92 research outputs found

    Determining reliable solutions for the team orienteering problem with probabilistic delays

    Get PDF
    In the team orienteering problem, a fixed fleet of vehicles departs from an origin depot towards a destination, and each vehicle has to visit nodes along its route in order to collect rewards. Typically, the maximum distance that each vehicle can cover is limited. Alternatively, there is a threshold for the maximum time a vehicle can employ before reaching its destination. Due to this driving range constraint, not all potential nodes offering rewards can be visited. Hence, the typical goal is to maximize the total reward collected without exceeding the vehicle’s capacity. The TOP can be used to model operations related to fleets of unmanned aerial vehicles, road electric vehicles with limited driving range, or ride-sharing operations in which the vehicle has to reach its destination on or before a certain deadline. However, in some realistic scenarios, travel times are better modeled as random variables, which introduce additional challenges into the problem. This paper analyzes a stochastic version of the team orienteering problem in which random delays are considered. Being a stochastic environment, we are interested in generating solutions with a high expected reward that, at the same time, are highly reliable (i.e., offer a high probability of not suffering any route delay larger than a user-defined threshold). In order to tackle this stochastic optimization problem, which contains a probabilistic constraint on the random delays, we propose an extended simheuristic algorithm that also employs concepts from reliability analysis.This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033), the Barcelona City Council and Fundació “la Caixa” under the framework of the Barcelona Science Plan 2020–2023 (grant 21S09355-001), and the Generalitat Valenciana (PROMETEO/2021/065).Peer ReviewedPostprint (published version

    Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays

    Full text link
    [EN] In the team orienteering problem, a fixed fleet of vehicles departs from an origin depot towards a destination, and each vehicle has to visit nodes along its route in order to collect rewards. Typically, the maximum distance that each vehicle can cover is limited. Alternatively, there is a threshold for the maximum time a vehicle can employ before reaching its destination. Due to this driving range constraint, not all potential nodes offering rewards can be visited. Hence, the typical goal is to maximize the total reward collected without exceeding the vehicle's capacity. The TOP can be used to model operations related to fleets of unmanned aerial vehicles, road electric vehicles with limited driving range, or ride-sharing operations in which the vehicle has to reach its destination on or before a certain deadline. However, in some realistic scenarios, travel times are better modeled as random variables, which introduce additional challenges into the problem. This paper analyzes a stochastic version of the team orienteering problem in which random delays are considered. Being a stochastic environment, we are interested in generating solutions with a high expected reward that, at the same time, are highly reliable (i.e., offer a high probability of not suffering any route delay larger than a user-defined threshold). In order to tackle this stochastic optimization problem, which contains a probabilistic constraint on the random delays, we propose an extended simheuristic algorithm that also employs concepts from reliability analysis.This work has been partially funded by the Spanish Ministry of Science (PID2019-111100RBC21-C22/AEI/10.13039/501100011033), the Barcelona City Council and Fundacio "la Caixa" under the framework of the Barcelona Science Plan 2020-2023 (grant 21S09355-001), and the Generalitat Valenciana (PROMETEO/2021/065).Herrera, EM.; Panadero, J.; Carracedo-Garnateo, P.; Juan-Pérez, ÁA.; Pérez Bernabeu, E. (2022). Determining Reliable Solutions for the Team Orienteering Problem with Probabilistic Delays. Mathematics. 10(20). https://doi.org/10.3390/math10203788102

    The stochastic team orienteering problem with position-dependent rewards

    Get PDF
    In this paper, we analyze both the deterministic and stochastic versions of a team orienteering problem (TOP) in which rewards from customers are dynamic. The typical goal of the TOP is to select a set of customers to visit in order to maximize the total reward gathered by a fixed fleet of vehicles. To better reflect some real-life scenarios, we consider a version in which rewards associated with each customer might depend upon the order in which the customer is visited within a route, bonusing the first clients and penalizing the last ones. In addition, travel times are modeled as random variables. Two mixed-integer programming models are proposed for the deterministic version, which is then solved using a well-known commercial solver. Furthermore, a biased-randomized iterated local search algorithm is employed to solve this deterministic version. Overall, the proposed metaheuristic algorithm shows an outstanding performance when compared with the optimal or near-optimal solutions provided by the commercial solver, both in terms of solution quality as well as in computational times. Then, the metaheuristic algorithm is extended into a full simheuristic in order to solve the stochastic version of the problem. A series of numerical experiments allows us to show that the solutions provided by the simheuristic outperform the near-optimal solutions obtained for the deterministic version of the problem when the latter are used in a scenario under conditions of uncertainty. In addition, the solutions provided by our simheuristic algorithm for the stochastic version of the problem offer a higher reliability level than the ones obtained with the commercial solver.Peer ReviewedPostprint (published version

