from several 
STTM transgenic lines; these include STTM 166, STTM 165/166, STTM 156/157 
transgenic lines in Arabidopsis thaliana, STTM-MiR165/166 transgenic lines in rice and, 
transgenic lines from miRNA-targeted soybean. STTM JBrowse has been configured to 
accept data from transgenic Maize plants, and will be displayed once the data become 
available. We used the STTM JBrowse to visualize altered gene expression as a result of 
the silencing of each one of the four microRNAs (miRNAs) in Arabidopsis Thaliana, 
which modulate their target mRNA abundance levels through pairings. Differentially 
expressed genes were identified by comparing the gene expression levels of STTM 
transgenic lines with those of wild type (WT) lines. The alternations of gene expression 
in several biological pathways were examined using the STTM JBrowse visualization 
platform, which was adopted from an open source genome browser called JBrowse. 
JBrowse was chosen because its open source nature facilitates easy customization, the 
capability to handle multiple data tracks for comparisons and lightweight hardware 
requirements for both clients and servers.   

 

                                                 

 
4 A manuscript presenting STTM JBrowse is currently under review for publication.  
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5.2 Introduction 

Recent advances in high-throughput next generation RNA sequencing technologies have 
created a new era in transcriptome research. With the ability to generate large volumes of 
data, researchers now face the challenge of efficiently and effectively visualizing, 
analyzing, and sharing RNA-Seq data, including scrutinizing thousands of genes 
(Mangan, Williams, Kuhn, & Lathe, 2014). In recent years, a number of researchers from 
around the world have been generating RNA-Seq data from Short Tandem Target Mimic 
(STTM) transgenic lines. STTM technology is used to design a STTM structure based on 
one or two plant microRNAs (miRNAs). When a STTM structure carried by a binary 
vector is transferred into plant cells, the STTM structure can recognize miRNA(s) with 
the complementary sequence(s) for destruction or repression of its translation, resulting in 
the up-regulation of miRNA targeted genes (G. Tang, 2010; G. Tang et al., 2012). STTM 
technology has been widely applied to many model and crop plants as a means of altering 
gene expression (Jia et al., 2015; Teotia, Singh, Tang, & Tang, 2016; Yan et al., 2012). 

Currently no unified repository exists that allows plant scientists to efficiently share 
resources and results generated in STTM RNA-Seq studies. To address this need, I 
implemented a web-based STTM JBrowse platform for visualizing and sharing RNA-Seq 
data generated specifically from STTM studies. This platform currently includes data 
from several STTM transgenic lines, and visualizations which show altered gene 
expression as a result of miRNA silencing (G. Tang et al., 2012). These include STTM 
166, STTM 165/166, STTM 156/157 transgenic lines in Arabidopsis thaliana, STTM-
MiR165/166 transgenic lines in rice and, transgenic lines from miRNA targeted soybean. 
In the future, transgenic lines in maize will be added when data become available. This 
chapter discussed implementation details of this web-based system including 
customizations added to incorporate transgenic lines from four plant species, methods for 
data conversion, and modifications to display interface. We adopted an open source 
genome browser, JBrowse (Skinner et al., 2009), to implement the STTM JBrowse 
visualization system. JBrowse was chosen because of its JavaScript-based open source 
technology, which facilitates easy customization and lightweight hardware requirements 
for distributing large-scale visualizations over the Internet. In comparison to its desktop 
counterpart Integrative Genome Viewer (IGV) (Robinson et al., 2011; Thorvaldsdottir, 
Robinson, & Mesirov, 2013), the JBrowse platform offers greater customization and 
online availability. IGV is a desktop software application that provides individual access 
for displaying and visualizing RNA-Seq data. The University of Santa Cruz (UCSC) 
Genome Browser (GBrowse) (Mangan et al., 2014; Stein, 2013) is a web-based RNA-
Seq data visualization platform comparable to JBrowse. However, GBrowse is based on a 
request-response web application architecture which is much slower because more 
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processing is done on the web server and tracks that are generated must be transferred 
over the Internet (Rat Genome Browser, 2015). Compared to UCSC GBrowser, the 
JBrowse has the following advantages: 

1) JBrowse is an open-source software platform, which the complete source code is 
available for customizations, as needed.  

2) JBrowse can be implemented on a server as a standalone web application, or it 
can be embedded into a web application. 

3) Complex interactive manipulations can be performed quickly and can be used to 
generate publication-quality figures.  

