
Computational and Structural Biotechnology Journal 19 (2021) 4345–4359
journal homepage: www.elsevier .com/locate /csbj
Review
A primer on machine learning techniques for genomic applications
https://doi.org/10.1016/j.csbj.2021.07.021
2001-0370/� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author at: Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari ‘‘Aldo Moro”, Via A. Orabona 4, 70125 Ba
E-mail address: ernesto.picardi@uniba.it (E. Picardi).

1 These authors contributed equally to this work.
2 Equal last author contribution.
Alfonso Monaco a,1, Ester Pantaleo b,1, Nicola Amoroso a,c, Antonio Lacalamita d,
Claudio Lo Giudice e, Adriano Fonzino e, Bruno Fosso f, Ernesto Picardi e,f,⇑, Sabina Tangaro a,g,
Graziano Pesole e,f,2, Roberto Bellotti a,b,2

a Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Via A. Orabona 4, 70125 Bari, Italy
bDipartimento Interateneo di Fisica ‘‘M. Merlin”, Università degli Studi di Bari ‘‘Aldo Moro”, Via G. Amendola 173, 70125 Bari, Italy
cDipartimento di Farmacia – Scienze del Farmaco, Università degli Studi di Bari ‘‘Aldo Moro”, Via A. Orabona 4, 70125 Bari, Italy
dNational Institute of Gastroenterology ‘‘S. de Bellis”, Research Hospital, 70013 Castellana Grotte (Bari), Italy
eDipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari ‘‘Aldo Moro”, Via A. Orabona 4, 70125 Bari, Italy
f Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/O, 70126 Bari, Italy
gDipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari ‘‘Aldo Moro”, Bari, Via G. Amendola 165, 70125 Bari, Italy
a r t i c l e i n f o

Article history:
Received 7 May 2021
Received in revised form 23 July 2021
Accepted 23 July 2021
Available online 31 July 2021

Keywords:
Machine learning
Deep learning
Genomics
a b s t r a c t

High throughput sequencing technologies have enabled the study of complex biological aspects at single
nucleotide resolution, opening the big data era. The analysis of large volumes of heterogeneous ‘‘omic”
data, however, requires novel and efficient computational algorithms based on the paradigm of
Artificial Intelligence. In the present review, we introduce and describe the most common machine learn-
ing methodologies, and lately deep learning, applied to a variety of genomics tasks, trying to emphasize
capabilities, strengths and limitations through a simple and intuitive language. We highlight the power of
the machine learning approach in handling big data by means of a real life example, and underline how
described methods could be relevant in all cases in which large amounts of multimodal genomic data are
available.
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1. Introduction

The aim of Artificial Intelligence (AI) is to simulate human intel-
ligence in non-living agents, mimicking actions that human brains
perform daily such as problem-solving and reasoning or pattern
recognition and knowledge acquisition [1]. The development of
AI has been largely driven by Machine Learning (ML), by which
computers acquire the ability to learn and improve from experi-
ence with limited human intervention.

The most common type of ML algorithms is supervised learning,
a class of AI methods that learns input-to-output mappings. It is
called ‘‘supervised” learning because the output is known and
the algorithm iteratively makes output predictions until an accept-
able level of performance is reached. A family of ML algorithms
called Neural Networks, loosely inspired by how neurons pass mes-
sages to each other in the human brain, has recently evolved into
the so called Deep Learning (DL) subfield. In contrast with ML,
DL methods are more flexible and can handle large amounts of
data. However, since their predictions strongly depend on input
training data, great care and caution should be taken in the inter-
pretation of results, especially in the case of biological data. All ML
and DL methods need to learn from input data and the majority of
them require a training set, generally consisting in a random sub-
set of the available data. After training, another data set (usually a
part of the original database not used for training) is used to vali-
date and select the best-fit ML or DL model. Sometimes a further
independent test set is used for performance evaluation.

In the last fifteen years, the genomics world has been revolu-
tionised by the advent of high throughput sequencing technologies
(HTS), opening definitively the era of big data or ‘‘omic” sciences
[2–4]. HTS have indeed enabled the study of complex biological
aspects at single nucleotide resolution and now they are com-
monly applied to a variety of functional genomics problems includ-
ing, for instance, the identification of genomic rearrangements and
variants [5,6], the investigation of epigenetic changes [7], or the
study of transcriptional and post-transcriptional molecular
dynamics [8,9]. HTS are also recently emerging as key technologies
for the discovery of biomarkers [10] and offer great promise to
deliver personalized medicine [11,12].

Nowadays, multiple ‘‘omic” applications are routinely applied
to the same biological samples, raising the complex problem of
integrated data analysis and interpretation [13]. In this context,
ML and DL methods are indispensable to systematically analyze
large volumes of heterogeneous data to better understand underly-
ing biological processes neglected or undetectable by single ‘‘omic”
approaches, and a growing number of ML and DL based computa-
tional strategies are becoming available through dedicated plat-
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forms such as TensorFlow [14] or PyTorch, [15] and/or fully
equipped and documented R packages, such as Caret [16].

In the present review, we cover main ML methodologies and
some principles of DL methods currently applied to genomic prob-
lems and omic data, defined here as all data generated by technolo-
gies (such as HTS) working at the genomic scale. We start from the
field literature of the last decade and focus on the most used meth-
ods, providing technical descriptions as well as relevant examples
and try to emphasize their capabilities, strengths and limitations.
In introducing basic ML and DL principles, we have tried to use
an intuitive language in order to be accessible as much as possible
to researchers approaching for the first time the fascinating world
of AI (drawing and simplifying concepts in [17]). Additionally, to
prove the power of ML methods in handling genomic data, we pro-
vide a real life example in which we show how to predict with high
accuracy age and biological sex from human gene expression
experiments (generated by the RNAseq technology) taking into
account a large number of deep transcriptome data available
through the international Genotype-Tissue Expression (GTEx) pro-
ject [19].
2. The learning problem

The primary goal of ML is to acquire skills or knowledge from
experience in order to automate human tasks. As a consequence,
at the heart of ML there is the learning problem in which comput-
ers learn from real data and perform useful predictions. Depending
on the type of available data and on the task to perform, a variety
of ML methods have been developed [20]. Nowadays, many of such
methods have been applied to genomic data for solving several
complex biological problems such as the prediction of specific
sequence motifs for DNA or RNA binding proteins [21], of the gen-
ome methylation status [22], of the 3D organization of the chro-
matin [23], as well as of the pattern of post-transcriptional
modifications [24] or of the most likely cell types from single cell
RNAseq experiments [25]. Drawing on the field literature of the
last ten years, we have collected the main ML algorithms and
ranked them according to their popularity and versatility in geno-
mic applications. In particular, we retrieved publications from the
PubMed database using the query string ((‘‘Next Generation
Sequencing” OR ‘‘single cell sequencing” OR ‘‘gene expression”
OR ‘‘transcriptomics”) AND (‘‘machine learning” OR ‘‘deep learn-
ing”) AND (’human’)) AND ((‘‘2009”[Date – Publication]: ‘‘2022”
[Date – Publication])) – and organized them in a local sqlite3 data-
base available at our Github page https://github.com/claudi-
ologiudice/ML-DL-REVIEW) for downstream analyses. We then

https://github.com/claudiologiudice/ML-DL-REVIEW
https://github.com/claudiologiudice/ML-DL-REVIEW


Fig. 1. Supervised versus unsupervised learning – a pictorial representation. Supervised learning involves a training phase in which a labeled dataset is used to train the
model that will subsequently be able to recognize unseen data. Unsupervised learning identifies latent factors in unmarked data and groups them based on similarity.
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grouped the set of algorithms used in these publications, which
include linear and non linear models for classification and regres-
sion as well as some regularization procedures, in two learning
classes referred to as supervised and unsupervised, whose main
characteristics are represented in Fig. 1 and summarized in Table 1,
and will be discussed in the next sections.

