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ABSTRACT 

When designers create new forms they integrate both quantitative objective elements and 

qualitative subjective elements. However, users will generally react to these forms without 

knowing the intended Kansei integrated into them by the designer. Human beings are doted with 

a complex brain structure and it is argued that human attributes originate from three different 

levels of the brain: the visceral level; the behavioral level and the reflective level. This paper 

focuses upon the visceral level of reaction by automatically building a link between geometric 

properties of non-functional 3D shapes and their perception by observers. The link between 

geometry and human perception is created using a genetic learning algorithm combined with a 

fuzzy logic decision support system. Human evaluations of the non-functional 3D shapes 

against two contrary perception adjectives (massive versus lightweight) are used as the learning 

data set. The non-functional 3D shapes were designed by engineering design students from the 

Technical University of Denmark who were asked to design non-functional 3D shapes evoking 

either the adjective massive or light. Eight fuzzy models were developed: three (3) models 

constructed manually by the author and five (5) genetically generated. The fuzzy models were 

constructed using different sets of inputs of quantitative geometric properties. Combination of 

the different inputs resulted in different sets of fuzzy rules that can eventually be used as design 

guidelines for designers. The results obtained and presented in this paper are very promising. 

Correlations as high as 99% between fuzzy and human perception were obtained along with 

errors as low as 0.14 on a scale ranging from -3 to 3. 

 

Keywords: Aesthetics, fuzzy logic, design characteristics, genetic algorithms, automatic 

learning 

1. INTRODUCTION 

Designers can integrate quantitative objective elements such as functionality, 

manufacturability, weight, and other technical properties into their product more easily than 



 

subjective qualitative elements. Furthermore, functionality and usability seem no longer 

sufficient in a product’s success [1] and subjective responses to the product by the customer 

greatly influence its success [2]. It is now well accepted that aesthetics are a contributing but 

subjective factor in determining the success of a product, and designers should include 

characteristics that are visceral or engage the senses [3]. Additionally, according to [4], 

observers (humans) are doted with a complex brain structure and a variable preference 

mechanism, some wired at birth and some developed through life experience. Andrew Ortony et 

al. suggest that these human attributes are generated from three different levels of the brain: the 

visceral level (the automatic, prewired layer), the behavioral level (the part that contains the 

brain processes that control everyday behavior) and the reflective level (the contemplative part 

of the brain) [5-6].  

It was reported that designers are not always successful in conveying the desired message 

through aesthetical form. This highlights the difficulty for users/designers to link emotions 

through words to design characteristics [7]. To achieve this link several studies aimed at 

identifying relations between the characteristics of a product’s shape and its emotional 

message/perception have been carried out. A study based upon perceptual psychology 

(perception of “safety”, “friendliness” of a machine/car) was proposed in [8-9]. Design and 

computer science approaches are employed in [10-13]. However, in these experiments no 

systematic and precise specification of a correspondence between product elements and 

emotional terms was provided. In [14], a study using Kansei engineering and neural networks to 

cluster objects that have a similar perception among users by focusing on color was carried out. 

Fuzzy Logic was used for validation of aesthetics sensitivity in automatic generation of roof 

geometries [15] and to evaluate building aesthetics based on specific features [16], however 

they did not link general geometric properties to an emotional context. This paper focuses on 

the visceral level of reaction by building a link between the geometric properties of non-

functional 3D shapes and the perception of these shapes by users/observers on a visceral level. 

The research objectives and methodology are discussed in detail in the following sections. 

2. RESEARCH OBJECTIVES 

The aim of the research presented here is to propose computer models that designers can use 

to assess the perception of their product design from a shape perspective. This will be first done 

through identification of the characteristics of a form that can be used to evoke a specific 

perception in users. Another objective of the research also aims to understand the influence of 

these characteristics and their co-influences in regards to perception. These characteristics are 

used as inputs variables to fuzzy knowledge bases (FKBs) that can be used to evaluate the 

ability of the forms to evoke a particular perception. The research presented here can be 

considered an extension of a previous study where 3 manual multiple input / single output FKBs 

were developed [17-18]. Both manually and genetically generated FKBs are developed and their 

efficiency in reproducing human perception is evaluated. The manually constructed models 

assess one input variable at a time while those genetically generated assess a combination of 

input variables along with the fuzzy rules that map the relationships between the input variables 

and the targeted perception. 