4) Multiple tracks can be displayed simultaneously without lagging, using a standard 
desktop computer over the internet. 

Using the STTM JBrowse, users have precise access to the sequence reads aligned to any 
genomic regions of specific interest (e.g. location of a gene). This allows easy 
comparison of changes between gene expression levels of STTM lines and WT lines. 
After navigating to a particular region, secondary tracks provide genome sequence details 
and supplementary annotation information. Recently, our STTM JBrowse platform was 
used to prepare figures for a manuscript titled "A resource for inactivation of microRNAs 
using Short Tandem Target Mimic technology in model and crop Plants”. We believe our 
STTM JBrowse platform will help researchers to visualize the changes of miRNA-
targeted genes, and reveal vital information that will aid STTM researchers to better 
understand regulatory mechanisms involved by miRNAs.  

 

5.3 Materials and Methods 

5.3.1 RNA-Seq datasets 

Total RNA extracted from wild-type (WT) and STTM transgenic lines was used for 
RNA-Seq (Wang, Gerstein, & Snyder, 2009). The number of short sequence reads of a 
particular transcript in an RNA sample can be used to represent the abundance of that 
mRNA transcript in a given tissue or cell type. Upon aligning the reads to a transcript, a 
“normalized sequencing depth” can be obtained to represent the expression level of the 
transcript in a plant sample that was subjected to different treatments, for example, 
miRNA destruction via STTM technology. Differentially expressed genes in the plant 
sample that was subjected to a specific miRNA destruction via STTM technology can be 
identified in comparison with a wild-type(WT) sample. The sequencing reads generated 
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from high-throughput sequencers can be stored in FASTQ format as raw output. As 
shown Figure 5.1 in the each short read is associated with a read identifier in the first 
line, which starts with @ sign. The second line contains read sequence, the third line 
indicates the read strand, and the fourth line gives quality scores (as symbols) for each 
base in the short read in Line 2 (Cock, Fields, Goto, Heuer, & Rice, 2010).  

 

 
Figure 5.1 A sample short read sequence. Line 1, starting with an @ sign, is a read 
identifier. Line 2 is the short read RNA/mRNA sequence. Line 3 begins with + sign and 
optionally follows another identification pattern. Line 4 gives a quality score for each 
base 
 

The Table 5.1 shows currently available datasets in the STTM JBrowse platform 
submitted by users from various institutions. Due to the large file size, each FASTQ file 
is typically compressed in .gz format before transferring over the internet to our web 
server. 
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Table 5.1 Currently available datasets displayed in the STTM JBrowse. The resources are 
accessible through the http://blossom.ffr.mtu.edu. As more data become available, the 
online STTM JBrowse resource will be more comprehensive.

Species miRNA Silencing 
line/ condition 

Number of 
STTM 
Samples 

Number 
of WT 
Samples 

Contributor 

Arabidopsis 
thaliana 

STTM166 3 3 Dr. Guiliang Tang 

Arabidopsis 
thaliana STTM 156/157 1 1 Dr. Ting Peng 

Arabidopsis 
thaliana STTM 165/166 1 1 Dr. Ting Peng 

Arabidopsis 
thaliana 

STTM 172 1 1 Dr. Ting Peng 

Rice STTM166 3 3 Dr. Guiliang Tang 

Soybean Transgenic plants 24 0 Dr. Harold Trick 

Soybean Water treatment 1 1 Dr. Wenbo Ma 

Soybean Phytophthora sojae 
infected 1 1 Dr. Wenbo Ma 

 

5.3.2 Data Processing and STTM JBrowse Deployment 

5.3.2.1 Setting up STTM JBrowse server environment 

The Apache web server accepts requests from a client's browser (e.g., Google Chrome, 
Internet Explorer) and the Apache web server sends the necessary page layout 
instructions to client web browser to generate visualizations as requested. STTM JBrowse 
works similar to a typical web application, and when a client requests access, it transfers 
page layout instructions using HTML and CSS elements to a client web browser to 
display RNA-Seq data tracks. As shown in Figure 5.2, STTM JBrowse has been 
developed using off-the-shelf open source software platforms; the front-end is 
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implemented using HTML, CSS, and JavaScript, and the backend data processing and 
user request handling is done with PHP and Perl scripts. The Apache open source web 
server is used to host the PHP and Perl scripts on the server computer, and a client’s 
RNA-Seq data files are stored in the server using a separate file system that is linked to 
the STTM JBrowse web application via configuration files which stores information 
about data files, track types, track names and locations.  