Since the ML field is at the intersection of Statistics, Data
Science and Engineering, some terms with the samemeaning could
be used interchangeably. To facilitate the non-specialist reader and
avoid confusion, in Table 2 we provide a list of such terms with
their description and highlight in italics the terminology that will
be preferentially used in this review. On our Github page, in the
Supplementary Material section, we provide further mathematical
details of the described ML methods for the interested reader.
Table 2
List of alternative terminologies used in Machine Learning to represent the same
concept (our preferred choice is highlighted in italics). X denotes the input, Y or G the
quantitative or qualitative output, respectively.
3. Supervised learning

Supervised learning is the most common and used type of ML
that learns a mapping from input X to output Y for quantitative val-
ues, or output G for qualitative values. The observed values of vari-
able X can be represented by an NxM-dimensional matrix of

elements ðxijÞNi¼1

M

j¼1 where N is the number of observations (e.g.,

individuals or samples) and M is the number of features (e.g.,
genetic factors or genomic variables); ðyiÞNi¼1 or ðgiÞNi¼1 is an N-
dimensional vector of output variables assuming continuous or
discrete values, respectively. When the output is quantitative (Y),
Table 1
Main differences between supervised and unsupervised learning.

Supervised learning Unsupervised learning

Input data is labelled Input data is unlabelled
There is a training phase There is no training phase
Data is modelled based on training

dataset
Uses properties of given data for
classification

Divided into two types:
Classification and Regression

Most popular types: Clustering and
Dimensionality reduction

Known number of classes (for
classification)

Unknown number of classes
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i.e., corresponds to continuous measurements, the supervised
learning problem is known as a regression problem (e.g., prediction
of a quantitative phenotype such as age). When the outcome is
qualitative (G) with no explicit ordering, the prediction problem
is called classification, and the output class is specified bys a label,
i.e., a digit (e.g. 0;1 as in a case control study or 1; . . . ;K as in cancer
type or disease trait classification) or a dummy variable (‘‘case”,
‘‘control”, or ‘‘cancer A”, ‘‘cancer B”, ‘‘cancer C”). Although here
regression and classification problems have been separated into
two categories, both are tasks in function approximation as both
learn an input to output mapping. A third but less common vari-
able type, defined as ordered categorical (e.g., ‘‘mild”, ‘‘medium”,
‘‘severe” as in symptom severity classification), will not be consid-
ered in this review (for further details, please refer to [17]). Also,
additional material on weakly supervised learning, or ML with
noisy, limited, or imprecise labels can be found in Zhou [18].

Two typical examples of input to output mappings will be pre-
sented in Section 7, where the input Xwill be the NxM gene expres-
sion matrix, M will be the number of genes and N the number of
individuals. In the first example – biological sex classification (a
classification problem) – the output G is discrete, gi 2{male,
female} can have one of two values in each subject. In the second
Synonims Description

Quantitative or continuous
variable

A variable assuming continuous values
with explicit ordering

Qualitative, discrete, factor or
categorical variable

A variable assuming discrete values
with no explicit ordering

Observation or measurement A realization of a statistical variable
Feature, predictor, attribute or

independent variable j
The j-th column of the observed

X : ðxijÞNi¼1

Output, outcome, response or
dependent variable

The observed Y or G

Output class or output label i The i-th element of the observed G : gi
Data imputation Replacing missing or inconsistent data

with plausible data
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example – age regression (a regression problem) – the output Y is
continuous, yi represents the age of individual i, and i 2 f1; . . . ;Ng.
The implemented algorithms will predict the output (biological sex
or age) from the input (gene expression).
3.1. Training, validation and test set

To build an accurate and robust predictive model, the initial
dataset is typically split into training, test and validation sets.
The training set is the data sample employed to fit the model (i.e.,
to find the parameters than can best describe the full dataset)
and the performance of an ML algorithm significantly depends on
it. If, for instance, the size of the training set is too small, the algo-
rithm may not have enough experience and knowledge which will
lead to many prediction errors (underfitting condition). On the
other hand, if the training set contains too much data, the algo-
rithm may lose its ability to generalize on unseen data (a problem
called overfitting). The validation set is the dataset used to evaluate
the model fit on the training dataset and is employed to fine-tune
the model hyperparameters. Finally, the test set is tipically used to
provide an unbiased estimation of a final model fit on the training
dataset. The test set returns the actual performance of the model
and is only used once the model has been fully trained.

To better understand the general problems of over- and under-
fitting, it is helpful to introduce the notions of model bias and vari-
ance. The bias is the difference between the average prediction of
the model and the expected value we are trying to predict. A model
with high bias is making wrong assumptions about the data. For
instance, see Fig. 2 on the left, where the model (Logistic Regres-
sion) is trying to find a linear boundary to separate a dataset with
circular boundary. In this case, a model assuming a linear boundary
will clearly lead to both high training and high testing errors. Vari-
ance, on the other hand, represents the variability of the model’s
predictions and indicates how sensitive the model is to the ran-
domness of the data in the training set. Consider for instance a
model that is making hypotheses that are so general that they
can possibly fit to any data. If we train this model on a given train-
ing set we will find a set of optimal parameters (optimal for that
training set); if we train the same model on a second training set
we will find a completely different set of optimal parameters; this
model will be very sensitive to the input data, but will likely fail to
perform well on unseen data. See, for instance, Fig. 2 on the right,
where the algorithm (K-NN) is predicting a boundary that strongly
depends on the input data (the training set represented with cir-
cles) and fails to generalize to the test set (represented with trian-
gles) which wasn’t used for training.
Fig. 2. Examples of under-, appropriate and over-fitting. The input dataset consists of t
respectively (with Gaussian noise) in a two dimensional feature space. Three different mo
black) that can best separate the two classes under the model hypotheses. The training
Regression, Support Vector Machine with Gaussian kernel, and K-NN lead to typical ove
this figure is available on Github.
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In supervised learning, the underfitting condition occurs when a
model is unable to capture the underlying pattern of the data. Such
models usually have high bias and low variance. Instead the over-
fitting issue occurs when a model has low bias and high variance.
Fig. 2 shows in the middle an example of appropriate fitting where
the used model (a Support Vector Machine with Gaussian kernel)
has a good bias-variance tradeoff, as it is making an adequate
assumption on the data distribution and is not too sensitive to
the input data.

