248 research outputs found

    Genome-Scale Oscillations in DNA Methylation during Exit from Pluripotency

    Get PDF
    Pluripotency is accompanied by the erasure of parental epigenetic memory, with naive pluripotent cells exhibiting global DNA hypomethylation both in vitro and in vivo. Exit from pluripotency and priming for differentiation into somatic lineages is associated with genome-wide de novo DNA methylation. We show that during this phase, co-expression of enzymes required for DNA methylation turnover, DNMT3s and TETs, promotes cell-to-cell variability in this epigenetic mark. Using a combination of single- cell sequencing and quantitative biophysical modeling, we show that this variability is associated with coherent, genome-scale oscillations in DNA methylation with an amplitude dependent on CpG density. Analysis of parallel single-cell transcriptional and epigenetic profiling provides evidence for oscillatory dynamics both in vitro and in vivo. These observations provide insights into the emergence of epigenetic heterogeneity during early embryo development, indicating that dynamic changes in DNA methylation might influence early cell fate decisions

    Dynamic CpG methylation delineates subregions within super-enhancers selectively decommissioned at the exit from naive pluripotency

    Get PDF
    Clusters of enhancers, referred as to super-enhancers (SEs), control the expression of cell identity genes. The organisation of these clusters, and how they are remodelled upon developmental transitions remain poorly understood. Here, we report the existence of two types of enhancer units within SEs typified by distinctive CpG methylation dynamics in embryonic stem cells (ESCs). We find that these units are either prone for decommissioning or remain constitutively active in epiblast stem cells (EpiSCs), as further established in the peri-implantation epiblast in vivo. Mechanistically, we show a pivotal role for ESRRB in regulating the activity of ESC-specific enhancer units and propose that the developmentally regulated silencing of ESRRB triggers the selective inactivation of these units within SEs. Our study provides insights into the molecular events that follow the loss of ESRRB binding, and offers a mechanism by which the naive pluripotency transcriptional programme can be partially reset upon embryo implantation

    Dynamic CpG methylation delineates subregions within super-enhancers selectively decommissioned at the exit from naive pluripotency.

    Get PDF
    Clusters of enhancers, referred as to super-enhancers (SEs), control the expression of cell identity genes. The organisation of these clusters, and how they are remodelled upon developmental transitions remain poorly understood. Here, we report the existence of two types of enhancer units within SEs typified by distinctive CpG methylation dynamics in embryonic stem cells (ESCs). We find that these units are either prone for decommissioning or remain constitutively active in epiblast stem cells (EpiSCs), as further established in the peri-implantation epiblast in vivo. Mechanistically, we show a pivotal role for ESRRB in regulating the activity of ESC-specific enhancer units and propose that the developmentally regulated silencing of ESRRB triggers the selective inactivation of these units within SEs. Our study provides insights into the molecular events that follow the loss of ESRRB binding, and offers a mechanism by which the naive pluripotency transcriptional programme can be partially reset upon embryo implantation

    Active turnover of genomic methylcytosine in pluripotent cells

    Get PDF
    Epigenetic plasticity underpins cell potency, but the extent to which active turnover of DNA methylation contributes to such plasticity is not known and the underlying pathways are poorly understood. Here we use metabolic labelling with stable isotopes and mass spectrometry to quantitatively address the global turnover of genomic methylcytidine (mdC), hydroxymethylcytidine (hmdC) and formylcytidine (fdC) across mouse pluripotent cell states. High rates of mdC/hmdC oxidation and fdC turnover characterize a formative-like pluripotent state. In primed pluripotent cells the global mdC turnover rate is about 3-6% faster than can be explained by passive dilution through DNA synthesis. While this active component is largely dependent on Tet-mediated mdC oxidation, we unveil additional oxidation-independent mdC turnover, possibly through DNA repair. This process accelerates upon acquisition of primed pluripotency and returns to low levels in lineage committed cells. Thus, in pluripotent cells active mdC turnover involves both mdC oxidation-dependent and independent processes