The methodology used is based on the analogy of communication presented in [11], 

combined with a design and computer science approach in order to create the link between the 

space of design variables and the space of aesthetic characteristics. A 6-step methodology has 



 

 

been employed: 1) students created forms (using foam) which represent a particular set of 

perception, students were allowed to use color, 2) CAD models equivalent to the foam form 

models were created and colored gray, 3) geometric properties were identified and used as input 

premises to the FKBs, 4) for each single characteristic the FKB was manually constructed; 5) 

genetically generated FKBs (rule base and data base) were created using all combinations of the 

identified geometric characteristics; 6) an evaluation was conducted with users to serve as the 

comparison to the fuzzy predictions. The human perception of the forms was used as a learning 

set to automatically generate FKB equivalents. In this paper, evaluation of the models was 

conducted on a pair of contrary adjectives namely: massive and light. A group of users were 

shown different shapes designed to appear either massive or light and were asked to rate the 

massiveness or lightness of each of the shapes. The users did not know which shape was 

supposed to be massive or light. 

3. CREATING OBJECTS USING TERMS AS CONSTRAINTS 

 In this research, 3D objects were created to describe given emotions by 60 engineering 

design students working individually. Each student was presented with a set of adjectives 

describing a certain perception/emotion. The students’ task was to create a shape that best 

represented the given emotions. The terms given were massive and static; light and friendly; 

dynamic and integrated and; aggressive and edgy. Only massive and light are considered in this 

paper. The students were provided with cubes of foam (200mm x 200mm x 200mm), and 

provided with one of the four sets of adjectives. Hence around 12-15 models representing each 

set of terms were produced. The students were free to use color on their forms, however in this 

paper 3D CAD grayscale equivalents of the shapes are used, since FKBs, described in the 

following sections, consider the form but not the color. Six of the 3D objects created to express 

massiveness were selected, together with five expressing lightness. Figure 1 shows the different 

shapes selected. Shapes 3-7 were shapes that were designed to be light with the remainder 

designed as massive. 

 

Figure 1: 3D non functional shapes considered for the study 

3.1. Mapping shape Parameters and Aesthetic Characteristics 

In this section, mapping of shape parameters to the aesthetic characteristics of the objects is 

described. The parameters linked to Massive/Light are: Volume/Surface ratio (VSR); Centre of 

gravity ratio (CGR) and Height/Width ratio (HWR). These parameters were defined as a result 

of a visual analysis of the 3D objects. 



 

3.2. Universe of discourse of the input premises 

Geometric parameters form the basis of the inputs of FKBs and are described as follows: 

1 Volume/Surface Ratio (VSR): in order to get a non-dimensional normalised value, the VSR 

of the shapes was compared to the maximum VSR the design students worked with; i.e. the 

200x200x200mm cube. The cube’s VSR is given by L/6 (L being the length of one side of 

the cube); hence the VSR is given by: 

100
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×
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VSR
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        (2) 

2 Centre of Gravity Ratio (CGR): the centre of gravity is given by the z coordinate of the 

centre of gravity of the shapes, in the direction that it was presented during the evaluation. In 

order to have a normalised ratio the z coordinate was compared to the maximum possible 

value (V); hence the CGR is given by: 
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V
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3 Height/Width Ratio (HWR):  HWR is obtained by dividing the maximum height of the shape 

by the maximum width in the direction it was presented to the evaluators, as in Figure 1. 

However to put this ratio in FKB, one has to normalise the premise (0 to 100%), and in order 

to achieve this one can use the analogy of scanning a photograph where a height/width ratio 

of 1.5 is considered tall. This means that each of the shapes’ HWR is measured against 1.5, 

and if higher it is equalled to 1.5; hence, HWR will be evaluated as follows: 
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Table 1 summarizes the obtained results for VSR, CGR and HWR per shapes. 