 

 
Figure 5.2 Technology stack of STTM JBrowse implementation. The client-side 
functions as a typical web-based application for which a user can direct the web browser 
to the application via a web address. The server-side implements the JBrowse application 
as a web application. 

 

The Apache server provides /var/www in the root directory to be used to store the 
JBrowse application scripts. To deploy JBrowse, the base package from 
www.jbrowse.org is first downloaded to the /var/www/JBrowse directory, which is 
created using, command 1 and 2 shown in Procedure 5.1. The mime_magic module in the 
Apache web server was disabled so that the JBrowse software would function correctly. 
If not disabled, this module causes the visualization tracks to incorrectly read the data 
files and typically results in errors. The commands 3 to 7 on (Procedure 5.1) were run to 
properly install the required Perl modules on the web server.  
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Procedure 5.1 Summary of system commands for the initial installation of the JBrowse 
software on the web server. 

 

5.3.2.2 Configuration of STTM JBrowse for each species (Arabidopsis thaliana, Rice, 
Soybean, Maize) 

After setting up the JBrowse base packages and Perl libraries, the URL 
http://blossom.ffr.mtu.edu/jbrowse/index.html showed a blank interface of JBrowse 
platform; the absence of any error messages indicated that the installation completed 
correctly. For illustration and demonstration purposes, the configurations and set up of 
the Arabidopsis thaliana reference genome track and General Feature Format (GFF3) 
annotation track will be described in subsequent sections. Configuration and set up with 
rice, soybean, and maize reference genomes and annotation tracks followed the same 
process used for Arabidopsis thaliana. The reference genomes and GFF3 annotations for 
each of the four plant species were obtained from the online repository 
www.Phytozome.org (Goodstein et al., 2012). The miRNA database file, also in GFF3 
format, was downloaded from the online repository http://www.mirbase.org (Kozomara 
& Griffiths-Jones, 2014). The JBrowse1.11.5 directory contains all the files required for 
the JBrowse system configurations. As shown in Figure 5.3, the JBrowse1.11.5/bin 
directory contains preprocessing Perl scripts while the JBrowse1.11.5/species 
directory contains annotation tracks, reference genome and converted data files. 
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Figure 5.3 STTM JBrowse directory structure for Arabidopsis thaliana after initial 
installation of reference genome sequence and annotation tracks. Light brown colored 
shapes are directories, and purple colored shapes are files. The prepare-refseq.pl 
script converts the Athaliana_167.fa file to JavaScript Object Notation (JSON) 
format and stores in the data/seq directory. The GFF3 file 
Athaliana_167_TAIR10.gene.gff3 contains the gene annotations for this reference 
genome. The flatfile-to-json.pl script in the bin directory converts the GFF3 file to JSON 
format that STTM JBrowse can read efficiently. The converted JSON files are stored the 
data/names directory. 

 

5.3.2.3 Conversion of genome sequences to display the reference sequence track on the 
STTM JBrowse interface 

The reference sequence track of each species determines a common coordinate system 
that serves as the basis for respective annotations and data tracks in the visualization 
system. To generate this track, the bin/prepare-refseq.pl Perl script file shown in 
Figure 5.3, was used in the command line with the Arabidopsis thaliana reference 
genome file Athaliana_167.fa as input parameter. The commands in Procedure 5.2 
were followed for this preprocessing step. Commands 1-3 created the required directory. 
Command 4 changes the current path into the location of Athaliana directory where 
reference genome file is located. Command 5 converts the reference genome and the 
stores in the JSON format in data/seq directory (Figure 5.3). After running the 
commands, the JBrowse interface showed an option to turn on/off the reference genome 
track and the genome sequence characters were displayed as in Figure 5.4. 



90 

 
Procedure 5.2 Instructions set to create the reference sequence track for Arabidopsis 
thaliana. 

 

 
Figure 5.4 STTM JBrowse interface after the Arabidopsis thaliana reference genome was 
preprocessed and integrated to application. To display the sequence characters, a user 
needs to zoom in on the track until the desired details become visible. This screenshot 
was obtained from the software created for this dissertation. 