The performance of a predictive algorithm can be optimized via
a cross-validation (CV) procedure. In the k-fold CV procedure, the
training sample is divided into k mutually exclusive subsets of
equal size. The algorithm is trained on k� 1 subsamples and vali-
dated on the remaining subsample. This procedure is repeated for
each of the k subsamples with the advantage that all observations
are used for both training and validation, and each observation is
used for validation exactly once. Cross-validation provides reason-
able estimates of the expected error [17] and average performance
is reported along with standard deviation and statistical
significance.
3.2. Naive Bayes

The Naive Bayes (NB) algorithm is a classification algorithm,
belonging to the class of generative models, i.e., it builds a full sta-
tistical model for both input and output. Given this model, the out-
put can be generated from the input (using Bayes’ rule). It is called
naive because it makes a simple but strong assumption that all
pairs of features (columns of X) are conditionally independent
given the output labels, an assumption that is generally not true.
Building the model is easy and requires no complicated iterative
parameter estimation. For a discrete variable it requires the con-
struction of a frequency table for each feature against the output,
then the posterior probability (a product of probabilities given
the assumption of independence) is computed and the class with
the highest posterior probability is returned as the predicted out-
come. NB can be used to model binary, categorical unordered, con-
tinuous features, as well as to model features with unknown
distribution, and to model input data it uses a Bernoulli, Multino-
mial, Gaussian, or a kernel density, respectively. NB classifiers have
been adopted for their simplicity or as a baseline in comparison
with more complex classifiers. Two of the many examples where
NB is used as a baseline for comparison are [26] for classification
of treatment success/failure given a set of M ¼ 2161 input features
(variants of hepatitis C obtained through RNAseq) cross-validated
on a total of N ¼ 173 different subjects, and [27] where input
wo classes (blue and red points) that are distributed on an inner and outer circle,
dels are used to fit the input training set, or in other words, to find the boundary (in
set is represented by circles, the test set by triangles. The chosen methods, Logistic
r-, appropriate, and under-fitting scenarios, respectively. The code used to generate
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features are gene expression profiles from RNAseq, output is binary
drug response, and the analysis is cross-validated on N ¼ 455 indi-
viduals with cancer. For the taxonomic classification of micro-
biomes using metabarcoding, the RDP (Ribosomal Database
Project) curators [28] have developed the RDP-classifier, a Naive
Bayes classifier relying on k-mer frequencies measured on
prokaryotic genera [29]. The RDP-classifier, given an input
sequence of bacterial 16S rRNA, predicts an output label, the genus.
The algorithm was trained on Bergey corpus, consisting of
N ¼ 5014 labeled sequences (the label is the genus and can have
988 different values, g 2 f1; . . . ;988g) or on RDP sequences
(N ¼ 23095; g 2 f1; . . . ;1187g where 1187 is the number of genera
in the NCBI taxonomy database). The classifier uses a set of M fea-
tures for each input sequence, the k-mers (with k ¼ 8) that make
up the sequence, and assigns to the sequence a genus based on
the frequency of those k-mers in the labeled training set. More
recently QIIME2 [30] teams have introduced a Multinomial Naive
Bayes classifier to achieve taxonomic classification of metabarcod-
ing data [31].

Fig. 3 illustrates the behavior of the Gaussian NB algorithm on
two synthetic datasets, a linearly separable dataset (i.e., with a
boundary between classes that is linear, top row in the figure)
and a circularly separable dataset (i.e., with a boundary between
classes that is a circle, bottom row), together with a few other clas-
sification algorithms. Despite its over-simplistic assumptions, the
NB algorithm outperforms more sophisticated alternatives.
Although the estimator may be biased, as it makes a priori assump-
tions, it has low variance, i.e. it is not sensitive to small fluctuations in
the training set. Its use is typically recommended when the feature
space is large (high M) and density estimations become unfeasible.
In Oncofuse [32], a computational pipeline for the classification of
fusion sequences with oncogenic potential, the NB algorithm has
been chosen for its robustness and because it can natively handle
missing data (as any generative model) which is essential when
high throughput datasets from different sources need to be com-
bined. The NB algorithm has been applied also to pharmacogenetic
predictions. Boloc et al. [33], for instance, developed a NB-based
predictive model of antipsychotic induced extrapyramidal symp-
toms using functional SNPs belonging to four genes of the mTOR
pathway.
3.3. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) (also called Normal Discrim-
inant Analysis) is a (two-class or multiclass) classification algo-
rithm for continuous features. It is largely used in multiclass
classification as it provides a low dimensional view of data (see
4.2). LDA is similar to the NB algorithm as both are generative
models. However, LDA makes the specific assumption that obser-
Fig. 3. Comparison of different classifiers on a two-class (red and blue) classification p
(bottom) Circularly separable synthetic dataset (with noise). Circles represent the train
Github (code adapted from [34]).
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vations belonging to the same class have the same Gaussian distri-
bution and all classes k 2 1; . . . ;K share the same variance R (but
have a different mean).

It can be shown that the decision boundary, i.e., the surface that
separates classes, estimated by LDA is flat in the space of the input
features, a line in two dimensions, a hyperplane in three or more
dimensions. For this reason LDA works well when data are linearly
separable. Also, it can be shown that the LDA decision boundary is
a function of R and of the position of the class centroids, making
this algorithm sensitive to outliers (see discussion in 3.5). Regular-
ized versions of LDA, i.e., that add information in order to prevent
overfitting, also exist for example with shrinkage of R. The LDA
algorithm has been widely applied to transcriptome profiling and
miRNA biomarkers discovery. For example, in a recent study Zhang
et al. [35] demonstrated the suitability of LDA for classification of
cardiovascular disease patients and healthy individuals using as
input high-throughput transcriptome profiling data derived from
monocytes, whose infiltration into the walls of the great arteries
has been recognized to play an important role in atherogenesis
[36]. LDA is also used in metagenomic biomarker studies based
on 16S rRNA thanks to the LEfSe (linear discriminant analysis effect
size) tool [37], to test the association of a specific taxonomic class
(e.g. genus or OTU, operation taxonomic unit) with a categorical
output variable (e.g. normal vs cancer samples).

3.4. Linear regression, regularization strategies and overfitting

While generative models make missing value estimation (data
imputation) straightforward, as they can generate missing data
drawing from the model distributions, they don’t directly try to
maximize the quality of the output (e.g., to maximize the Residual
Sum of Squares as we will see in (1)) on the training set. Rather
they try to determine the best fit to a theoretical and sometimes
inaccurate model. Discriminative models instead directly try to
maximize the quality of the output on the training set. Typically,
discriminative methods use an additional regularization term in
the training cost function.

The most popular discriminative models are Linear Regression
for a continuous output Y and Logistic Regression for a binary out-
put G. Linear Regression minimizes the Residual Sum of Squares
(RSS):

XN
i¼1

ðyi � htxiÞ2 ð1Þ

where yi is the i-th observed output, xi ¼ ðxijÞMj¼1 are theM input fea-

tures of the i-th observation (xi0 ¼ 1), h ¼ ðhjÞMj¼0 are the parameters
of the model or regression coefficients, one for each input feature j
plus an intercept h0 for j ¼ 0, and htxi is the scalar product between
roblem with two features. (top) Linearly separable synthetic dataset (with noise).
ing set, triangles the test set. The code used to generate this figure is available on



Fig. 4. SVM optimal boundary for linearly separable data: SVM uses margins,
whose distance from the decision boundary can be tuned by changing the amount
of penalization. Only observations inside the margin contribute to the loss, and
therefore to the definition of the optimal hyperplane.
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vector h and vector xi. In Section 7 we will show an example in
which gene expression values computed in RNAseq experiments
are the features (so M is the number of genes), individual samples
are the observations, and the aim is to predict the age of a donor
(the output yi), a continuous variable.