4. HUMAN PERCEPTION 

The human perception of the Lightness/Massiveness of the 11 shapes was carried out by a 

group of 20 people. To minimize differences due to different perceptions amongst different user 

groups, the participants selected for the evaluation all had an engineering or industrial design 

background, either as undergraduate or graduate students, or working in product development. 

A group of 20 students (PhDs and Masters) and professional designers, without knowledge of 

the purpose of the study, evaluated each shape. The group consisted of 3 females and 17 males 

aged between 24 and 66. Each object was illustrated with the minimum number of views from 

the CAD models in order to illustrate the shape, i.e. between 2 and 4 views, depending on the 

level of symmetry.  In order to exclude the influence of colors, textures, etc. on the emotional 

perception of an object and to keep the focus on the link between geometry and perception, the 

illustrations were all in grayscale. The participants evaluated the eleven shapes using semantic 

scales ranging from Very Light to Very Massive. A very light shape would be rated as -3, a very 

massive shape as 3, and a rating of 0 was given for a shape which was perceived as neutral. The 

order in which the shapes were presented to the participants was randomized to minimize any 

influence of the ordering of the shapes.  



 

 

Table 1: Shape Characteristics & Evaluations of the users 

Shape Geometric Characteristics Human Rating: V. Light to V. Massive  

 VSR [%] CGR [%] HWR [%] HWR [%] HWR [%] 

1 41.12 50.01 45.98 1.65 0,54 

2 31.40 17.05 48.00 0.85 1,53 

3 02.87 01.08 53.85 -2.25 0,79 

4 14.58 50.00 55.55 -1.40 0,94 

5 31.42 17.71 44.44 1.20 1,06 

6 62.83 02.50 09.88 0.50 1,39 

7 50.94 38.95 66.67 0.00 1,17 

8 93.66 50.00 78.79 2.68 0,58 

9 41.44 50.79 49.38 2.00 0,92 

10 59.50 25.00 41.27 1.79 0,79 

11 53.61 25.01 38.89 

 

1.10 1,07 

 

The average response from the 20 participants was calculated and used both for learning of 

the FKBs and as the gold standard to compare to the fuzzy logic model; standard deviations 

were also calculated for each of the shapes (Table 1 left). It is important to notice that the 

human evaluators agreed in most cases with the designers’ intentions in regards to massive/light 

perception, apart from shape 7 that was rated neutral instead of light. 

5. CONSTRUCTION OF THE FUZZY KNOWLEDGE BASES 

FKB is composed of a data base and a rule base. In this paper the constructed FKBs are of the 

SISO (single inputs/single output) and MISO (multiple inputs/single output) types. SISO FKBs 

take as inputs the geometric variable VSR, HWR and CGR individually while MISOs are 

genetically generated and consider all possible combinations of the geometric variables. Eight 

(8) different FKBs are developed in this paper, with the following sets of input variables:  

1. Manually (SISO): a) VSR, b) CGR and c) HWR 

2. Automatically using a genetic algorithm (MISO): a) VSR, CGR and HWR (2 different 

FKBs), b) VSR and CGR, c) VSR and HWR and d) CGR and HWR. 

The goal of using these combinations is to find the near-optimal FKB that matches human 

perception. Furthermore, if more than one FKB is accurate in reproducing the human 

perception, it will give the designers alternatives concerning which parameters to control in 

order to alter and/or assess the perception of their models.  

5.1. Manual construction of the FKBs 

Manual construction of the FKBs was carried out by first defining the databases and then 
defining the rule bases as described bellow. 
5.1.1. Defining the database 

The database is composed of the inputs/outputs of the FKB. The manually constructed FKBs 

use one input and they are similar where each of the inputs has five membership functions 

distributed evenly; the semantics linked to each input are as follows: 

• VSR: Very Hollow, Hollow, Average, Dense and Very Dense 

• HWR: Very Fat, Fat, Average, Slim (Tall) and Very Slim (Very Tall) 

• CGR: Very Low, Low, Average, High and Very High 

The three FKBs share the same output premise with five membership functions ranging from 

Very Light to Very Massive. Figure 2 illustrates the three manually constructed FKBs. 



