15,476 research outputs found

    Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution

    Full text link
    [EN] In this paper, we propose a benchmark problem for the challengers aiming to energy efficiency control of hybrid electric vehicles (HEVs) on a road with slope. Moreover, it is assumed that the targeted HEVs are in the connected environment with the obtainment of real-time information of vehicle-to-everything (V2X), including geographic information, vehicle-to-infrastructure (V2I) information and vehicle-to-vehicle (V2V) information. The provided simulator consists of an industrial-level HEV model and a traffic scenario database obtained through a commercial traffic simulator, where the running route is generated based on real-world data with slope and intersection position. The benchmark problem to be solved is the HEVs powertrain control using traffic information to fulfill fuel economy improvement while satisfying the constraints of driving safety and travel time. To show the HEV powertrain characteristics, a case study is given with the speed planning and energy management strategy.Xu, F.; Tsunogawa, H.; Kako, J.; Hu, X.; Eben Li, S.; Shen, T.; Eriksson, L.... (2022). Real-time energy optimization of HEVs under-connected environment: a benchmark problem and receding horizon-based solution. Control Theory and Technology. 20:145-160. https://doi.org/10.1007/s11768-022-00086-y14516020Zhou, Q., Zhao, D., Shuai, B., Li, Y., Williams, H., & Xu, H. (2021). Knowledge implementation and transfer with an adaptive learning network for real-time power management of the plug-in hybrid vehicle. IEEE Transactions on Neural Networks and Learning Systems, 32(12), 5298–5308. https://doi.org/10.1109/TNNLS.2021.3093429Xu, F., & Shen, T. (2021). Decentralized optimal merging control with optimization of energy consumption for connected hybrid electric vehicles. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2021.3054903Zhuang, W., Li, S., Zhang, X., et al. (2020). A survey of powertrain configuration studies on hybrid electric vehicles. Applied Energy, 262, 114553.Wang, S., Chen, K., Zhao, F., & Hao, H. (2019). Technology pathways for complying with corporate average fuel consumption regulations up to 2030: A case study of China. Applied Energy, 241, 257–277.Zhang, J., Shen, T., & Kako, J. (2020). Short-term optimal energy management of power-split hybrid electric vehicles under velocity tracking control. IEEE Transactions on Vehicular Technology, 69(1), 182–193.Asaei, B. (2010). A fuzzy-genetic algorithm approach for finding a new HEV control strategy idea. 1st Power Electronic and Drive Systems and Technologies Conference, pp. 224 – 229. Tehran, Iran.Wu, J., Zhang, C. H., & Cui, N. X. (2008). PSO algorithm-based parameter optimization for HEV powertrain and its control strategy. International Journal of Automotive Technology, 9(1), 53–59.Lin, C. C., Peng, H., Grizzle, J. W., & Kang, J.-M. (2003). Power management strategy for a parallel hybrid electric truck. IEEE Transactions on Control Systems Technology, 11(6), 839–849.Luján, J. M., Guardiola, C., Pla, B., & Reig, A. (2018). Analytical optimal solution to the energy management problem in series hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 67(8): 6803 – 6813.Larsson, V., Johannesson, L., & Egardt, B. (2014). Analytic solutions to the dynamic programming subproblem in hybrid vehicle energy management. IEEE Transactions on Vehicular Technology, 64(4), 1458–1467.Serrao, L., Onori, S., & Rizzoni, G. (2009). ECMS as a realization of Pontryagin’s minimum principle for HEV control. American Control Conference, pp. 3964-3969. St. Louis, MO, USA.Kim, N., Cha, S., & Peng, H. (2011). Optimal equivalent fuel consumption for hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 20(3), 817–825.Rezaei, A., Burl, J. B., Solouk, A., Zhou, B., et al. (2017). Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles. Applied Energy, 208, 655–665.Xie, S., Hu, X., Qi, S., & Lang, K. (2018). An artificial neural network-enhanced energy management strategy for plug-in hybrid electric vehicles. Energy, 163, 837–848.Zhang, J., & Shen, T. (2016). Real-time fuel economy optimization with nonlinear MPC for PHEVs. IEEE Transactions on Control Systems Technology, 24(6), 2167–2175.Sciarretta, A., Serrao, L., Dewangan, P. C., et al. (2014). A control benchmark on the energy management of a plug-in hybrid electric vehicle. Control Engineering Practice, 29, 287–298.Lars, E. (2019). An overview of various control benchmarks with a focus on automotive control. Control Theory and Technology, 17(2), 121–130.Moura, S. J., Fathy, H. K., Callaway, D. S., & Stein, J. L. (2010). A stochastic optimal control approach for power management in plug-in hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 19(3), 545–555.Sun, C., Hu, X., Moura, S. J., & Sun, F. (2014). Velocity predictors for predictive energy management in hybrid electric vehicles. IEEE Transactions on Control Systems Technology, 23(3), 1197–1204.Xiang, C., Ding, F., Wang, W., & He, W. (2017). Energy management of a dual-mode power-split hybrid electric vehicle based on velocity prediction and nonlinear model predictive control. Applied Energy, 189, 640–653.Sun, C., Sun, F., & He, H. (2017). Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles. Applied Energy, 185, 1644–1653.Zhang, F., Hu, X., Langari, R., & Cao, D. (2019). Energy management strategies of connected HEVs and PHEVs: Recent progress and outlook. Progress in Energy and Combustion Science, 73, 235–256.Yang, C., Zha, M., Wang, W., Liu, K., & Xiang, C. (2020). Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: Review and recent advances under intelligent transportation system. IET Intelligent Transport Systems, 14(7), 702–711. https://doi.org/10.1049/iet-its.2019.0606Zhang, J., Xu, F., Zhang, Y., & Shen, T. (2019). ELM-based driver torque demand prediction and real-time optimal energy management strategy for HEVs. Neural Computing and Applications, 32: 14411C14429.Zhang, B., Zhang, J., Xu, F., & Shen, T. (2020). Optimal control of power-split hybrid electric powertrains with minimization of energy consumption. Applied Energy, 266, 114873.Zhang, F., Xi, J., & Langari, R. (2016). Real-time energy management strategy based on velocity forecasts using V2V and V2I communications. IEEE Transactions on Intelligent Transportation Systems, 18(2), 416–430.Li, J., Zhou, Q., He, Y., et al. (2019). Dual-loop online intelligent programming for driver-oriented predict energy management of plug-in hybrid electric vehicles. Applied Energy, 253, 113617.Qi, X., Wu, G., Hao, P., Boriboonsomsin, K., & Barth, M. J. (2017). Integrated-connected eco-driving system for PHEVs with co-optimization of vehicle dynamics and powertrain operations. IEEE Transactions on Vehicular Technology, 2(1), 2–13.Uebel, S., Murgovski, N., Ba¨\ddot{\rm a}ker, B., & Sjo¨\ddot{\rm o}berg, J. (2019). A two-level mpc for energy management including velocity control of hybrid electric vehicles. IEEE Transactions on Vehicular Technology, 68(6): 5494–5505.Chen, B., Evangelou, S. A., & Lot, R. (2019). Hybrid electric vehicle two-step fuel efficiency optimization with decoupled energy management and speed control. IEEE Transactions on Vehicular Technology, 68(12), 11492–11504.Wang, S., & Lin, X. (2020). Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios. Applied Energy, 271, 115233.Zhang, J., & Xu, F. (2020). Real-time optimization of energy consumption under adaptive cruise control for connected HEVs. Control Theory and Technology, 18(2), 182–192.Fu, Q., Xu, F., Shen, T., & Takai, K. (2020). Distributed optimal energy consumption control of HEVs under MFG-based speed consensus. Control Theory and Technology, 18(2), 193–203.Chen, B., Evangelou, S. A., & Lot, R. (2019). Series hybrid electric vehicle simultaneous energy management and driving speed optimization. IEEE/ASME Transactions on Mechatronics, 24(6), 2756–2767.Hu, Q., Amini, M. R., Feng, Y., Yang, Z., Wang, H., Kolmanovsky, I., & Seeds, J. B. (2020). Engine and aftertreatment co-optimization of connected HEVs via multi-range vehicle speed planning and prediction. SAE Technical Paper, -01-0590.Xu, F., & Shen, T. (2020). Look-ahead prediction-based real-time optimal energy management for connected HEVs. IEEE Transactions on Vehicular Technology, 69(3), 2537–2551.Xu, F., & Shen, T. (2019). MPC-based optimal control for diesel engine coupled with lean NOx trap system. SICE Journal of Control, Measurement, and System Integration, 12(3), 94–101

