127 research outputs found

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Using machine learning methods to determine a typology of patients with HIV-HCV infection to be treated with antivirals

    Get PDF
    Several European countries have established criteria for prioritising initiation of treatment in patients infected with the hepatitis C virus (HCV) by grouping patients according to clinical characteristics. Based on neural network techniques, our objective was to identify those factors for HIV/HCV co-infected patients (to which clinicians have given careful consideration before treatment uptake) that have not being included among the prioritisation criteria. This study was based on the Spanish HERACLES cohort (NCT02511496) (April-September 2015, 2940 patients) and involved application of different neural network models with different basis functions (product-unit, sigmoid unit and radial basis function neural networks) for automatic classification of patients for treatment. An evolutionary algorithm was used to determine the architecture and estimate the coefficients of the model. This machine learning methodology found that radial basis neural networks provided a very simple model in terms of the number of patient characteristics to be considered by the classifier (in this case, six), returning a good overall classification accuracy of 0.767 and a minimum sensitivity (for the classification of the minority class, untreated patients) of 0.550. Finally, the area under the ROC curve was 0.802, which proved to be exceptional. The parsimony of the model makes it especially attractive, using just eight connections. The independent variable "recent PWID" is compulsory due to its importance. The simplicity of the model means that it is possible to analyse the relationship between patient characteristics and the probability of belonging to the treated group

    A primer on machine learning techniques for genomic applications

    Get PDF
    High throughput sequencing technologies have enabled the study of complex biological aspects at single nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous “omic” data, however, requires novel and efficient computational algorithms based on the paradigm of Artificial Intelligence. In the present review, we introduce and describe the most common machine learning methodologies, and lately deep learning, applied to a variety of genomics tasks, trying to emphasize capabilities, strengths and limitations through a simple and intuitive language. We highlight the power of the machine learning approach in handling big data by means of a real life example, and underline how described methods could be relevant in all cases in which large amounts of multimodal genomic data are available

    Improved Classification of Lung Cancer Using Radial Basis Function Neural Network with Affine Transforms of Voss Representation

    Get PDF
    Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square erro

    Improved Classification of Lung Cancer Using Radial Basis Function Neural Network with Affine Transforms of Voss Representation

    Get PDF
    Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square erro

    A NEURAL NETWORK BASED APPROACH TO FAULT DETECTION IN INDUSTRIAL PROCESSES

    Get PDF
    The need for automated fault detection methods has increased in line with the complexity of processing plant technology and their control systems. Fast and accurate fault detection and isolation (FDI) is essential if a controller is to be effective in a supervisory role. This thesis is concerned with developing an FDI system based upon artificial neural network techniques. The artificial neural network (ANN) is a mechanism based upon the concepts of information processing within the brain, and consequently has the ability to self adjust, or learn about a given problem domain. It can thus be utilised in currently favoured model-based FDI systems with the advantage that it can learn process dynamics by being presented examples of process input-output pairs without the need for traditional mathematically complex models. Similarly, ANNs can be taught to classify characteristics in the residual (or plant-model difference) signal without the necessity of constructing the types of filter used in more classical solutions. Initially, a class of feedforward neural network called the multilayer perceptron (MLP) is used to model mathematically simulated linear and nonlinear plants in order to demonstrate their abilities in this field, as well as investigating the consequence of parameter variation on model effectiveness and how the model can be utilised in a model-based FDI system. A principle aim of this research is to demonstrate the ability of the system to work online and in real-time on genuine industrial processes, and the plant nominated as a test bed - the Unilever Automated Freezer (UAF) - is introduced. The UAF, being a time-varying system, requires a novel system identification approach which has resulted in a number of cascaded MLPs to model the various stages in the phased startup of the process. In order to reduce model mismatch to a minimum, it was necessary to develop an effective switching mechanism between one MLP in the cascade and the next. Attempts using a rule-based switching mechanism, a simple MLP switch and an error based switching mechanism were made, before a solution incorporating a genetic algorithm and an MLP network was developed which had the capability of learning the optimum switching points. After the successful development of the model, a series of MLPs were trained to recognise the characteristics of a number of faults within the residual signals. Problems involving false alarms between certain faults were reduced by the introduction of templates - or information pertaining to when a particular fault was most evident in the residuals. The final solution consisting of an MLP Cascade model and fault isolation MLPs is essentially generic for this class of time-varying system, and the results achieved on the UAF were far superior to those of the currently used FDI system without the need for any extra sensory information. The MLP Cascade and associated switching device together with the development of an online real-time FDI system for a time-varying piece of industrial machinery, are deemed to be original contributions to knowledge.Unilever Research Colworth Laborator
    corecore