 

5.1.2. Defining the rule base 

The rule base is manually defined to map the relationships between the membership functions 

on the input premises and the membership functions on the output premise. The rule base 

contains 5 ‘If Then’ rules. It is believed by the author that a Very Hollow, Very Slim or Very 

High shapes will be perceived as Very Light while a Very Dense, Very Fat or Very Low shape 

will be perceived as Very Massive, the rest of the rules fill-in the middle values. 

 

Figure 2: VSR, CGR and HWR SISO FKBs (the data bases) 

5.2. Automatic generation of the FKBs 

Automatic generation of FKBs was performed using a specialized genetic algorithm (GA) 

named Real/Binary Like Coded GA (RBCGA). Each individual of a population is a potential 

FKB, where four basic operations of RBCGA learning are performed; reproduction, mutation, 

evaluation and natural selection. RBCGA developed by the author combines a real coded and a 

binary coded GA. The reproduction mechanisms are a multi-crossover defined in [21] and a 

uniform mutation [22]. 

5.2.1. Performance Criterion of the RBCGA 

In this paper, the performance criterion is the accuracy level of a FKB (approximation error) 

in reproducing the outputs of the learning data (belonging to the design context). The 

approximation error is a combination between the ∆RMS, measured using the RMS error method 

and the absolute error ∆ABS. The next two equations detail these errors. 
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While the absolute error is measured as follows: 
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where N represents the size of the learning data. The fitness value φ is evaluated as a percentage 

of the output length of the conclusion l, i.e. 

100
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1 ABSRMS ×
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5.2.2. Genetic Generation of the Database and the Rule Base 

To generate the FKBs using the RBCGA one has to set up the maximal complexity allowed, 

the multi-crossover probability and the mutation probability. In this paper the maximal 

complexity is 6 fuzzy sets per input premise and 16 fuzzy sets on the output; with these numbers 

the RBCGA can select from several tradeoffs. The reproduction probabilities are set to: 90% 

multi-crossover, 10% simplification rate and 5% mutation, more details on these mechanisms 

are given in [21]. This simplification is used in order to put emphasis on generalization of the 

fuzzy model since the learning starts with a possible 63 (216) or 62 (36) possible rules. The 



 

 

population size is set to 200 and the number of generations to 200. Each run was repeated three 

times to ensure robustness of the learning process. At the end of the learning the best individual 

was selected according to the highest φ. The selected FKBs for the 4 different combinations are 

as follows: 

a) Three Inputs: VSR, CGR and HWR (FKB_VCH) 

FKB_VCH is a 3 input / one output FKB. From the last generation of genetic learning two 

FKBs were selected; the first most accurate one (FKB_VCH1) with 3 fuzzy sets on each 

premise and 27 fuzzy ‘If Then’ rules, and the simplest one with 2 fuzzy sets on each premise 

and 8 fuzzy ‘If Then’ rules (FKB_VCH2). They respectively have 9 and 5 membership 

functions on the output. Figure 3 illustrates both FKB_VCHs. One can notice that the 

membership functions are not evenly distributed on the output premise however they do cover 

the entire range from very light to very massive. Using the center of gravity as a defuzzification 

mechanism along with the fuzzy rules enables us to get perception values between these two 

extremes. 

b) Two Inputs: VSR & CGR (FKB_VC) 

FKB_VC is a 2 input / one output FKB. Genetic learning produced a near optimal solution 

with 3 fuzzy sets on each premise and 9 fuzzy If Then rules, 5 fuzzy sets are used on the output. 

Figure 4 illustrates FKB_VC and one can notice that for CGR the average value is centered 

close to 1/3. This value corroborates the known principle of stability for triangles; a shape is 

considered stable with a center of gravity situated at 1/3 of its height; a principle used in the 

manual approach presented in [18]. 