When the number of features M is comparable to or larger than
the sample size N, a penalty/regularization term can be added to the
model, for having too many features in the model:

XN
i¼1

ðyi � htxiÞ2 þ kBðhÞ:

For increasing values of the parameter k, the amount of penalty
increases (the bias increases and the variance decreases), vice versa
for decreasing values of k. Depending on the functional form of B

(L1 penalty
PM

j¼1jhjj; L2 penalty
PM

j¼1h
2
j , or a linear combination of

the two – to mention the most common strategies), the algorithm
is called LASSO, Ridge, or Elastic Net linear regression, respectively.
Ridge Regression shrinks the coefficients hj of a feature j towards
zero, but doesn’t set any of them exactly to zero. LASSO [38]
instead forces some of the coefficients to zero and can thus be seen
as a variable selectionmethod. For this reason, LASSO produces sim-
pler and therefore more interpretable models compared to Ridge
regression. Elastic Net combines properties of both regressors by
both shrinking coefficients (like in Ridge regression) and setting
some of them to zero (as in LASSO). Cross-validation methods can
be used to identify which of these techniques performs better on a
specific dataset. In Section 6 we will describe alternative variable
selection procedures.

The LASSO algorithm is currently used in different genomic
applications such as the study of intratumoral heterogeneity, or
the selection of biomarkers and genes to name a few. Xiong et al.
[39], for instance, have applied a LASSO based strategy to select
an optimal subset of genes that can accurately predict cancer.
Given an input NxM expression matrix from microarray data,
where N is the number of subjects and M is the number of genes
in the microarray, the algorithm can accurately predict if a subject
has cancer (0/1 label) given expression data. Linear regression has
been also applied to the analysis of single cells [40] to predict cell
invasion rates using selected physical parameters as regressors
(elastic modulus, maximum strain, transit time and cell size).

3.5. Logistic Regression and Softmax Regression

Despite its name, Logistic Regression (LR) (also called Binomial
Regression) is not a regression algorithm i.e., a prediction model of
a continuous variable), but a binary (or two-class) classification
algorithm. LR is indeed a generalized linear model for the predic-
tion of a binary output g 2 f�1;1g (instead of continuous vari-
ables) through the use of a link function, the logistic function
bðzÞ ¼ 1

1þe�z which maps a real variable to the ½�1;1� interval. As
for linear regression, a regularization term can be added to the
model to obtain Ridge, LASSO, and Elastic Net LR.

It can be shown that the decision boundary of LR and its multi-
nomial version (Softmax) is flat (a hyperplane) in the space of the
input features, as in LDA. However the parameters defining the
hyperplane are different, as LDA makes additional assumptions
on the distribution of the features. Because of those assumptions,
LDA parameters have lower variance but can incur in biases when
the assumptions are not valid. For example, if outliers are present,
they will contribute to the estimation of the LDA covariance matrix
and thus to the estimation of the optimal parameters, while in LR
they will be down-weighted. Therefore LR is more robust to out-
liers, even though LR and LDA tend to often return similar results.

Although LR can be extended to generate non linear decision
boundaries – with the use of a kernel, i.e., a mathematical functions
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of the input X – this typically results in a high computational cost.
In contrast, a different discriminative model, namely Support Vec-
tor Machine (see next section), can be extended from its linear ver-
sion with kernels at a lower computational cost.

A promising application of LR has been described by Wang et al.
[41] where it has been used in combination with SVM and RF to
predict autism-associated long non-coding RNAs starting from nor-
mal tissue expression patterns and sequence features. Their model
was trained on a set of N ¼ 2198 long non-coding RNAs labelled as
non-risk/risk genes (g ¼ 0=1) for autism (ASD) in previous work.
The algorithm learned from an NxM input matrix of expression,
where each row consisted of selected sequence features and
expression values of the long non-coding RNAs in healthy individ-
uals from the BrainSpan dataset. Recently Torang et al. [42] have
proposed an approach based on Elastic Net LR to identify immune
cell subtypes from single cell RNAseq data, revealing cell types that
were previously unannotated or misclassified. LR has been also
applied to data integration problems as in Beretta et al. [43] where
LR was used with decision tree learning to integrate the predic-
tions of different eQTL mapping tools to produce more reliable
results.

3.6. Support Vector Machine

A widely use ML method is the Support Vector Machine (SVM)
which shares many similarities with LR. For two-class classifica-
tion, SVM minimizes a loss function called Hinge Loss (HL) plus a

penalty term B ¼ 1
2 hk k2 (L2 penalty). The name support vector arises

from the fact that many of the input observations xi (vectors in this
context) do not play a big role in defining the SVM optimal bound-
ary, or the hyperplane that separates observations in two classes:
the few that contribute are called support vectors. The SVM algo-
rithm proceeds iteratively. If at a specific iteration the decision
boundary misclassifies some points, these points become the sup-
port vectors, and contribute to the loss proportionally to their dis-
tance from the boundary. Therefore the loss that the algorithm
tries to minimize depends only on a subset of the input observa-
tions and thus optimal parameters can be efficiently estimated.
Extensions of the SVM with nonlinear kernels kðxi; xjÞ, the most
popular being the Gaussian kernel (other nonlinear kernels are
rarely used), allow for nonlinear boundaries. Such kernels, can
describe complicated patterns present in a real dataset by repre-
senting data in a new hyperspace.

For example, in a two class classification problem with linearly
separable data on a plane (Fig. 4) for example, SVM finds the



Fig. 5. Schematic view of an artificial neuron: x1,. . ., xM are the input nodes, y is the
output node, F is the activation function.

Fig. 6. Comparison of different activation functions. The binary step or 0–1
activation function (AF) activates the neuron when the input is greater than a
threshold. While useful in binary classification tasks, it is of limited use in
multiclass classification problems. The sigmoid and tanh AFs are similar in shape to
the 0–1 AF but are continuosly differentiable which is essential for gradient based
optimisation. The ReLU AF is computationally more efficient compared to the
sigmoid and tanh function because it only activates neurons with positive input
values – a subset of the nodes in the neural network (in the same way as the SVM
algorithm is efficient because only support vectors contribute to the loss function).
A differentiable version of the ReLU activation function exists that is smooth in 0.
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optimal line that can separate the two classes while maximizing
the distance from the boundary (i.e. the margin). In general SVM
works well when the margin of separation between classes is clear
and is computationally efficient; it is not suitable for large datasets
and when the number of features exceeds the number of training
data samples.

SVM has been used in a variety of genomic applications. Hao
et al. [44], for instance, used SVM to identify H€urthle cells (HC)
from non-operative fine-needle aspiration biopsy (FNAB) of thy-
roid nodules using RNAseq data, and in particular differentially
expressed nuclear and mitochondrial genes. A set of N ¼ 318
FNABs with curated cytology class labels G was used to train the
algorithm (g ¼ 0 for FNABs without HCs and g ¼ 1 otherwise)
given an input NxM matrix of measured expression values of
M ¼ 1048 genes. Besides diagnostic classification, other genomic
applications of SVM include intratumoral heterogeneity assess-
ment [45], tissue-selective genes, gene prediction, gene selection,
disease-gene association analysis, gene expression analysis, signa-
tures recovery from gene-pathway association, disease gene prior-
itization, and miRNA signatures extraction (see supplementary
materials for specific references). SVM is also efficiently used for
integrating genomics data. De Orange et al. [46], for instance,
applied SVM to predict rheumatoid arthritis disease subtypes by
combining histological features and RNAseq data. Similarly, Kim
et al. [47] used a modified SVM to predict cancer survival combin-
ing miRNA and mRNA expression data from different subjects.