    Combining Parallel Computing and Biased Randomization for Solving the Team Orienteering Problem in Real-Time

    Full text link
    [EN] In smart cities, unmanned aerial vehicles and self-driving vehicles are gaining increased concern. These vehicles might utilize ultra-reliable telecommunication systems, Internet-based technologies, and navigation satellite services to locate their customers and other team vehicles to plan their routes. Furthermore, the team of vehicles should serve their customers by specified due date efficiently. Coordination between the vehicles might be needed to be accomplished in real-time in exceptional cases, such as after a traffic accident or extreme weather conditions. This paper presents the planning of vehicle routes as a team orienteering problem. In addition, an 'agile' optimization algorithm is presented to plan these routes for drones and other autonomous vehicles. This algorithm combines an extremely fast biased-randomized heuristic and a parallel computing approach.This work has been partially supported by the Spanish Ministry of Science and Innovation (PID2019-111100RB-C21/AEI/10.13039/501100011033, RED2018-102642-T). We also acknowledge the support of the Erasmus+ Program (2019-I-ES01-KA103-062602)Panadero, J.; Ammouriova, M.; Juan-Pérez, ÁA.; Agustin, A.; Nogal, M.; Serrat, C. (2021). Combining Parallel Computing and Biased Randomization for Solving the Team Orienteering Problem in Real-Time. Applied Sciences. 11(24):1-18. https://doi.org/10.3390/app112412092118112

    Combining parallel computing and biased randomization for solving the team orienteering problem in real-time

    Get PDF
    In smart cities, unmanned aerial vehicles and self-driving vehicles are gaining increased concern. These vehicles might utilize ultra-reliable telecommunication systems, Internet-based technologies, and navigation satellite services to locate their customers and other team vehicles to plan their routes. Furthermore, the team of vehicles should serve their customers by specified due date efficiently. Coordination between the vehicles might be needed to be accomplished in real-time in exceptional cases, such as after a traffic accident or extreme weather conditions. This paper presents the planning of vehicle routes as a team orienteering problem. In addition, an ‘agile’ optimization algorithm is presented to plan these routes for drones and other autonomous vehicles. This algorithm combines an extremely fast biased-randomized heuristic and a parallel computing approach.Peer ReviewedPostprint (published version

    The bid construction problem for truckload transportation services procurement in combinatorial auctions : new formulations and solution methods