  

Figure 3: FKB_VCH1 & FKB_VCH2 

c) Two Inputs: VSR & HWR (FKB_VH): FKB_VH is a two input / one output FKB. 

Genetic learning produced a near optimal solution with 3 fuzzy sets on each premise 

and 9 fuzzy If Then rules, 5 fuzzy sets are used on the output. Figure 5 illustrates 

FKB_VH, and one can notice the similarity to FKB_VC (slightly different in the 

distribution of the membership function on the output premise). One could conclude 

that in the context of this paper the combination VSR/CGR and VSR/HWR influence 

similarly the perception of mass in non-functional 3D shapes. 

d) Two Inputs: HWR & CGR (FKB_HC): FKB_HC is a two input / one output FKB. 

Genetic learning produced a near optimal solution with 4 fuzzy sets on each premise 



 

and 16 fuzzy If Then rules, 8 fuzzy sets are used on the output. Figure 6 illustrates 

FKB_HC. 

   
Figure 4: FKB_VC Figure 5: FKB_VH Figure 6: FKB_HC 

6. VALIDATION OF THE FKBS 

The FKBs were evaluated using the 11 different shapes (6 massive + 5 light designs). Ideally, 

low scores for the light designs and high ones for the massive designs were expected if the 

FKBs were to correlate successfully to the users’ perception. The VSR, HWR and CGR values 

summarized in Table 1 are submitted, as an observation file, to the 8 FKBs developed above. 

The outputs of the fuzzy models will assess the predicted level of massiveness/lightness of the 

shapes. Table 2 summarizes the fuzzy prediction of the 8 FKBs proposed in this paper versus 

the (human) perception of the shapes, while Table 3 reports the correlation values along with the 

error profiles of the fuzzy predictions versus human perception.  

Table 2: Evaluation of the users vs. fuzzy predictions 

SISO FKBs (Manual) MISO FKBs (Automatic Generation) Perception 
HWR VSR CGR FKB_VCH1 FKB_VCH2 FKB_VC FKB_VH FKB_HC 

1.65 0.24 -0.53 -0.00 1.70 1.03 1.73 1.75 1.47 

0.85 0.12 -1.12 1.98 0.97 -0.11 1.06 0.81 1.12 

-2.25 -0.23 -2.83 2.93 -2.25 -1.80 -2.50 -2.32 -2.25 

-1.40 -0.33 -2.12 0.00 -1.35 -0.53 -0.97 -1.31 -1.31 

1.20 0.33 -1.11 1.94 1.00 0.03 1.05 0.87 1.21 

0.50 2.41 0.77 2.85 0.54 0.49 0.81 0.47 0.43 

0.00 -1.00 0.06 0.66 0.01 0.37 0.46 -0.05 0.07 

2.68 -1.73 2.62 0.00 2.75 2.42 2.70 2.68 2.66 

2.00 0.08 -0.51 -0.05 1.80 0.88 1.89 1.75 1.75 

1.79 0.52 0.57 1.50 1.57 1.16 0.98 1.53 1.56 

1.10 0.67 0.22 1.50 1.30 1.04 0.98 1.55 1.47 

Table 3: Correlation & Error Profiles of the Fuzzy Predictions 

 SISO FKBs (Manual) MISO FKBs (Automatic Generation) 
FKBs HWR VSR CGR VCH1 VCH2 VC VH HC 
Correlation -0.04 0.77 -0.40 0.99 0.90 0.97 0.99 0.99 

Max ABS Error  4.41 2.51 5.18 0.21 1.17 0.81 0.45 0.37 

Min ABS Error  0.43 0.06 0.29 0.00 0.01 0.01 0.00 0.00 

RMS Error 1.86 1.46 2.15 0.13 0.71 0.35 0.21 0.18 

Mean ABS Error 1.55 1.16 1.68 0.10 0.59 0.27 0.15 0.14 

Average Error 1.71 1.31 1.92 0.12 0.65 0.31 0.18 0.16 

 

From Table 3 one can see that CGR and HWR are not good indicatives of the perception of 

massive/light, since the correlation is low and the average error is the highest of the 8 FKBs. 