    Non Equilibrium Physics of Single-Cell Genomics

    Get PDF
    The self-organisation of cells into complex tissues relies on the tight regulation of molecular processes governing their behaviour. Understanding these processes is a central questions in cell biology. In recent years, technological breakthroughs in single-cell sequencing experiments have enabled us to probe these processes with unprecedented molecular detail. However, biological function relies on collective processes on the mesoscopic and macroscopic scale, which do not necessarily obey the rules that govern it on the microscopic scale. Insights from these experiments on how collective processes determine cellular behaviour consequently remain severely limited. Methods from nonequilibrium statistical physics provide a rigorous framework to connect microscopic measurements to their mesoscopic or macroscopic consequences. In this thesis, by combining for the first time the possibilities of single-cell technologies and tools from nonequilbrium statistical physics, we develop theoretical frameworks that overcome these conceptual limitations. In particular, we derive a theory that maps measurements along the linear sequence of the DNA to mesoscopic processes in space and time in the cell nucleus. We demonstrate this approach in the context of the establishment of chemical modifications of the DNA (DNA methylation) during early embryonic development. Drawing on sequencing experiments both in vitro and in vivo, we find that the embryonic DNA methylome is established through the interplay between DNA methylation and 30-40 nm dynamic chromatin condensates. This interplay gives rise to hallmark scaling behaviour with an exponent of 5/2 in the time evolution of embryonic DNA methylation and time dependent, scale-free connected correlation functions, both of which are predicted by our theory. Using this theory, we successfully identify regions of the DNA that carry DNA methylation patterns anticipating cellular symmetry breaking in vivo. The primary layer determining cell identity is gene expression. However, read-outs of gene-expression profiling experiments are dominated by systematic technical noise and they do not provide “stochiometric” measurements that allow experimental data to be predicted by theories. Here, by developing effective spin glass methods, we show that the macroscopic propagation of fluctuations in the concentration of mRNA molecules gives direct information on the physical mechanisms governing cell states, independent of technical bias. We find that gene expression fluctuations may exhibit glassy behaviour such that they are long-lived and carry biological information. We demonstrate the biological relevance of glassy fluctuations by analysing single-cell RNA sequencing experiments of mouse neurogenesis. Taken together, we overcome important conceptual limitations of emerging technologies in biology and pioneer the application of methods from stochastic processes, spin glasses, field and renormalization group theories to single-cell genomics

    Folate Carrier Deficiency Drives Differential Methylation and Enhanced Cellular Potency in the Neural Plate Border

    Get PDF
    The neural plate border (NPB) of vertebrate embryos segregates from the neural and epidermal regions, and it is comprised of an intermingled group of multipotent progenitor cells. Folate is the precursor of S-adenosylmethionine, the main methyl donor for DNA methylation, and it is critical for embryonic development, including the specification of progenitors which reside in the NPB. Despite the fact that several intersecting signals involved in the specification and territorial restriction of NPB cells are known, the role of epigenetics, particularly DNA methylation, has been a matter of debate. Here, we examined the temporal and spatial distribution of the methyl source and analyzed the abundance of 5mC/5 hmC and their epigenetic writers throughout the segregation of the neural and NPB territories. Reduced representation bisulfite sequencing (RRBS) on Reduced Folate Carrier 1 (RFC1)-deficient embryos leads to the identification of differentially methylated regions (DMRs). In the RFC1-deficient embryos, we identified several DMRs in the Notch1 locus, and the spatiotemporal expression of Notch1 and its downstream target gene Bmp4 were expanded in the NPB. Cell fate analysis on folate deficient embryos revealed a significant increase in the number of cells coexpressing both neural (SOX2) and NPB (PAX7) markers, which may represent an enhancing effect in the cellular potential of those progenitors. Taken together, our findings propose a model where the RFC1 deficiency drives methylation changes in specific genomic regions that are correlated with a dysregulation of pathways involved in early development such as Notch1 and BMP4 signaling. These changes affect the potency of the progenitors residing in the juncture of the neural plate and NPB territories, thus driving them to a primed state.Fil: Alata Jimenez, Nagif. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Strobl Mazulla, Pablo Hernan. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentin

    Signal Balance as a Pluripotency Determinant: In vitro modeling of in vivo pluripotency states with WNT, FGF and BMP

    Get PDF
    This thesis enriches the body of knowledge around pluripotency by describing a novel pluripotent state. It deepens our understanding of cell biology, the processes establishing pluripotency and provides new insights into improving the process of artificial generation of pluripotent cells

    Enhancer-associated H3K4 methylation safeguards in vitro germline competence.

    Get PDF
    Funder: Studienstiftung des Deutschen VolkesGermline specification in mammals occurs through an inductive process whereby competent cells in the post-implantation epiblast differentiate into primordial germ cells (PGC). The intrinsic factors that endow epiblast cells with the competence to respond to germline inductive signals remain unknown. Single-cell RNA sequencing across multiple stages of an in vitro PGC-like cells (PGCLC) differentiation system shows that PGCLC genes initially expressed in the naïve pluripotent stage become homogeneously dismantled in germline competent epiblast like-cells (EpiLC). In contrast, the decommissioning of enhancers associated with these germline genes is incomplete. Namely, a subset of these enhancers partly retain H3K4me1, accumulate less heterochromatic marks and remain accessible and responsive to transcriptional activators. Subsequently, as in vitro germline competence is lost, these enhancers get further decommissioned and lose their responsiveness to transcriptional activators. Importantly, using H3K4me1-deficient cells, we show that the loss of this histone modification reduces the germline competence of EpiLC and decreases PGCLC differentiation efficiency. Our work suggests that, although H3K4me1 might not be essential for enhancer function, it can facilitate the (re)activation of enhancers and the establishment of gene expression programs during specific developmental transitions
    corecore