    Get PDF
    De nos jours, l'évolution du commerce électronique ainsi que des niveaux de la consommation requièrent des acteurs de la chaine logistique et en particulier les transporteurs de gérer efficacement leurs opérations. Afin de rester concurrentiels et maximiser leurs profits, ils doivent optimiser leurs opérations de transport. Dans cette thèse de doctorat, nous nous focalisons sur les enchères combinatoires en tant que mécanisme de négociation pour les marchés d'approvisionnement des services de transport routier par camions permettant à un expéditeur d'externaliser ses opérations de transport et aux transporteurs d'acquérir des contrats de transport. Les mises combinatoires permettent à un transporteur participant à l'enchère d'exprimer ses intérêts pour une combinaison de contrats mis à l'enchère dans une même mise. Si la mise gagne, tous les contrats qui la forment seront alloués au transporteur au tarif exigé. Les défis majeurs pour le transporteur sont de déterminer les contrats de transport sur lesquels miser, les regrouper dans plusieurs mises combinatoires, s'il y a lieu, et décider des prix à soumettre pour chaque mise générée. Ces défis décisionnels définissent le problème de construction de mises combinatoires (BCP pour Bid Construction Problem). Chaque transporteur doit résoudre le BCP tout en respectant ses engagements préexistants et ses capacités de transport et en tenant compte des offres des compétiteurs, ce qui rend le problème difficile à résoudre. Dans la pratique, la majorité des transporteurs se basent sur leur connaissance du marché et leur historique pour fixer leurs prix des mises. Dans la littérature, la majorité des travaux sur le BCP considèrent des modèles déterministes où les paramètres sont connus et se limitent à un contexte de flotte homogène. En plus, nous notons qu'un seul travail à considérer une variante stochastique du BCP. Dans cette thèse de doctorat, nous visons à faire avancer les connaissances dans ce domaine en introduisant de nouvelles formulations et méthodes de résolution pour le BCP Le premier chapitre de cette thèse introduit une nouvelle variante du BCP avec une flotte hétérogène. En partant d'une comparaison des similitudes et des différences entre le BCP et les problèmes classiques de de tournées de véhicules, nous proposons une nouvelle formulation basée sur les arcs avec de nouvelles contraintes de bris de symétrie pour accélérer la résolution. Ensuite, nous proposons une approche heuristique et une autre exacte pour résoudre ce problème. L'heuristique développée est une recherche adaptative à grands voisinages (ALNS pour Adaptive Large Neighborhood Search) et se base sur le principe de destruction puis réparation de la solution à l'aide d'opérateurs conçus spécifiquement pour le BCP traité. La méthode exacte utilise la meilleure solution heuristique pour résoudre notre modèle mathématique avec le solveur CPLEX. Les résultats obtenus montrent la pertinence de nos méthodes en termes de qualités des solutions et des temps de calculs et ce pour des instances de grande taille. Dans le deuxième chapitre, nous nous attaquons à un cas particulier du BCP où le transporteur n'a pas d'engagements existants et vise à déterminer un ensemble de contrats mis à l'enchère profitables à miser dessus. Cette problématique correspond à un problème de tournées de véhicules avec profits (TOP pour Team Orienteering Problem). Nous proposons pour le TOP une heuristique ALNS hybride avec de nouveaux opérateurs ainsi que de nouvelles fonctionnalités tenant compte de la nature du problème. Ensuite, nous comparons les performances de notre méthode avec toutes les méthodes déjà publiées dans la littérature traitant du TOP. Les résultats montrent que notre méthode surpasse généralement toutes les approches existantes en termes de qualité des solutions et/ou temps de calculs quand elle est testée sur toutes les instances de la littérature. Notre méthode améliore la solution d'une instance de grande taille, ce qui surligne sa performance. Dans le troisième chapitre, nous nous focalisons sur l'incertitude associée aux prix de cessions des contrats mis à l'enchère et sur les offres des transporteurs concurrents. Il n'existe qu'un seul article qui traite de l'incertitude dans le BCP cependant il ne permet pas de générer des mises multiples. Ainsi, nous proposons une nouvelle formulation pour le BCP avec des prix stochastiques permettant de générer des mises combinatoires et disjointes. Nous présentons deux méthodes pour résoudre ce problème. La première méthode est hybride et à deux étapes. Dans un premier temps, elle résout un problème de sélection pour déterminer un ensemble de contrats profitables. Dans un second temps, elle résout simultanément un problème de sélection de contrats et de détermination de prix des mises (CSPP pour Contracts Selection and Pricing Problem) en ne considérant que les contrats sélectionnés dans la première étape. Notre méthode exacte résout, avec l'algorithme de branch-and-cut, le CSPP sans présélectionner des contrats. Les résultats expérimentaux et de simulations que nous rapportons soulignent la performance de nos deux méthodes et évaluent l'impact de certains paramètres sur le profit réel du transporteur. Dans le quatrième chapitre, nous nous focalisons sur l'incertitude liée au succès des mises et à la non-matérialisation des contrats. Généralement, le transporteur souhaite avoir la garantie que si