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Multi-objective optimisation for battery electric vehicle powertrain topologies

    Get PDF
    Electric vehicles are becoming more popular in the market. To be competitive, manufacturers need to produce vehicles with a low energy consumption, a good range and an acceptable driving performance. These are dependent on the choice of components and the topology in which they are used. In a conventional gasoline vehicle, the powertrain topology is constrained to a few well-understood layouts; these typically consist of a single engine driving one axle or both axles through a multi-ratio gearbox. With electric vehicles, there is more flexibility, and the design space is relatively unexplored. In this paper, we evaluate several different topologies as follows: a traditional topology using a single electric motor driving a single axle with a fixed gear ratio; a topology using separate motors for the front axle and the rear axle, each with its own fixed gear ratio; a topology using in-wheel motors on a single axle; a four-wheel-drive topology using in-wheel motors on both axes. Multi-objective optimisation techniques are used to find the optimal component sizing for a given requirement set and to investigate the trade-offs between the energy consumption, the powertrain cost and the acceleration performance. The paper concludes with a discussion of the relative merits of the different topologies and their applicability to real-world passenger cars

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Comparison of Geometric Optimization Methods with Multiobjective Genetic Algorithms for Solving Integrated Optimal Design Problems

    Get PDF
    In this paper, system design methodologies for optimizing heterogenous power devices in electrical engineering are investigated. The concept of Integrated Optimal Design (IOD) is presented and a simplified but typical example is given. It consists in finding Pareto-optimal configurations for the motor drive of an electric vehicle. For that purpose, a geometric optimization method (i.e the Hooke and Jeeves minimization procedure) associated with an objective weighting sum and a Multiobjective Genetic Algorithm (i.e. the NSGA-II) are compared. Several performance issues are discussed such as the accuracy in the determination of Pareto-optimal configurations and the capability to well spread these solutions in the objective space
    • …
    corecore