3.7. The perceptron learning algorithm and Artificial Neural Networks

The perceptron algorithm shares some similarities with SVM. It
is designed to find a decision boundary that has minimal distance
frommisclassified points: observations xi that fall inside their class
boundary give null contribution to the loss, while the contribution
of an observation to the loss depends on the size of the violation.
Also, from the functional form of the loss (see supplementary
materials), it follows that the decision boundary of the perceptron
is nonlinear. A perceptron is the simplest example of a Neural Net-
work with only one node.

Neural Networks or Artificial Neural Networks (ANNs) are com-
putational networks inspired by the animal brains that can learn
from known examples and generalize to unknown cases. An ANN
is composed by a collection of connected nodes called artificial
neurons (AN). After receiving an input signal, ANs process and pass
it to the connected neurons. The connections are called edges. A
weight modulates the strength of the signal that is passed from
input to output through the edges. These weights represent the
neural synapses. Formally, each neuron has M inputs x1, . . ., xj,
. . ., xM , and each input is assigned a weight wj: if wj > 0 the input
is excitatory, otherwise it is inhibitory. The weighted sum of the
inputs is passed to the output y through the activation/transfer
function F:

y ¼ F
XM
i¼1

xjwj

 !
: ð2Þ

A neuron may have a threshold h (called Bias) such that only if
the aggregate signal crosses the threshold the signal is passed to
the output:

y ¼ F
XM
j¼1

xjwj � h

 !
: ð3Þ

Fig. 5 shows a schematic view of an AN. The most used activa-
tion functions are the Sigmoid (or logistic function), the Hyperbolic
Tangent and the ReLu (rectified linear unit). Fig. 6 shows the func-
tional forms of different activation functions.
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Typically, neurons are aggregated into layers: input, hidden,
and output layer. The number of neurons and layers are some of
the parameters that need to be set to define a network architec-
ture. When the activation function is nonlinear, a two-layer ANN
can be proven to be a universal function approximator [48]
(Universal Approximation Theorem). For this reason, ANNs with
nonlinear activation functions can solve complex problems using
only a small number of nodes; multilayer ANNs with identity acti-
vation function instead are equivalent to a single layer. Given the
large number of possible architectures, ANNs are often not easy
to tune. The most commonly used ANNs are feedforward networks.
In these kinds of artificial networks: (i) no computation takes place
in the input layer; (ii) the signal always travels forward from the



Table 4
Accuracy of classification obtained
through the implemented learning mod-
els. Accuracy is reported with the respec-
tive standard deviations.

Learning models Accuracy

Random Forest 0:972� 0:001
MLP 0:976� 0:009
Linear Model 0:918� 0:001
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input to the output; (iii) connections between the nodes do not
form a cycle. The backpropagation algorithm is widely used for
training feedforward neural networks. It efficiently uses the chain
rule to compute the gradient of the loss function with respect to
each weight one layer at a time and proceeds backwards from
the last layers, thus avoiding redundant calculations of intermedi-
ate terms in the chain rule. ANN are largely used in single cell anal-
yses for the discrimination of heterogeneous cell populations. An
interesting example is offered by Arai et al. [50] in which the
authors combined single cell gene expression profiles with
machine learning analysis and in vivo functional studies to explore
how hematopoietic stem cell (HSC) divisions rate change with
ageing.

Multilayer perceptron networks (MLPs) are an example of feed-
forward networks, and are composed of multiple layers of fully
connected nodes (each node in one layer is connected to all nodes
in the next layer). Internal nodes of an MPL are perceptrons with
threshold activation; the ReLu activation function is analogous to
the perceptron loss function. MLP are widely used in genomic data
analysis (Table 3). For instance, a MLP has been used, in combina-
tion with other machine learning models, for the systematic anal-
ysis and prediction of type IV secreted effector proteins produced
by different Gram-negative bacteria during infection [49]. The
algorithm was trained and cross validated on a set of N ¼ 1502
proteins, with known labels, namely 390 T4SS effectors and 1112
non-effectors. The input to the algorithm was an NxM matrix of
M features describing each of the N proteins, of three types: local
sequence encoding (e.g., amino acid composition, represented as
a 20-dimensional feature vector), global sequence encoding (e.g.,
position-specific scoring matrix, a Lx20 matrix where L is the
length of the protein sequence), and structural descriptor encoding
(e.g., predicted secondary structure, a 3x50 vector). Given the input
features and the output labels the algorithm learned to classify the
sequence as T4SS effectors or non-effector. (see Table 4).
3.8. Boosting

The term Boosting refers to a family of predictive algorithms
that converts a set (ensemble) of low-accuracy models (called
weak learners or weak classifiers) into a high-accuracy model (jar-
gon for strong learner or strong classifier). The idea behind it is to
sequentially train weak learners, each trying to correct its prede-
cessor [51]. This is done by creating a first model from the training
Table 3
Number of occurences of most common learning algorithms in a database of PubMed pub
gene expression and transcriptomics. Algorithms occurring less frequently have been omitt
specific biological applications of such methods in the selected database (although it does
found on our Github page and in the Supplementary Materials together with more details

Learning algorithm Example biological applications

Support Vector Machine diagnostic classification, intratumoral heteroge
disease-gene association; gene expression analy
miRNA signatures

Random Forest diagnostic classification, tissue-selective genes;
mutation-gene-drug relations; gene expression
sample-classification

Logistic Regression gene prediction; gene selection; drug-induced
Deep Neural Network mutation-gene-drug relations; gene expression
LASSO intratumoral heterogeneity; biomarkers selecti
Naive Bayes gene selection; pharmacogenetic prediction
K-Nearest Neighbor gene selection
Artificial Neural Network gene selection; genotype-phenotype analysis; r
Autoencoder gene prediction
Principal Component Analysis single-cell analysis; gene expression
Linear Discriminant Analysis transcriptome profiling; miRNA biomarkers; ta
Perceptron gene selection; gene prediction
K-means candidate miRNA targets
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data, and then a second model that attempts to correct errors from
the first model and so on. Models are added until the training set is
predicted perfectly, or within some predetermined error, or a max-
imum number of models are added. The most common boosting
algorithm is Adaptive Boosting (AdaBoost) [52] and in its standard
configuration it uses trees as the weak learners and their output is
combined into a weighted sum that represents the final output of
the boosted classifier. Boosting algorithms are often used to handle
gene expression data or perform gene predictions in cancer stud-
ies. Maniruzzaman et al., for example, used Adaboost on colon gene
expression data to identify potential high risk cancer genes, and
demonstrated how this algorithm had better performance com-
pared to other ML methods in terms of sensitivity to noisy data
and outliers [53].
3.9. Random Forest

The Random Forest (RF) algorithm is an ensemble of decision
trees made through bootstrapping (i.e., resampling with repeti-
tions) of the training dataset [54]. RF trees have low mutual corre-
lation, an important property that follows from a randomization
procedure on the features in the training phase: at each node a
subset of features is randomly selected. Each decision tree provides
a prediction about each observation. All trees are then combined
together. In a regression problem this combination is an average
of the predictions from each tree. In contrast, in a classification
problem, the prediction from each tree is combined into a final
classification through a majority vote mechanism. Fig. 7 shows a
schematization of how a Random Forest algorithm works. In gen-
eral RFs have some characteristics that make them ideal in many
ML problems: (i) they are easy to tune; (ii) they basically only have
two parameters that need to be set: the number of trees and the
lications of the last ten years on Next Generation Sequencing, single cell sequencing,
ed. The PubMed query was performed on 16th January 2021. The table also reports the
not represent an exhaustive list in general). Explicit bibliographic references can be
on the methodology used to build the table.