 

5.3.2.1 Conversion of GFF3 file to display gene annotation tracks on the STTM 
JBrowse interface 

The latest version of the Arabidopsis thaliana GFF3 file was downloaded from 
www.phytozome.org. This file is in tab delimited format (see Figure 5.5). Each entry 
consists of nine fields: "seqid" - chromosome number, "source" - the repository the data 
was extracted from, "type" - type of feature, "start" - start position, "end" - end position, 
"score" - a quality score floating point number, "strand" - forward (+) or reverse (-), 
"phase" - 0, 1, or 2 for base of codon, "attributes" - additional features.  
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Figure 5.5 First five genes from Arabidopsis thaliana genome in GFF3 format. Each 
entry contains nine fields. If a field is empty it is shown as "." 

 

Information about genes, such as IDs, coordinates, etc. available in this GFF3 file are 
converted to JSON format by running the commands shown in Procedure 5.3. The 
command 1 is executed from the data directory (see Figure 5.3) with the following input 
parameters: 

--gff : location of Arabidopsis thaliana GFF3 file 

--trackType : specified type for JBrowse platform (CanvasFeatures) 

--trackLabel : name for the GFF3 annotation track in the JBrowse interface (AT_GFF) 

The command 2 generates an index from the GFF3 file, which allows searching for genes 
by name in the search box provided in the JBrowse interface. The same commands in 
Procedure 5.3 was followed for the miRNA database file, which is also in GFF3 format. 
After running the commands in Procedure 5.3, the JBrowse interface showed an option to 
turn on/off the GFF tracks and the annotations was visualized as shown in Figure 5.6. 

 
Procedure 5.3 Instructions to create annotation tracks using GFF3 file for Arabidopsis 
thaliana. 
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Figure 5.6 The annotation tracks generated from the Arabidopsis thaliana GFF3 file.  
A user can get more information about each feature by clicking on a feature ID. When the 
user zooms in, the feature will expand to show the range of each genomic feature. This 
screenshot was obtained from the software created for this dissertation. 

 

5.3.2.2 RNA-Seq data conversion from FASTQ to Binary Alignment Map (BAM) 
format 

The raw short read RNA-Seq data obtained from high throughput sequencers are stored 
in FASTQ format (Conesa et al., 2016). FASTQ data was converted to Binary Alignment 
Map (BAM) format, which can be programmatically parsed by Perl scripts to display data 
tracks in the STTM JBrowse interface. There are many software tools available to do this 
conversion. To convert the FASTQ file obtained from sequencing wild type (WT) or 
STTM samples, we chose to use the following two-step pipelines because the software 
tools are freely available as open source software: 

Step 1: Constructing sequence indexes from the reference sequence using "Bowtie2-
build".  

To construct an index from the reference genome to which sequencing reads can be 
aligned; we used Bowtie2-build open source software. This command line executable 
program is available in the suite of Bowtie software available as an open source tool to 
align sequencing reads to long reference sequence (Langmead & Salzberg, 2012). A 
reference genome downloaded from an online repository (e.g. Phytozome.org) is used 
directly as an input parameter to the Bowtie2-builder software, as shown in the following 
command; In this case, we have utilized the reference genome from Arabidopsis thaliana 
obtained from the Phytozome.org repository (Lamesch et al., 2012). 
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Procedure 5.4. Create a bowtie index from the Arabidopsis Thaliana reference genome. 

This command generates six index files with the specified format: AT.rev.1.bt2, 
AT.rev.2.bt2, AT167.1.bt2, AT167.2.bt2, AT167.3.bt2, AT167.4.bt2. These index files 
should be placed in a single directory named without spaces or special characters, as 
shown in Figure 5.7. 

 
Figure 5.7 File structure for converting FASTQ format to BAM format. Bowtie index 
files are stored in the AT167_index directory. This directory contains six files auto-
generated from Bowtie2 software when indexing the Arabidopsis thaliana reference 
genome (Athaliana_167.fa). TopHat software utilizes the files in AT167_index and 
generates the S49238_out directory. Samtools software was used to create the BAM 
index file (.bai file) shown in the S49238_out directory. The light brown color represents 
the directories. 

 

Step 2: Mapping sequencing reads to the reference genome using TopHat software. 

The TopHat tool was used to convert the FASTQ files to BAM format (Kim et al., 2013). 
To convert the Arabidopsis thaliana FASTQ file (sample49238.fastq) to BAM 
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format, Command 1 in Procedure 5.5 was executed from the A.thaliana_data 
directory shown in Figure 5.7. 

