6,057 research outputs found

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    Implementation of Design Rules for Perception Into a Tool for Three-Dimensional Shape Generation Using a Shape Grammar and a Parametric Model

    Get PDF
    The user experience of a product is recognized as having an increasing importance in particular in consumer products. Current approaches to designing user experiences are not easily translated to languages that a computer can understand. This paper examines a particular aspect of user experience, namely perception of the aesthetics of a product, to formalize this to rules, which are embedded into a tool to generate design. Investigating the perception of consumers is key to designing for their aesthetic preferences. Previous research has shown that consumers and designers often perceive the same products differently. This paper aims to embed rules on perception into a tool to support designers during design synthesis. Aesthetic design rules connecting perceptions with aesthetic features were integrated into a set grammar and a parametric modeling tool, and applied to the particular case of vases. The generated tool targeted the creation of vases with the perception of beautiful, elegant, and exciting. Results show that it is possible to generate beautiful, elegant, and exciting vases following the three aesthetic design rules, i.e., tall, simple, and curvy. The main contribution of this paper is the method used to incorporate information on perception into the set grammar and the parametric model. The tool is additionally proposed for supporting designers during design synthesis of shapes. The results are valid for vases but the method can be applied to other perceptions and product categories

    Adaptive Non-singleton Type-2 Fuzzy Logic Systems: A Way Forward for Handling Numerical Uncertainties in Real World Applications

    Get PDF
    Real world environments are characterized by high levels of linguistic and numerical uncertainties. A Fuzzy Logic System (FLS) is recognized as an adequate methodology to handle the uncertainties and imprecision available in real world environments and applications. Since the invention of fuzzy logic, it has been applied with great success to numerous real world applications such as washing machines, food processors, battery chargers, electrical vehicles, and several other domestic and industrial appliances. The first generation of FLSs were type-1 FLSs in which type-1 fuzzy sets were employed. Later, it was found that using type-2 FLSs can enable the handling of higher levels of uncertainties. Recent works have shown that interval type-2 FLSs can outperform type-1 FLSs in the applications which encompass high uncertainty levels. However, the majority of interval type-2 FLSs handle the linguistic and input numerical uncertainties using singleton interval type-2 FLSs that mix the numerical and linguistic uncertainties to be handled only by the linguistic labels type-2 fuzzy sets. This ignores the fact that if input numerical uncertainties were present, they should affect the incoming inputs to the FLS. Even in the papers that employed non-singleton type-2 FLSs, the input signals were assumed to have a predefined shape (mostly Gaussian or triangular) which might not reflect the real uncertainty distribution which can vary with the associated measurement. In this paper, we will present a new approach which is based on an adaptive non-singleton interval type-2 FLS where the numerical uncertainties will be modeled and handled by non-singleton type-2 fuzzy inputs and the linguistic uncertainties will be handled by interval type-2 fuzzy sets to represent the antecedents’ linguistic labels. The non-singleton type-2 fuzzy inputs are dynamic and they are automatically generated from data and they do not assume a specific shape about the distribution associated with the given sensor. We will present several real world experiments using a real world robot which will show how the proposed type-2 non-singleton type-2 FLS will produce a superior performance to its singleton type-1 and type-2 counterparts when encountering high levels of uncertainties.</jats:p

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Using direct manipulation for real-time structural design exploration

    Get PDF
    Before a new structure can be built, it must be designed. This design phase is a very important step in the building process. The total cost of the structure and its structural performance are largely dependent on the structural design process. The impact of decisions on the design process is initially high and declines as the design matures. However, few computational tools are available for the conceptual design phase; thus, an opportunity exists to create such tools. In the conventional workflow, the architect uses geometric modeling tools and the engineer uses structural analysis tools in sequential steps. Parametric modeling tools represent an improvement to this workflow, as structural analysis plug-ins are available. This allows the architect or engineer to receive structural feedback at an earlier stage, but still as a sequential step to the geometric modeling. The present work aims to improve this workflow by integrating structural feedback with geometric modeling.The user interfaces of conceptual design tools should be interactive and agile enough to follow the designer’s iterative workflow. Direct manipulation involves human-computer interaction, which enables an interactive user interface. In this user interface style, users can directly manipulate on-screen objects using real-world metaphors, which engages the users with their task and encourages further explorations. This is achieved by reducing the perceptual and cognitive resources required to understand and use the interface. New technologies have opened up the possibility of creating new design tools that make use of very direct manipulation. This possibility is further explored in this thesis through the development of two such applications. The first application makes use of multi-touch tablets. The multi-touch interface has literally closed the gap between humans and computers, enabling very direct manipulation interactions with two-dimensional user interfaces. The developed application is an interactive conceptual design tool with real-time structural feedback that allows the user to quickly input and modify structural models through the use of gestures. The second application extends these concepts and ideas into a three-dimensional user interface using an input device named the Leap Motion Controller
    • …
    corecore