#Occurrences

neity; tissue-selective genes; gene prediction; gene selection;
sis; signatures from gene-pathway; disease gene prioritization;

157

gene prediction; co-acting gene networks; gene selection;
analysis; miRNA biomarkers; drug-induced gene expression;

124

gene expression 38
analysis 36
on; gene selection; gene expression analysis 31

28
28

isk classification; transcriptome profiling; variant extraction 25
24
19

xa-condition association 14
12
8



Fig. 7. Random Forest architecture for classification and regression problems.
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number of features sampled to grow each leaf within a tree; (iii)
they are not prone to overfitting; (iv) they can evaluate the impor-
tance of each input feature during the training phase; (v) because
they use an out-of-bag procedure, RFs compute an unbiased esti-
mate of the generalization error. For these reasons RF is a very pop-
ular ML algorithm in trascriptomics after SVM (see Table 3). In RF,
the importance of each feature is evaluated through the mean
decrease of impurity, by averaging over the whole forest of trees
[54]. In classification, node impurity is measured by the Gini index,
in regression through the RSS.

RF is used to answer a variety of genomic questions (see
Table 3). Teng et al. [55], for instance, used RF and SVM to predict
human tissue-specific genes using expression data and found that
the RF classifier outperformed SVM. The RF algorithm is also
widely used in single cell analysis for cell-type classification from
individual cells gene expression profiles [56]. Asnicar et al. [57],
have applied RF for prediction and classification of personal dietary
habits based on microbiome data drawn from the PREDICT 1
cohorts [58].

3.10. Nearest Neighbor classifier and K-NN

A nearest neighbor (NN) classifier is based on the definition of a
distance on X. The algorithm assigns observations in the test set to
the same class as the closest observation in the training set. With-
out smoothing, NN classifiers tend to overfit the data and therefore
generate very complex decision boundaries. K-NN uses K nearest
neighbors and classifies a new observation using the majority class
in the K neighbors, thus smoothing the decision boundary and pre-
venting overfit. The higher the value of K, the smoother the result-
ing decision boundary (see Fig. 2 with K ¼ 2; this low value of K
causes overfitting). Cheng et al. have developed an accurate proce-
dure based on an extension of the K-NN classifier to distinguish
different cancer types from gene expression profiles [59].

3.11. Deep neural networks

A deep neural network (DNN) is typically a feedforward ANN
with multiple layers. DNN have demonstrated superior perfor-
mances than traditional ML approaches in many genomics prob-
lems including the identification of molecular biomarkers [61]
and the discovery of mutation-gene-drug relationships [60]. In
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the latter, the authors created a database of candidate mutation-
gene-PMID mappings mining PubMed abstracts and labeled each
mapping as true if it was listed in the ClinVar or COSMIC database
and as false otherwise, thus collecting 4440 true mutation-gene
relations and 165317 false mutation-gene relations
(N ¼ 169757). After additional filtering and manual curation, they
trained a CNN to classify a candidate mutation-gene relation as
true or false based on a set of M features. The features characteriz-
ing a mutation-gene pair were extracted using natural language
processing procedures from the PubMed abstracts. With an analo-
gous procedure they trained a classifier to learn true drug-gene
relations. Recently, DNNs have been also used to infer the cell type
or subgroup by analyzing thousands of highly heterogeneous
scRNAseq data [62].

Convolutional Neural Networks (CNNs) are a type of DNN that
break the fully-connectedness of traditional ANNs such as MLPs.
While in MLPs each node in a layer is connected to all layers in
the following layer which is prone to overfitting, in CNNs instead,
each node in a layer receives input from only a restricted area of
the previous layer called the receptive field. The CNN architecture
was originally inspired by the response mechanism of a neuron in
the visual cortex to a stimulus. Tipically CNNs also pool layers, i.e.,
reduce the dimensions of the data by combining the outputs of a
group of nodes in a layer into a single node in the next layer. CNNs
are widely used for instance in data integration studies, to combine
information deriving from multiple datasets. Matsubara et al. [63],
for example, developed a spectral-CNN to integrate protein inter-
action network data and gene expression profiles for lung cancer
classification, and showed how CNN had superior performance
compared to other ML methods such as SVM or RF.

Recurrent Neural Networks (RNNs) are also popular ANNs. They
use sequential data (also time series data) and have a ‘‘memory”,
i.e., in a RNN the output of a node depends on the prior element
within the sequence, while in traditional ANNs inputs and outputs
are assumed to be independent. RNNs have been applied in several
Nanopore base-callers, such as Metrichror [64], Nanonet [65] and
DeepNano [66].

3.12. Performance metrics

Many different measures of performance can be introduced for
the classification problem.
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First, the confusion matrix, also known as contigency table, is a
table with rows containing counts of predicted labels for each class
and columns containing counts of true labels. Assuming there is a
total of two classes (positive and negative sets), the table contains:
(i) true positives (TP or positives correctly recognized by the clas-
sifier); (ii) true negatives (TN or negatives correctly recognized
by the classifier); (iii) false negatives (FN or positives recognized
as negatives by the classifier); (iv) false positives (FP or negatives
recognized as positives by the classifier).

The area under the receiver operating characteristic curve (AUC-
ROC) is an important metric used for binary classification prob-
lems. The AUC quantifies the ability of the model to discriminate
between one class or another: an AUC-ROC of 1 represents a per-
fect classifier, while a value of 0.5 means that the algorithm per-
forms as well as a random guess.

Accuracy, namely the rate of correct classifications, is defined as

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

:

Sensitivity, namely the fraction of tests classified as positive
among all positives, is

Sens ¼ TP
TP þ FN

;

specificity, namely the fraction of tests classified as negatives
among all negatives, is

Spec ¼ TN
TN þ FP

;

precision or positive predictive value (PPV) is

Prec ¼ TP
TP þ FP

;

negative predictive value (NPV) is

NPV ¼ TN
TN þ FN

;

and F1 score, which combines precision and sensitivity by taking
their harmonic mean, is:

F1 ¼ 2 � Prec � Sens
Prec þ Sens

:

For a regression problem the most common statistical perfor-
mance indicators are the Root Mean Square Error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðyi � ŷiÞ2

N

vuuuut
;

where yi is the observed value and ŷi is the predicted value, the
Mean Absolute Error (MAE)

MAE ¼

XN
i¼i

jyi � ŷij

N
;

the Mean Absolute Percentage Error (MAPE)

MAPE ¼ 1
N

XN
i¼i

yi � ŷi
yi

����
����;

and the Pearson’s correlation coefficient (defined in (4)) between the
predicted values and the real/observed values.
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4. Unsupervised learning

While the aim of supervised learning methods is to determine
the properties of PðYjXÞ, i.e., of the output Y given the input X, in
unsupervised learning there is no output variable and the aim is
to characterize PðXÞ, i.e., to describe the associations and patterns
among the set of input variables. The performance of a supervised
method can be measured from the expected loss over the density
PðX;YÞ. In unsupervised learning instead there is no direct measure
of success.

Clustering is the most common unsupervised learning method.
It can be defined as the task of partitioning a set of observations
into groups in such a way that pairwise dissimilarities between
observations assigned to the same group (also called cluster) are
smaller than those in other groups. Identification of the groups/-
clusters is usually subjective and more follow-up efforts are
needed to interpret the identified groups. Other unsupervised
learning methods include Dimensionality Reduction algorithms
and Generative Adversarial Networks.
4.1. K-means and K-medoids clustering

The K-means algorithm is one of the most popular clustering
techniques and can be applied to quantitative variables as it uses
Euclidian distances between observations. It is an iterative descent
method that tries to minimize within-cluster variances (squared
Euclidean distances). The algorithm is not guaranteed to converge
to a global minimum and different initialization strategies can
result in different performances. In the literature various modifica-
tions of K-means have been proposed that use non Euclidian dis-
tance measures, for example K-medoids, and that can be applied
to qualitative data as well.