 
Procedure 5.5 Steps to convert FASTQ data to BAM format and generate bam indexes. 

The TopHat command needs the following arguments and options to be set correctly:  

<genome_index_base>: This argument is set by providing the relative path to the 
directory where the genome index created by Bowtie2-build software is located. The path 
should be appended with index filenames up to the first period that are common to all 
index files.  

-o: The output directory where the resulting BAM file is to be stored. This should be a 
unique directory name for each FASTQ file to avoid overwriting existing BAM files. The 
output files in the output directory are accepted_hits.bam, junctions.bed, 
insertions.bed, and deletions.bed.  

-p: Number of threads used in the CPU to run the TopHat command. 

Samtools software is used to generate an index file for the BAM file (H. Li et al., 2009). 
The accepted_hits.bam file with the index flag is provided to the Samtools software, 
which produces the accepted_hits.bam.bai file. This index is used by the STTM 
JBrowse platform to search by gene ID and allows the visualization interface to move 
directly to the location of the gene in the genome efficiently.  

5.3.3 Overall workflow from RNA-Seq data to STTM JBrowse visualization 

The overall pipeline from initial setting up to display converted RNA-Seq data in the 
STTM JBrowse interface is shown in Figure 5.8. Building the backend genomic feature 
tracks using reference genome sequence and GFF3 files needs to be conducted for only 
one time for each species. The rest processes must be done for each RNA-Seq sample 
submitted to the STTM JBrowse.  
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Figure 5.8 Overall work flow required to set up the STTM JBrowse visualization 
pipeline. The reference genome and GFF3 feature annotation files downloaded from 
Phytozome.org were preprocessed with the prepare-refseqs.pl, flatfile-to-
json.pl, and generate-names.pl Perl script files. Any RNA-Seq files that are 
submitted by users should be preprocessed with Bowtie2 builder, TopHat, and Samtools 
software and loaded to the STTM JBrowse web server file system. Tracks.conf and 
Tracks.JSON files provide the STTM JBrowse system with information regarding the 
type of each track, category, key names, and location of .BAM and .bai files. 

5.3.4 Customizing configuration files for visualization and CSS file adjustments 

The converted data files in .bam and .bai format from Arabidopsis thaliana samples (WT 
and STTM) were placed in the Athaliana/data directory, as shown in Figure 5.9. The 
same process was followed for the other species in their respective directories. 
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Figure 5.9 File structure for two Arabidopsis thaliana data tracks (WT, STTM). 
tophat_STTM and tophat_WT directories in the red dashed circle make the data files to 
be read by the visualization system. The tracks.conf defines information about RNA-
Seq data the tracks of Arabidopsis thaliana transgenic lines. 

 

The tracks.conf file is used to define the properties about each data track displayed in 
the STTM JBrowse visualization (one for each species). The tracks.conf file is parsed 
by the STTM JBrowse system to extract information such as the location of the converted 
BAM files, track type, name, category, etc. Each BAM file is displayed using two types 
of tracks: 1) “Alignment2” track type show mapped read alignments to the reference 
genome. The BAM files were sorted by the leftmost coordinate for rapid alignment, when 
producing the visualization. Alignment2 tracks require most of the interface area to 
visualize; as a result, the comparison of multiple tracks is difficult. 2) “SNP Coverage” 
track type show the overall histogram of sequencing read alignments for each mapped 
gene. With this track type, it is easy to compare multiple samples. As shown in Figure 
5.10. The tracks.conf file stores the information about configurations needed for each 
track about the STTM and WT samples. 
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Figure 5.10 Illustration of Configuration file; the tracks.conf (left panel) and 
corresponding visualization tracks (right panel) defined by tracks.conf. The 
tracks.conf file used in here is the one that defines the tracks of RNA-seq data from 
Arabidopsis thaliana transgenic lines. This screenshot was obtained from the software 
created for this dissertation. 