certaines des mises ne sont pas gagnées ou un contrat ne se matérialise pas, il n'encourra pas de perte en servant le sous-ensemble de contrats gagnés. Dans cette recherche, nous adressons le BCP avec prix stochastiques et développons une méthode exacte qui garantit un profit non négatif pour le transporteur peu importe le résultat des enchères. Nos simulations des solutions optimales démontrent, qu'en moyenne, notre approche permet au transporteur d'augmenter son profit en plus de garantir qu'il reste non-négatif peu importe les mises gagnées ou la matérialisation des contrats suivant l'enchère.Nowadays, the evolution of e-commerce and consumption levels require supply chain actors, in particular carriers, to efficiently manage their operations. In order to remain competitive and to maximize their profits, they must optimize their transport operations. In this doctoral thesis, we focus on Combinatorial Auctions (CA) as a negotiation mechanism for truckload (TL) transportation services procurement allowing a shipper to outsource its transportation operations and for a carrier to serve new transportation contracts. Combinatorial bids offer a carrier the possibility to express his valuation for a combination of contracts simultaneously. If the bid is successful, all the contracts forming it will be allocated to the carrier at the submitted price. The major challenges for a carrier are to select the transportation contracts to bid on, formulate combinatorial bids and associated prices. These decision-making challenges define the Bid Construction Problem (BCP). Each carrier must solve a BCP while respecting its pre-existing commitments and transportation capacity and considering unknown competitors' offers, which makes the problem difficult to solve. In practice, the majority of carriers rely on their historical data and market knowledge to set their prices. In the literature, the majority of works on the BCP propose deterministic models with known parameters and are limited to the problem with a homogeneous fleet. In addition, we found a single work addressing a stochastic BCP. In this thesis, we aim to advance knowledge in this field by introducing new formulations and solution methods for the BCP. The first chapter of this thesis introduces the BCP with a heterogeneous fleet. Starting from a comparison between the BCP and classical Vehicle Routing Problems (VRPs), we propose a new arc-based formulation with new symmetry-breaking constraints for the BCP. Next, we propose exact and heuristic approaches to solve this problem. Our Adaptive Large Neighborhood Search (ALNS) heuristic is based on a destroy-repair principle using operators designed for this problem. Our exact method starts from the heuristic solution and solves our mathematical model with CPLEX. The results we obtained revealed the relevance of our methods in terms of solutions quality and computational times for large instances with up to 500 contracts and 50 vehicles. In the second chapter, we tackle a particular case of the BCP where the carrier has no pre-existing commitments and aims to select a set of profitable auctioned contracts to bid on. This problem corresponds to a Team Orienteering Problem (TOP). We propose a hybrid ALNS heuristic for the TOP with new operators as well as new features taking into account the nature of the problem. Then, we compare the performance of our algorithm against the best solutions from the literature. The results show that our method generally outperforms all the existing ones in terms of solutions quality and/or computational times on benchmark instances. Our method improves one large instance solution, which highlights its performance. In the third chapter, we focus on the uncertainty associated with the auctioned contracts clearing prices and competing carriers offers. Only one article dealing with uncertainty in the BCP existed but it does not allow to generate multiple bids. Thus, we propose a new formulation for the BCP with stochastic prices allowing to generate non-overlapping combinatorial bids. We present two methods to solve this problem. The first one is a two-step hybrid heuristic. First, it solves a Contracts Selection Problem to determine a set of profitable contracts to bid on. Secondly, it simultaneously solves a Contracts Selection and Pricing Problem (CSPP) by considering only the set of auctioned contracts selected in the first stage. Our exact method solves a CSPP by branch-and-cut without pre-selecting contracts. The experimental and simulation results underline the performance of our two methods and evaluate the impact of certain parameters on the carrier's real profit. In the fourth chapter, we focus on the uncertainty associated with bids success and contracts non-materialization. Generally, the carrier seeks to be assured that if some of the submitted bids are not won or a contract does not materialize, it will not incur a loss by serving the remaining contracts. In this research, we address the BCP with stochastic prices and develop an exact method that ensures a non-negative profit for the carrier regardless of the auction outcomes and contracts materialization. Our simulations of the optimal solutions show that, on average, our approach increases the carrier's profit in addition to guaranteeing its non-negativity regardless of the bids won or the contracts materialization

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality
    corecore