An example application of K-means clustering to the inference
of candidate miRNA targets is provided by Al-Shaer et al. [67]
where this unsupervised machine learning method is used in con-
junction with statistical analyses to facilitate the discovery of sig-
naling pathways and miRNAs that inform mechanisms
underlying the fetal alcohol spectrum disorder (FASD), a condition
causing neurodevelopmental disability.
4.2. Dimensionality reduction algorithms

Reducing the number of input features for a predictive model,
whilst also preserving the main structure of the data, is referred
to as dimensionality reduction (DR). In DR, new features are con-
structed from the input data that are not directly comparable to
the original data.

LDA, a multiclass classification procedure, can be used to per-
form dimensionality reduction while preserving as much of the
class discriminatory information as possible. LDA defines a simpler
reduced space using class centroids. K centroids, one for each class,
span at most a K � 1 dimensional subspace; if M, the number of
input features, is much larger than K, LDA can provide a consider-
able drop in dimension. LDA DR is by definition a supervised DR
algorithm; nonetheless it deserved to be mentioned here for com-
pleteness and because it is widely used for DR.

Among unsupervised DR algorithms the most common method
is Principal Component Analysis (PCA). PCA projects a multidimen-
sional set of features onto a low dimensional set of features (i.e.,
the first few principal components) which are constructed so as
to preserve as much of the variance of the original data as possible
[69,69].

Autoencoders (AE) are ANNs used typically in DR, that are
trained to minimize a reconstruction error. In its simplest form
an AE is an MLP with one or more hidden layers (the code) and
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the same number of input and output nodes. If the number of out-
put nodes is less than the number of input nodes, then the output
nodes are a compressed representation of the input nodes. AE can
be used to reduce the number of input features [41] and in geno-
mic data integration studies as in Lemsara et al. [70] in which an
AE based method was employed to characterize cancer patients
by integrating multiple omics data such as gene expression, miRNA
profiles and DNA methylation. AEs have been also recently applied
as generative models for data imputation to handle single cell data
minimizing biases of dropout genes that appear at a low or moder-
ate expression level in a cell but are zero in another cells of the
same type [71].

Another popular DR algorithm is the Self Organizing Map
(SOM). In its simplest form, it maps each observation x (withM fea-
tures) to a cell on a 2D grid, the output layer. It does so in an unsu-
pervised manner, mapping similar observations to neighboring
cells in this 2D grid. The optimal mapping is reached with an iter-
ative algorithm that maximizes the similarity between observa-
tions mapped to the same neighborhood. As a result, a SOM can
represent a dataset with a high number of features M on a two
dimensional space. A new observation xNþ1 can be mapped to the
same cell where observations similar to xNþ1 have been mapped
to, on the 2D grid built from N input observations.

4.3. Generative Adversarial Networks

Given a training set, a Generative Adversarial Network (GAN) is
a DNN that learns to generate new data with the same distribution
as the training set [72]. In a GAN, a generative network generates
data from a candidate distribution, while a discriminative network
evaluates them. The generative network is trained to ‘‘fool” (or
increase the error rate of) the discriminative network. Training is
completed when a predetermined performance threshold is
reached, and the generative network has learnt to create synthetic
data that the discriminator classifies as true data. GANs were orig-
inally proposed as a generative model in unsupervised learning,
but they are now used in supervised, semisupervised learning,
and also in reinforcement learning (see below). Recently [73] used
GANs to detect biologically relevant alternate expression patterns
between samples from human healthy and kidney tumor samples;
further recent examples include [75,75].
5. Reinforcement learning

Besides supervised and unsupervised methods there is a third
type of ML methods called Reinforcement Learning (RL). RL is a
general machine learning model where, although there is human
supervision, this is limited to the definition and the perturbation
of a system environment and to the definition of a system of
rewards and penalties. The final purpose of RL is to push the
machine to solve a problem by itself or to perform a task in an
expected way. Interesting applications of RL are reported in Imani
et al. and Sirin et al. [77,77] in which a RL algorithm is designed to
control gene regulatory networks using observed gene expression
data.
6. Feature selection

Feature selection is a procedure that selects a subset of relevant
and informative features to be used in a model. The central pre-
mise of feature selection is that the data contain some features that
are either redundant or irrelevant, and that can thus be removed
without incurring much loss of information [78]. Redundant and
irrelevant are two distinct notions, as a relevant feature may be
redundant if another relevant feature is present that is strongly
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correlated with it [79]. There can be several disadvantages in deal-
ing with large feature sets such as computational burden, as the
algorithm may require too many resources, or decrease in accu-
racy, as many ML algorithms perform poorly when the number
of features is significantly higher than an optimal number or they
are prone to overfitting [80]. In general feature selection methods
include two different techniques: (i) feature subset selection, in
which a subset of features is selected that result into better perfor-
mance of the model; (ii) feature ranking, that provides a measure
of the relative importance of each feature for the model.

In this work we describe three methods that differ in how they
evaluate the importance of each feature in the subset: Filter, Wrap-
per and Embedded techniques.

6.1. Filter methods

Filter methods use a proxy measure, chosen to be fast to com-
pute, to evaluate the usefulness of the feature set. They return a
feature set which is not tuned to a specific type of predictive model
and are usually less computationally intensive and robust to over-
fitting than the other algorithms [81]. Many filter techniques pro-
vide a feature ranking rather than an explicit best feature subset,
and can also be used as a preprocessing step for wrapper methods.
An example of filter method is based on Pearson’s correlation.
Given two sets of observed features a ¼ a1; . . . aN and
b ¼ b1; . . . ; bN this statistic measure estimates the linear correlation
between features a and b and is defined as:

rða; bÞ ¼

XN
i¼1

ðai � �aÞ
XN
i¼1

ðbi � �bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðai � �aÞ2
XN
i¼1

ðbi � �bÞ2
vuut

ð4Þ

where �a and �b are the mean of a and b respectively. The coefficient r
has a value between þ1 and �1, where 1 is total positive linear cor-
relation, 0 is no linear correlation, and �1 is total negative linear
correlation.

6.2. Wrapper methods

Wrapper methods use a predictive model to score each feature
subset used to train a model, which is tested on a control set. These
methods present some criticalities: they are computationally
intensive and they tend to overfit when the number of observa-
tions is insufficient, but usually they provide the best performing
feature set for the particular predictive model used. Stepwise
regression/classification is a wrapper method in which the choice
of predictive variables is carried out by an automatic procedure.
In this procedure, at each step, a variable is considered for addition
to or subtraction from the set of explanatory features by means of
some specified evaluation criterion. The final goal is to achieve a
balance between simplicity and fit. Stepwise procedures can have
three different approaches:

� Forward Selection, which starts with no variables in the model,
evaluates the addition of each feature using a chosen criterion,
adds the feature whose inclusion gives the most statistically
significant improvement of the fit, and repeats this process until
there is no statistically significant improvement;

� Backward Elimination, which starts with all candidate features,
evaluates the deletion of each variable using a chosen criterion,
deletes the variable whose loss gives the less statistically signif-
icant deterioration of the model fit, and repeats this process
until no further variables can be deleted at a prespecified signif-
icance threshold;



Table 5
Summary table of regression performance measures of the three implemented
learning models. Pearson’s correlation, RMSE and MAE are reported with the
respective standard deviations.