 

5.3.5 Coverage histogram scale and color modifications to customize visualizations 

The “SNP Coverage” track type adjusts the histogram scale according to the maximum 
value for each histogram individually for each track. Since we are interested in 
comparison between of tracks that usually correspond to a STTM line and a WT line, the 
histograms can be easily compared when the same y-scale range is used. Two parameters 
(“Min_value” and “Max_value”) were introduced to limit the range of the y-axis in both 
tracks based on the largest density value obtained from both histograms. This 
modification was added to the trackList.json file, as shown Figure 5.11A, which 
made each histogram to share the same scale for y-axis range. The “min value”, 
“max_value”, “style:color” parameters in the trackList.json file is read by the 
STTM JBrowse system files, and used to define the CSS format, leading to the modified 
histogram shown in Figure 5.11B. 
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Figure 5.11 Modifications to visualization configuration file for easier comparisons and 
visualization. A) Overriding the default parametes of y-axis scale and histogram color by 
adding min_value/max_value and style parameters to the trackList.json file, 
respectively. The AT4G21280 gene from Arabidopsis thaliana was used as an example 
to compare the visualization effects before (left) and after (right) customizing the 
coverage histogram parameters. B) The changes in the histograms show comparisons are 
easier with the modified parameters. This screenshot was obtained from the software 
created for this dissertation. 
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5.4 Results and Discussion 

5.4.1 Arabidopsis thaliana  

5.4.1.1 Photosynthesis and anthocyanin biosynthesis pathways (STTM156/157)  

Utilizing the STTM JBrowse visualization platform, expression of genes involved in 
photosynthesis and anthocyanin biosynthesis pathways was compared using WT and 
STTM tracks. Figure 5.12A shows in STTM 156/157 transgenic lines in comparison to 
WT for photosynthesis pathway genes. Following genes show a significant upregulation 
in STTM 156/157 transgenic lines; PSB27 (L. L. Wei et al., 2010), PSB28 (Sakata, 
Mizusawa, Kubota-Kawai, Sakurai, & Wada, 2013), PSB29 (Keren, Ohkawa, Welsh, 
Liberton, & Pakrasi, 2005), PSB-01/02 (Spence et al., 2014), PSBP-1/2 (Ifuku, 
Yamamoto, Ono, Ishihara, & Sato, 2005), PSBQ-2 (Yi, Hargett, Frankel, & Bricker, 
2006), PSBTN (Shi & Schroder, 2004), PSBQA (Gaur & Tyagi, 2004), PSBX (Funk, 
2000), PSBW (Garcia-Cerdan et al., 2011), and PSBY (Neufeld, Zinchenko, Stephan, 
Bader, & Pistorius, 2004). In examining the anthocyanin pathway genes shown in Figure 
5.12B it is clear that SPL9 (Gou, Felippes, Liu, Weigel, & Wang, 2011b) and TTG1 (L. 
L. Zhou, Shi, & Xie, 2012) are up-regulated while PAP1 (Shin et al., 2015), TT8, do not 
show a noticeable difference in STTM156/157 transgenic plants compared to WT plants. 
These results indicate that STTM JBrowse can be used to visually identify differentially 
expressed genes and to create figures for use in publications or manual securitizing 
effects of miRNAs on genes. 
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Figure 5.12 Visualization of differentially expressed genes using the STTM JBrowse 
platform Photosynthesis and Anthocyanin biosynthesis pathway genes. The data were 
from Arabidopsis thaliana wild-type (WT) and STTM156/157 (STTM) Arabidopsis 
thaliana transgenic plan 
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5.4.1.2 ABA and Auxin biosynthesis and signaling pathway genes (STTM 165/166) 

Utilizing the STTM JBrowse visualization platform, expression of genes involved in 
various aspects of ABA biosynthesis and signaling pathway was compared in WT and 
STTM transgenic plants. NCED4 (Huo, Dahal, Kunusoth, McCallum, & Bradford, 2013), 
a gene involved in ABA biosynthesis, is significantly up-regulated in the STTM 
transgenic line in comparison to wild-type plants (Figure 5.13 A). TAA1, CYP79B2, and 
CYP79B3, genes related to auxin biosynthesis pathway(Falkenberg et al., 2008; P. P. Liu 
et al., 2007; Mashiguchi et al., 2011),  were up-regulated as shown in Figure 5.13 B. Also 
Figure 5.13 C & Figure 5.13 D show a few YUC family genes (Hofmann, 2011) and  a 
few GH3 family of genes (Park et al., 2007) related to auxin biosynthesis in 
STTM165/166 miRNA transgenic plants.  
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Figure 5.13 Visualization of differentially expressed genes using the STTM JBrowse 
platform for ABA and Auxin biosynthesis pathway genes. The comparisons between 
wild-type (WT) and STTM165/166 transgenic Arabidopsis thaliana plants. The genes 
shown in this figure are involved in: A) ABA biosynthesis pathway B) IAOx pathway C) 
IPA-YUC pathway D) Inactivation of IAA biosynthesis. Users can easily navigate by 
searching for a specific gene ID in the search bar of the visualization interface. Screen 
captures can be used to save figures on a local computer 
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5.4.2 Rice 