 

 

VSR as a sole indicator predicted the perception with a 77% correlation, however because of the 

high error (1.31) one can see in Figure 7 that 5 out of 11 shapes where predicted outside one 

standard deviation from the human perception. From these results, one can conclude that it is 

difficult to predict the perception of massiveness using only one of the geometric properties 

identified in this paper namely: HWR, VSR, CGR, however of these three; VSR has the highest 

influence on the perception if used individually. 

When combining VSR, HWR and CGR to create MIMO FKBs, one can easily see from 

Table 3 that the error levels went down drastically with the highest value for the average error at 

0.65 while the lowest correlation is 90%, both obtained by FKB_VCH2. FKB_VCH1 performed 

best when considering both the correlation level and error profiles; it takes into account all three 

identified physical properties as inputs (VSR, CGR and HWR) and uses 27 fuzzy rules. From a 

practical point of view and in the perspective of using the fuzzy rules as design guidelines by a 

human designer, 27 fuzzy rules might be too many. The alternative, while still using the three 

inputs, is FKB_VCH2 that uses only 8 rules. However as one can see in Figure 8, FKB_VCH2 

prediction has shape 1 and 9 outside one standard deviation from human perception. This is 

predictable for two reasons: firstly; the absolute errors are higher and secondly; using simpler 

FKBs increases generality but decreases precision [23]. 

The other possibility for reducing the complexity (number of rules) of the FKBs is to use 

fewer inputs. FKB_VC, FKB_VH and FKB_HC, use two inputs and they reproduced human 

perception with very high correlation levels ranging from 97% to 99% and low error values. As 

illustrated in Figure 9, all three FKBs satisfactorily predicted the human perception of 

massiveness; however FKB_VC and FKB_VH use 9 fuzzy rules in comparison to 16 used by 

FKB_HC. The low number of rules makes it easier for a human to understand and follow the 

rules as design guidelines. However, if one uses the FKBs as decision support models then 

FKB_VC, FKB_VH and FKB_HC are interchangeable and it depends on which parameters the 

designers prefer to alter. 
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Figure 7: Human Vs FKB_VSR prediction Figure 8: Human Perception vs. FKB_VCH1& 
FKBC_VCH2 Prediction 
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Figure 9: Human Perception vs. FKB_VH, FKBC_VC & FKBC_HC Prediction 

7. CONCLUSION 

This paper presented genetically generated fuzzy decision support models for the prediction 

of human mass perception in 3D non-functional shapes. Three physical properties were used as 

input combinations for the fuzzy logic models to evaluate the lightness/massiveness of the 

shapes. Three Single Input and Single Output fuzzy models were manually constructed as an 

attempt to model the link between mass perception and one physical property of the shapes.  

From the validation results, it was concluded that it was not feasible to properly predict mass 

perception using only one of; VSR, CGR or HWR individually. However out of these three 

parameters, the volume surface ratio (VSR) has the most influence by its own. Combination of 

the three physical properties as inputs for the fuzzy models provided a very precise prediction of 

mass perception but with a relatively high number of fuzzy rules. Using only two inputs (3 

different combinations) proved effective for predicting mass perception. The results shown in 

this paper confirm the link between the physical characteristics of a form and how it is 

perceived by humans/users. The four genetically generated Multiple Inputs Single Output fuzzy 

models developed in this paper can assist designers in understanding how a form may be 

perceived by users and how they can change certain geometric ratios to change the perception 

induced by their product. Additionally, they can alter or evaluate the perception of massiveness 

of their designed shapes by influencing a combination of several physical properties at the same 

time. They can choose to either work with: (VSR, HWR and CGR), (VSR and CGR), (VSR and 

HWR) or finally (HWR and CGR). However in order to make the fuzzy models even more 

robust, more shapes would be needed for learning. Hence, future sets may be supplemented 

through shapes deliberately created. Ideally a first sub-set should be used for learning a second 

subset for cross-validation, while the last should be used for validation which was not done here 

because only 11 models were available. 
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