Learning models Correlation RMSE (years) MAE (years)

Random Forest 0:808� 0:003 8:79� 0:03 6:78� 0:03
MLP 0:694� 0:016 10:28� 0:29 7:45� 0:19
Linear Model 0:682� 0:004 9:29� 0:05 7:32� 0:03

A. Monaco, E. Pantaleo, N. Amoroso et al. Computational and Structural Biotechnology Journal 19 (2021) 4345–4359
� Bidirectional elimination (or Stepwise Selection) is a combina-
tion of the forward selection and backward elimination
techniques.

A wrapper method is implemented in the Boruta package [82]
on a Random Forest model (Boruta is a god of the forest in the Sla-
vic mythology). In Boruta, RF trees are independently grown on dif-
ferent bagging samples of the training set. Feature importance is
computed through the loss of classification accuracy caused by
random permutation of the variables.

6.3. Embedded methods

Embedded methods try to combine advantages of both Filter
and Wrapper methods, but unlike these they do not separate the
learning process from the feature selection process [83]. LASSO,
for instance, is an embedded feature selection method (embedded
in the regression problem).

7. Use case: age and biological sex prediction by human RNAseq
data

To prove the power of ML methods, here we report a real exam-
ple in which we show how gene expression data from RNAseq
experiments can be used to predict biological sex and age of
unknown donor samples. Our example is based on public gene
expression data from the GTEx project, an international effort
whose goal is to provide a comprehensive overview of gene expres-
sion and regulation in human tissues [19]. GTEx comprises more
than 9000 RNAseq experiments from 54 non-diseased tissue sites
across nearly 1000 individuals. From the whole dataset, freely
available at https://www.gtexportal.org/home/datasets, we
downloaded a subset including gene expression values for 2219
RNAseq experiments from 30 different tissues.

Our initial dataset consisted of 56202 gene expression values
(according to Gencode v19 annotations), the features of our mod-
els, calculated for each human tissue. We aimed to investigate
the relationship between gene expression and metadata such as
biological sex (a binary outcome) and age (a continuous outcome)
by means of machine learning approaches. Since the number of
input features was much higher than the number of experiments
(2219), we performed feature selection to maximize prediction
performances by retaining the most informative genes. First, we
removed 814 features which had null standard deviation. Then,
we compared the performance of three different state-of-the-art
ML algorithms, namely RF, MLP, and the linear model. The RF
was grown with n ¼ 300 trees and m ¼ M=3, with M being the
number of features and m the number of features sampled to grow
each leaf within a tree. The MLP model was designed to have two
hidden layers with 50 and 10 neurons, respectively, and a sigmoid
activation function. The reliability of the models was estimated by
a 5-fold CV procedure repeated 100 times.

7.1. Biological sex classification

For biological sex classification we filtered out features contain-
ing redundant information using a filter based on Pearson’s corre-
lation (defined in (4)). In particular, we excluded a feature if its
correlation with another feature was greater than 0:8 (correlations
in the range from 0:8 to 1 are generally high). Also, we removed
genes belonging to the Y chromosome. After these pre-processing
steps we were left with 3127 features (genes) for downstream
analyses. The remaining features were further filtered through
two wrapper methods, the Boruta algorithm and the Stepwise
Regression procedure based on the linear model yielding a subset
of 21 informative features. In Table 1 we report the classification
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accuracy of the three tested models obtained through a 5-fold CV
procedure. Although all models displayed an accuracy higher than
90% and no significant difference among tested methodologies
were detected by the Kruskal–Wallis test [84], the RF and MLP
appeared to be the most effective models, predicting biological
sex with an accuracy higher than 97%.
7.2. Age regression

For age regression, we performed feature selection using the
Boruta algorithm in two steps, followed by Stepwise Regression.
First, we divided the set of 55388 features into 28 subsets with
about 1978 features (’ 55388=28) and selected important features
in each subset using the Boruta algorithm (thus obtaining 28 sets
of important features). Second, we applied the Boruta to the union
of these features subsets, which left us with a total of 184 impor-
tant features. Then we performed Stepwise Regression to obtain
99 relevant genes which we used in model construction. The per-
formance of RF, MLP and the linear model using these features
are summarized in Table 5 and show that all tested learning meth-
ods give robust age predictions with minimal differences. Nonethe-
less, the RF model appeared to be the most accurate, predicting the
age with MAE and RMSE errors of 6:78� 0:03 years and
8:79� 0:03 years, respectively. In addition, using MAE error values,
the difference between the best performing algorithm and the
worst one was just 0:67 years, corresponding to a relative uncer-
tainty of about 10%, a result proving the reliability and robustness
of tested ML methods.

More figures representing results of age and biological sex pre-
diction are available in the supplementary materials.
8. Summary and outlook

‘‘Omic” sciences based on HTS methodologies are revolutionis-
ing the genomics world. HTS have enabled the production of huge
amounts of data and their analysis requires novel bioinformatics
and computational algorithms. In this context, machine learning
and deep learning methods are emerging as indispensable tools
for interpreting heterogeneous HTS data in a variety of genomic
applications. Here we have provided an overview of the state of
the art ML and DL methods for handling genomic data. Through
a real life example we have shown the power of ML in predicting
biological sex and age from a large dataset of gene expression val-
ues. However, the appropriate MLmethod for investigating a speci-
fic genomic task depends on the characteristics of the input data as
well as on the biological question. In Table 6, we provide a sum-
mary of major advantages and disadvantages of the main ML
methods described in this review, hoping that they can be of help
in facilitating the choice of the appropriate algorithm. We foresee
that AI technologies will accelerate novel discoveries in the area
of genomics and become the gold standard for biomarkers selec-
tion and precision medicine in which multimodal data are
prominent.

https://www.gtexportal.org/home/datasets


Table 6
Major advantages and disadvantages of main learning models described in this work.

Learning Method Pros Cons

Naive Bayes It is simple, does not suffer from outliers, can deal with missing data, is
recommended when there are many features and density estimation
becomes unfeasible.

Assumes conditional independence of input variables
given the output label.

Linear Discriminant Analysis Works well on linearly discriminable data. Widely used for
Dimensionality Reduction.

Assumes that features belonging to the same class have
the same Gaussian distribution. Can be sensitive to
outliers.

Linear regression Usually the method of choice for small N and/or large M problems. Can be
easily regularized with straightforward procedures.

Assumes linearity between features and output
variables.

Logistic regression and softmax
regression

Widely used in classification problems for its simplicity as a generalized
linear model. Can be easily regularized with straightforward procedures.
More robust to outliers compared to LDA.

Works well on linear problem. Its extension to non
linear problems is computationally expensive and SVM
is generally preferred.

Support Vector Machine Works well on linear and nonlinear (Gaussian Kernel function) problems. Not appropriate for large datasets where the number of
features exceed the number of observations.

Perceptron learning and ANN Can solve complex problems. Difficult to tune due to the large number of parameters
and of possible architectures.

Random Forest Easy to tune. Robust to overfitting. Can provide an estimate of the
importance of each feature in the model.

Can be slow as computation time increases linearly with
the number of trees (inadequate for some real-time
applications).

Deep Neural Networks Able to solve complex problems. Difficult to tune due to the large number of
parameters/possible architectures.
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