The rice reference genome (Osativa_204_v7.0.transcript.fa) and GFF3 
annotation (Osativa_204_v7.0.gene.gff3) files were downloaded from the 
www.Phytozome.org repository (Goodstein et al., 2012). The same preprocessing steps 
specified for Arabidopsis thaliana were followed for processing the rice reference 
genome, annotation files and data files. The resulting genome-wide visualizations are 
shown in Figure 5.14.  

 

 
Figure 5.14 STTM JBrowse visualization for transgenic lines in rice. Six RNA-Seq (3-
WT, 3-STTM) samples from rice were added to this visualization. The panel on the left 
can be used to turn on/off specific tracks for comparison. This screenshot was obtained 
from the STTM JBrowse software created for this dissertation. 

 

http://www.phytozome.org/
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5.4.3 Soybean 

The soybean reference genome and GFF3 annotation (transcript.fa and 
Gmax_189_gene.gff3) files were downloaded from the www.Phytozome.org 
repository (Goodstein et al., 2012). The same preprocessing steps specified for 
Arabidopsis thaliana were followed for the Soybean reference genome, annotation files 
and data files. The resulting genome-wide visualizations are shown in Figure 5.15. 

 
Figure 5.15 STTM JBrowse visualization from transgenic lines in soybean. The left panel 
can turn on/off 24 RNA-Seq data tracks from soybean which were added to this 
visualization. The panel on the left can also be used to turn on/off specific tracks for 
comparisons. This screenshot was obtained from the STTM JBrowse software created for 
this dissertation. 

 

5.4.4 Maize 

The software platform for integrating RNA-Seq data from Maize STTM transgenic and 
WT plants has been configured. However, unfortunately data has not been available yet 
to display in the STTM JBrowse platform. Once the data is available, the STTM JBrowse 
resource maintainer will be able to upload the data for visualization easily. 

 

http://www.phytozome.org/
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5.5 Conclusion 

A web-based visualization platform called STTM JBrowse was developed to visualize 
RNA-Seq data generated from STTM transgenic plants. JBrowse, a next generation open 
source genome browser with many advantages over UCSC GBrowse or IGV, was used to 
build the visualization platform, with the implementation details of JBrowse platform 
being provided. Currently, our STTM JBrowse visualization platform harbors RNA-Seq 
data from Arabidopsis thaliana, rice, soybean, and maize STTM mutant lines. It can 
serve as a hub for researchers who study miRNA functions via STTM technology around 
the world and are intended to share their findings and visualizations. The STTM JBrowse 
platform provides a user-friendly, seamless platform to submit data and to share research 
findings regarding miRNA functionalities in plants. STTM JBrowse will greatly facilitate 
the progress of STTM research in the future. 
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A.1 Appendix 

A.1.1 Copyright and Permission to Republish 

The material contained in Chapter 4, “ExactSearch: A Web-based Plant Motif Search 
Tool” has been published in BMC Plant Methods journal under the same title. This is an 
open access journal; copyright statement for the publication is provided as follows. 
Authors’ contributions 
CG, BL and HW developed the method, CG, JVRKA and SC developed the web 
interface, downloaded the data, and tested the tool, HW wrote the manuscript with the 
help of CG. All authors read and approved the final manuscript 
Funding 
This work was supported by grant from National Science Foundation Advances in 
Biological Informatics [DBI-1458130] to H.W. 
Open Access 
This article is distributed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons license, and indicate if changes were made. The Creative Commons Public 
Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies 
to the data made available in this article, unless otherwise stated. 
 

A.1.2 Screenshots of the Software Applications 

The screenshots shown in Figure 3.2, Figure 3.3, Figure 3.6, Figure 4.5, and Figure 4.6 
were obtained from the software developed for this dissertation work. The screenshots 
shown in Figure 5.4, Figure 5.14, and Figure 5.15 were obtained from the STTM 
JBrowse software, which was developed for this dissertation work by adopting 
JBrowse1.11.5, an open source software. JBrowse1.11.5 is released under the GNU 
LGPL or the Artistic License, see the JBrowse LICENSE file. 

  

https://jbrowse.org/code/latest-release/LICENSE
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